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Abstract Traditional physics-based contact models have been widely used for describing
various contact phenomena such as robotic grasping and assembly. However, difficulties in
carrying out contact parameter identification as well as the relatively low measurement ac-
curacy due to complex contact geometry and surface uncertainties are the limiting factors
of the physics-based contact modeling methods. In this paper, we present a novel hybrid
contact modeling (HCM) method as an endeavor to discover models that can more accu-
rately simulate practical contact scenarios than traditional physics-based contact models.
The proposed method is implemented by combining a physics-based contact model and a
data-driven error model. This approach is validated by using simulations of a bouncing ball,
a flat-shot, and a three-dimensional (3D) peg-in-hole. The results demonstrate the feasibility
and consistent performance of the HCM method.

Keywords Contact dynamics · Contact modeling · Contact model · Physics-based model ·
Data-driven model · Modeling error

1 Introduction

Physics-based contact dynamics modeling methods have provided practical solutions for
various application cases, such as spacecraft docking [1], robotic capturing [2–5], vehicle
safety improvement [6, 7], and fruit bruise explanation [8]. Extensive reviews on physics-
based contact models can be found in [9–11]. Physics-based contact models have various

B Q. Liu
liuqian_bit@163.com

J. Liang
fshljx1209@mail.tsinghua.edu.cn

O. Ma
ou.ma@uc.edu

1 School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

2 College of Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11044-020-09746-w&domain=pdf
mailto:liuqian_bit@163.com
mailto:fshljx1209@mail.tsinghua.edu.cn
mailto:ou.ma@uc.edu


98 Q. Liu et al.

mathematical expressions [12, 13] for different contact problems and each model has dy-
namic characteristics compared to other models [14]. To improve the performance of a spe-
cific physics-based contact model, estimation methods are often used to determine the model
parameters [15–19]. A recursive least squares estimation technique was adopted in [20] for
the identification of the contact stiffness and damping. Further improvements have been
made with two recursive least squares estimators in [21] and a nonlinear separable least
squares formulation employed in [22]. For some important engineering applications, how-
ever, these methods are often not accurate enough and can only provide rough information
[23–25] due to the limitation of physics-based contact models in describing contact factors
[26–28], such as the surface topography, temperature, lubrication, and even humidity. More-
over, complex contact cases are difficult to model since there are unknown contact factors
as a result of the limited human knowledge on the contact phenomenon, which means that
it is almost impossible for physics-based contact models to take into account these factors.

In this study, the factors that influence the contact phenomenon are categorized into three
groups, the known modeled factors, the known unmodeled factors and the unknown unmod-
eled factors. In a more intuitive form, we have

Contact physics = Modeled part + Unmodeled part

where the Modeled part includes all known modeled factors of the contact phenomenon
and their relationships, which can be expressed by known physical principles; the Unmod-
eled part reflects the comprehensive effect of the known unmodeled factors and unknown
unmodeled factors. Also, the Unmodeled part can be regarded as the error of the Modeled
part.

With the development and maturity of machine learning technologies, including feed-
forward neural networks [29, 33, 34], support vector regression [29, 30] and back-
propagation neural networks [31, 32], a considerable number of studies have been devoted
to the idea of extracting a data-driven model from the enormous amount of experimental
data using these technologies. Inspired by some previous work, it is clear that large amounts
of contact experimental data can also be refined and analyzed to better describe the nonlin-
earities that exist with regard to the contact phenomenon.

In this paper, we explore a novel hybrid contact modeling (HCM) method in which a
data-driven error model is introduced as a supplement to the physics-based contact mod-
els to capture the error caused by the unmodeled factors of the contact phenomenon. One
of the advantages of such an approach is that our method can achieve an accurate model
of a complex contact phenomenon, as the physics-based model is established to show the
modeled factors of the contact phenomenon, while the data-driven model is trained using
data technologies to reflect the unmodeled factors. Furthermore, our method provides a way
to combine a physics-based model and a data-driven model to fully take advantage of both
types of models. A physics-based model is created based on the knowledge of the physical
mechanism and thus is applicable to various contact phenomena. However, the drawback of
using the physics-based model alone is that an accurate description of contact phenomena
can hardly be achieved due to the lack of consideration of all unmodeled factors. In contrast,
a data-driven model performs well at accurately determining the input-output relationship
based on sufficient data, but it is hardly scalable and applicable to cases other than the one
that the data represent.

We have carried out a variety of simulations to explore the properties of our approach and
to compare its performance to that of traditional physics-based contact modeling methods.
As our simulations have demonstrated, the HCM method reduces the error, resulting in a
more accurate description of the physical reality of the contact dynamics.
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Fig. 1 Procedure of establishing
a traditional physics-based model

The remainder of this paper is organized as follows. Sections 2 and 3 introduce the strat-
egy and models used for the HCM method, respectively. Section 4 focuses on the con-
struction of a noise-added contact model that mimics the experimental results based on the
proposed assumption. Section 5 examines some examples, the results of which demonstrate
the performance of our approach. Finally, Sect. 6 concludes this paper and discusses future
research.

2 Hybrid contact modeling method

The proposed hybrid contact model includes two main components: a traditional physics-
based model and a data-driven error model. The physics-based model is obtained from the
traditional contact dynamics theory applied to the contact case of interest, while the data-
driven error model reflecting the unmodeled factors of the contact physics is extracted from
the available experimental data. To write this structure in an explicit form, we have

HCM = Physics − based model + Data − driven error model

As the physics-based model expresses the modeled part of the contact physics, the error
between the contact physics and the HCM is equivalent to that between the unmodeled part
and the data-driven error model. Then, minimizing the error of the HCM is the same as
maximizing the accuracy of the data-driven error model.

A flowchart for establishing a traditional physics-based model, where a model parame-
ter identification scheme is usually used to improve its accuracy [13, 18], is illustrated in
Fig. 1. We divide this approach into three steps: contact experiment implementation, phys-
ical model-based simulation and physics-based model optimization. In the first step, exper-
iments are performed to obtain the experimental data of a contact phenomenon. The next
step introduces the physics-based model for simulating the abovementioned contact exper-
iments. After comparing the simulated data and the experimental data, the physics-based
model is updated by adjusting its model parameters until the model generates a simula-
tion result convergence to the experimental results. The traditional physics-based modeling
method, however, cannot accurately describe the contact phenomenon due to the lack of
consideration of the unmodeled factors.
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Fig. 2 An overview of the HCM
modeling method

Figure 2 presents an overview of our proposed HCM method. Improved from the tradi-
tional physics-based modeling method, the process of establishing a hybrid contact model
can also be divided into three steps. Both the physics-based model and the data-driven error
model need to be determined in the second step to establish the hybrid contact model. First,
the contact experiment should be repeated numerous times to obtain a large amount of ex-
perimental data, which include both motion and force data of the contact bodies. Then we
randomly classify the obtained experimental data into two groups: 90% of the experimental
data (denoted as S1) serves as the training set, and the remaining 10% (denoted as S2) serves
as the validation set. In contrast to the abovementioned physics-based modeling methods,
we compute the error data from the simulated data of the physics-based model and the S1
set. These error data, reflecting the unmodeled factors of the contact experiment, allow us to
construct a data-driven error model. Particularly, the motion data (i.e., positions, attitudes,
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Fig. 3 Contact between two
bodies

velocities and angular velocities of the contacting bodies) are considered to be the input of
the data-driven error model, while the force error data are considered to be the output to ob-
tain a consistent input-output relationship associated with the physics-based model. We then
generate the hybrid contact model with a combination of the traditional physics-based model
and the data-driven error model. To optimize the accuracy of the hybrid contact model, the
data-driven error model will be updated until the error between the HCM simulation data
and the contact experiment data becomes sufficiently small. In this way, the HCM method
is capable of providing a more accurate simulation of the contact experiment case.

Similar to the construction of the data-driven error model, the data-driven contact model
can be constructed by properly training the experimental contact data. However, it is difficult
for the data-driven contact model to simulate a contact scenario without enough contact data,
which is also the case for the data-driven error model. The strategy of the HCM method is
to simulate such a contact scenario by switching off the data-driven error model. Therefore,
the HCM method can more flexibly model various contact phenomena by combining the
benefits of both of its components.

3 Models

This section describes the two types of models, i.e., the physics-based models and the data-
driven error models, used in the HCM method.

3.1 Physics-based models

In classical physics-based contact dynamics [10], a contact phenomenon of two bodies [see
Fig. 3] can be described as a process in which local deformations at the contact point be-
tween the interactive impacting bodies generate contact forces that tend to separate the im-
pacting bodies from each other. The indentation of the impacting bodies at the contact point
may be defined as the penetration depth of the intersecting region when the local deforma-
tion region is simplified as an intersecting region between the undeformed bodies [35].

Let the composite force of the normal contact force and the friction force at the contact
point be expressed in the body frame of each contact body [see Fig. 3]. The force F ∈R

3×1

and the torque T ∈R
3×1 can be written as follows:{

F i = (−1)i−1
(
f n + f f

)
T i = (−1)i−1 li × (

f n + f f

)
i = 1,2

(1)
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where i, i = 1,2 represents the contact body 1 and 2, respectively; F 1,F 2 ∈ R
3×1 and

T 1,T 2 ∈ R
3×1 are the contact forces and the contact torques expressed in the body frames

of the contacting bodies, respectively; l1, l2 ∈ R
3×1 represent the two arm vectors of the

contact force; f n ∈R
3×1 represents the normal contact force at the contact point; f f ∈R

3×1

represents the friction force perpendicular to the normal contact force at the contact point.
The Hertzian contact model, nonlinear damping contact models and a velocity-based

friction model are used in our study. Hertz is a pioneer with respect to solving contact me-
chanics problems using the classical theory of elasticity, and the Hertzian contact model
remains one of the most widely used contact models to treat contact problems. However,
the Hertzian contact model does not account for the energy dissipation process that char-
acterizes the contact events in mechanical systems. Several researchers have extended the
Hertzian contact model to simulate the energy dissipation process. In particular, Lankarani
and Nikravesh extended the Hertzian contact model to accommodate the energy dissipa-
tion by including a hysteresis damping term. The variable stiffness contact model uses an
effective contact stiffness equation that depends on the area of the contacting geometry. Ad-
ditionally, in MSC ADAMS software (a commonly used multibody dynamics simulation
software), a nonlinear damping model, which applies a cubic polynomial damping term,
combined with a velocity-based friction model has been adopted to simulate the nonlinear
force characteristics of the contact problems.

3.1.1 Hertzian contact model

The Hertzian contact model, originally invented to simulate the perfectly elastic contact
between impacting bodies, is a nonlinear function without the damping term and is defined
as [36] {

f n = 0(3×1) δ ≤ 0

f n = kδnn δ > 0
(2)

where f n ∈R
3×1 represents the normal contact force at the contact point; n is the nonlinear

power exponent which is equal to 3/2 for the case with a parabolic distribution of contact
stress; δ and n ∈R

3×1 are the indentation and the surface common normal vector of the con-
tacting bodies, respectively; and k denotes the Hertzian contact stiffness. For two spherical
bodies (1 and 2), the contact stiffness can be defined as

k = 4

3

E1E2

E1

(
1 − υ2

2

) + E2

(
1 − υ2

1

)
√

R1R2

R1 + R2
(3)

where E1 and E2 are the Young modulus of the spherical bodies; υ1 and υ2 are the Poisson
ratios of the spherical bodies; R1 and R2 are the radii of the spherical bodies.

3.1.2 Nonlinear damping contact models

By extending the Hertzian contact model with a hysteresis damping function to represent
the energy dissipation during the contact process, the Lankarani-Nikravesh contact model is
developed as [37] {

f n = 0(3×1) δ ≤ 0

f n = kδnn + dδ̇n δ > 0
(4)
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where d represents the damping coefficient which takes the form as

d = 3k
(
1 − c2

e

)
δn

4δ̇0
(5)

where ce is the restitution coefficient and δ̇0 is the initial indentation velocity of the contact-
ing bodies.

The variable stiffness contact model considers the interference geometry to calculate the
contact forces between contacting bodies. An effective contact stiffness equation is used
to reflect the relationship between the effective contact stiffness and the contact area. The
variable stiffness contact model can be stated as [38]{

f n = 0(3×1) δ ≤ 0

f n = k (δ) δn + 2λ
√

k (δ)meδδ̇n δ > 0
(6)

where me is the effective mass of the contacting bodies defined as me = m1m2/ (m1 + m2)

and limm1→∞ me = m2; m1 and m2 are the masses of the contacting bodies, respectively; λ

represents the damping ratio; k (δ) is the effective contact stiffness, which is defined as

k (δ) = c
E1E2

E1
(
1 − υ2

2

) + E2
(
1 − υ2

1

)a (δ) (7)

where E1 and E2 are the Young modulus of the contacting bodies; υ1 and υ2 are the Pois-
son ratios of the contacting bodies; a (δ) represents the effective radius of the contacting
area. Particularly, the effective radius for a ball with the radius r contacting with a plane
is a (δ) = √

2rδ − δ2. c is the surface loading coefficient depending on the normal contact-
force distribution, and the value range of c is 4/3 ≤ c ≤ 2π .

Another nonlinear damping model used in MSC ADAMS software is called the IMPACT
force contact model, which is given by [39]{

f n = 0(3×1) δ ≤ 0

f n = max
(
0, kδe + step (δ, δ0, d0, δmax, dmax) δ̇

)
n δ > 0

(8)

where k is the contact stiffness coefficient; e is the positive real value denoting the contact-
force exponent; step (·) represents a function expressing the contact damping characteristic
with a cubic polynomial [see Fig. 4], which is written as

step (δ, δ0, d0, δmax, dmax) =
⎧⎨
⎩

d0 δ ≤ δ0

d0 + (dmax − d0) · �2 (3 − 2�) δ0 < δ < δmax

dmax δ ≥ δmax

(9)

where δ0 and d0, respectively, represent the initial indentation and the initial damping coeffi-
cient when contact begins, that is, δ0 = 0 and d0 = 0; δmax specifies the boundary penetration
to apply the maximum damping coefficient dmax; � satisfies � = (δ − δ0) / (δmax − δ0).

3.1.3 Velocity-based friction model

As an improvement to the classic Coulomb friction model, which exhibits a discontinuous
performance due to the difference between static and dynamic behaviors, the velocity-based
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Fig. 4 Cubic polynomial with
damping coefficient as the
dependent variable and
indentation as the independent
variable

Fig. 5 BPNN for a data-driven
error model

friction model is introduced as

f f = −μ(v)
∥∥f n

∥∥ · v

v
(10)

where f f ∈ R
3×1 represents the friction force perpendicular to the normal contact force at

the contact point; v ∈ R
3×1 is the slip velocity between the contacting bodies, and v = ‖v‖;

μ(·) expresses the friction coefficient varying with the slip velocity, which is defined as

μ(v) =
⎧⎨
⎩

step (v,0,0, vs,μs) 0 ≤ v < vs

step (v, vs,μs, vd,μd) vs ≤ v ≤ vd

μd v > vd

(11)

where vs and vd represent the static transition velocity and the dynamic transition velocity,
respectively; μs is the static friction coefficient and μd is the dynamic friction coefficient.

3.2 Data-driven error models

We seek to build a data-driven model that describes the error between the physics-based
model and the contact physics based on a sufficiently large amount of experimental data.
In this study, a back-propagation neural network (BPNN) is adopted to construct the data-
driven error model that generates the force error with the motion data of the contact bodies
as inputs, as shown in Fig. 5.

To reduce the cost of the BPNN training process and increase the accuracy of the data-
driven error model, the network structure of the data-driven error model is optimized in
this paper, as shown in Fig. 6. The optimization method used here is similar to the method
adopted in [40]. That is, six BPNN models for each contact body should be assumed for a
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Fig. 6 Improved BPNN for a
data-driven error model

three-dimensional (3D) contact situation. Hence, the BPNN function can be formulated to
express the nonlinear characteristics of the unmodeled factors in the contact experiment as

yi
out = gBPNN

(
p1,p2,ε1,ε2,v1,v2,ω1,ω2

)
i = 1,2, . . . ,12 (12)

where gBPNN (·) represents the function of the BPNN model; p1,p2 ∈ R
3×1 are the posi-

tions of the contacting bodies; ε1,ε2 ∈ R
4×1 are the orientations of the contacting bodies

represented by unit quaternions; v1,v2 ∈ R
3×1 and ω1,ω2 ∈ R

3×1 are the velocities and
angular velocities of the contacting bodies, respectively; yi

out represents one dimension of
the contact-force error data, and [y1

out , y
2
out , y

3
out ]T = F 1_error , [y4

out , y
5
out , y

6
out ]T = T 1_error ,

[y7
out , y

8
out , y

9
out ]T = F 2_error , [y10

out , y
11
out , y

12
out ]T = T 2_error ; F 1_error ,F 2_error ∈ R

3×1 and
T 1_error ,T 2_error ∈ R

3×1 are the contact-force errors and the contact torque errors of the
contacting bodies, respectively.

4 Simulation methodology

It is well known that a simulation model cannot substitute for a real contact experiment due
to the uncertainties from the experimental materials and equipment.

As mentioned in Sect. 1, contact physics phenomena consist of the modeled part and the
unmodeled part which represents the error of the modeled part. Then we can rewrite the
contact physics in a symbolic form as

C = G(x1, x2, . . . , xs) + U (13)

where G(x1, x2, . . . , xs) represents the modeled part with known modeled contact param-
eters xi , i = 1,2, . . . , s; U represents the unmodeled part of the contact physics which is
denoted by C.

As a substitution for the experiment, we define a noise-added contact model with noise on
both the model parameters and the simulation results to mimic the contact physics of a real
contact experiment. Noise is introduced to the model parameters to reflect the experimental
system errors, and the noise in the simulation results reflects the experimental random errors.

Thus, the noise-added contact model C̃ can be defined as

C̃ = G(x1, x2, . . . , xs) + H̃ + σζ (14)
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Fig. 7 Bouncing ball example

where ·̃ represents a parameter with noise; H̃ is the difference between the noise-added
modeled part G(x̃1, x̃2, . . . , x̃s) with noise on its contact parameters and the modeled part
G(x1, x2, . . . , xs); ζ is a random error generated by white noise, and ζ ∈ N (0,1); σ is the
variance parameter of noise.

Now, we propose the following assumption to ensure the substitution of the contact
physics C by the contact model C̃ without the consideration of the possible error distri-
bution of the contact physics.

Assumption:

min
(
H̃ + σζ

)
< U < max

(
H̃ + σζ

)
(15)

Substituting Eq. (13) and Eq. (14) into Eq. (15) yields the following:

min
(
C̃

)
< C < max

(
C̃

)
(16)

Thus, the noise-added contact model is able to mimic the contact physics C under the pro-
posed assumption. In particular, the above assumption applies to all kinds of physics-based
contact models, including the Hertzian contact model and the nonlinear damping contact
models noted in the previous section.

5 Simulation examples

We tested the performance of the HCM method with three dynamic simulation examples, in-
cluding a bouncing ball, a flat-shot and a 3D peg-in-hole. The bouncing ball and the flat-shot
examples were implemented in a MATLAB/Simulink environment, and the peg-in-hole ex-
ample was implemented in the co-simulation environment based on MATLAB/Simulink and
MSC ADAMS. The simulation results of the hybrid contact model were compared against
those of the physics-based contact models to demonstrate the improved accuracy of the
HCM method.

5.1 Bouncing ball example

5.1.1 Dynamic model

For a bouncing ball in the free-falling direction shown in Fig. 7, the dynamics equation is

mξ̈ = fn − mg, ξ (0) = h0 + r, ξ̇ (0) = v0 (17)

where m is the mass of the ball; ξ is the position of the ball corresponding to the body frame
of the ground; fn represents the normal contact force between the ball and the ground; h0

and v0 stand for the initial height and the initial velocity of the ball, respectively; r is the
radius of the ball and g represents the gravitational acceleration.
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Table 1 Physical parameters of
the ball Symbol Parameters Values

r Radius of the ball (m) 1.27e-2

m Mass of the ball (kg) 6.69e-2

Table 2 Parameters of the PM1
Symbol Parameters Value a Value b

g Gravitational acceleration (m/s2) 9.81 0

v0 Initial velocity of the ball (m/s) 0 0

h0 Initial height of the ball (m) 0.1 0.01

E1 Young’s modulus of the ground (N/m2) 1.5e10 0.01

E2 Young’s modulus of the ball (N/m2) 2e11 0.06

υ1 Poisson’s ratio of the ground 0.3 0.04

υ2 Poisson’s ratio of the ball 0.3 0.09

λ Damping ratio 0.1 5e-3

5.1.2 Simulation

The physical parameters of the example are listed in Table 1. First, we constructed a noise-
added contact model (called PM1) to represent a real bouncing ball experiment under the
assumption of Eq. (15). The noise-added contact model was a variable stiffness contact
model with noise on its parameters and its simulation results. A parameter η with noise is
defined as

η = a + abζ (18)

where white noise, ζ ∈ N (0,1), is directly added to the simulation result γ0, namely

γ = γ0 + σζ (19)

where a is the mean value of the parameter η; b and σ are variance parameters of the noise.
The parameters of the PM1 are listed in Table 2.
Due to the noise on the PM1, the simulation results, including the motion data and the

contact-force data of the bouncing ball, were different for each run, which would be a sim-
ilar case to a real contact experiment. The simulation of the PM1 was conducted 1,000
times to acquire the simulation results. After randomly grouping the simulation results of
the PM1 into the S1 set (90% of the simulated data) and the S2 set (remaining 10% of
the simulated data), we established a traditional physics-based model (called PM2) based
on the Lankarani-Nikravesh contact model to simulate the bouncing ball case (namely, the
PM1). The contact parameters, including the contact stiffness k ∈ [1e9,1e10], the power
exponent n ∈ [1,2], and the restitution coefficient ce ∈ [0.7,1], were derived from the S1 set
by adopting the genetic algorithm method [41], as presented in Table 3.

Specifically, the boundary of restitution coefficient was defined because the Lankarani-
Nikravesh contact model is mainly valid for coefficient of restitution values close to unity
[37].

In Fig. 8, we present the conceptual relationships between the contact physics of the
real contact experiment, the PM1 overlaying the contact physics with the assumption of
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Table 3 Parameters of the PM2
Symbol Parameters Values

g Gravitational acceleration (m/s2) 9.81

v0 Initial velocity of the ball (m/s) 0

h0 Initial height of the ball (m) 0.1

k Contact stiffness 4.57e9

n Power exponent 1.45

ce Restitution coefficient 0.93

Table 4 Structure of the
data-driven error model Inputs Hidden layers Output

Position of the ball (m) [10,5] Contact force error (N)

Velocity of the ball (m/s)

Fig. 8 Relationship of the PM1,
the PM2 and the contact physics

Eq. (15), and the PM2 based on the Lankarani-Nikravesh contact model. Both the Lankarani-
Nikravesh contact model and the variable stiffness contact model take into consideration the
stiffness and damping effects of the contact physics. However, the definitions of the stiff-
ness and damping equations are slightly different between the Lankarani-Nikravesh contact
model and the variable stiffness contact model, which leads to different simulation results
of the same contact phenomenon.

Then we generated the data-driven error model with the motion data as the input and the
force error data as the output using the error data extracted from the simulated data of the
PM2 and the S1, as illustrated in Fig. 2. The specific structure of the data-driven error model
that considers only the moving body (the bouncing ball) is reported in Table 4. The training
time for the data-driven error model is less than a half an hour. Finally, we constructed
the HCM by combining the data-driven error model and the PM2 to achieve an accurate
description of the bouncing ball example. The feasibility and accuracy of the HCM method
were evaluated and tested by the S2.
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Table 5 Simulation results of the S2, the PM2 and the HCM

Contact process S2
(Mean value)

PM2 HCM Error of PM2 Error of HCM

Maximum contact force (N) 2.9170e3 2.8709e3 2.9206e3 1.58% 0.12%

Contact impulse (Ns) 1.8090e-1 1.8146e-1 1.8092e-1 0.31% 0.01%

Contact energy loss (Nm) 0.0087 0.0080 0.0087 8.05% 0.01%

Contact duration (s) 1.14e-4 1.15e-4 1.14e-4 0.88% 0.01%

Fig. 9 Contact force results of
the HCM, the PM2 and the S2

5.1.3 Results and discussion

We numerically analyze the bouncing ball case in terms of the maximum contact force, the
contact impulse, the contact energy loss and the contact duration. The Simulation results of
the PM1, the PM2 and the HCM for the bouncing ball example are given in Table 5. The
error γerror between the different simulation results takes the form

γerror = abs

(
γ1 − γ2

γ1

)
(20)

where γ1 and γ2 are a quantity of interest from the two different simulation runs. Specifically,
γ1 represents a simulation of the PM1.

All four indicators demonstrate that the simulation results of the HCM show a significant
improvement compared with that of the PM2. For the indicators of the maximum contact
force and contact impulse, the error decreases from 1.58% and 0.31% with the PM2 to
0.12% and 0.01% with the HCM, respectively. The contact duration error decreases from
0.88% with the PM2 to 0.01% with the HCM. With the refinement of the data-driven error
model capturing the damping terms from the error data, the HCM succeeds in reducing the
error of the contact energy loss from 8.05% with the PM2 to 0.01%.

The contact-force results of the PM1, the PM2 and the HCM during the contact process
and the contact-force errors are plotted in Figs. 9 and 10, respectively. Note that the S2
data are analyzed because that data have not been used in the training of the HCM. We
identify the contact parameters of the PM2 from the simulation data of the PM1; therefore,
the simulation result of the PM2 shows the overall trend of the PM1. However, the error can
still be seen, as shown in Fig. 10. We divide the error into two groups, namely, the physics-
based error and the random error. The physics-based error between the PM1 and the PM2
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Fig. 10 Contact force errors of
the HCM and the PM2

Fig. 11 Flat-shot example

results from the difference in the mathematical description of the contact models, and it
contributes to the main trend of the error curve. In addition, the random error leads to noise
with an approximately ±50N amplitude. Compared with the simulation results of the PM2,
the HCM consisting of the data-driven error model and the PM2 has an improved description
of the contact process of the PM1, which demonstrates the feasibility and accuracy of the
HCM method in this contact case.

5.2 Flat-shot example

5.2.1 Dynamic model

In this example, a plate and a ball are placed on an ideal smooth surface without friction, as
illustrated in Fig. 11. While sliding along the y axis due to the initial velocity v0, the plate
hits the stationary ball. The dynamics equation of the flat-shot example is{

m1ξ̈1 = fn, ξ1 (0) = r, ξ̇1 (0) = 0

m2ξ̈2 = −fn, ξ2 (0) = −h/2, ξ̇2 (0) = v0
(21)

where m1 and m2 are the masses of the ball and the plate, respectively; ξ1 and ξ2 are the posi-
tions of the ball and the plate corresponding to the global frame, respectively; fn represents
the normal contact force between the plate and the ball; v0 stands for the initial velocity of
the plate; r is the radius of the ball and h is the thickness of the plate.

5.2.2 Simulation

The physical parameters of the plate and the ball are listed in Table 6. Similar to the bouncing
ball example, the PM1 based on a variable stiffness contact model with noise, as shown in
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Table 6 Physical parameters of
the flat-shot example Symbol Parameters Values

r Radius of the ball (m) 1.27e-2

h Thickness of the plate (m) 2.0e-2

m1 Mass of the ball (kg) 6.69e-2

m2 Mass of the plate (kg) 3.96e-1

Table 7 Parameters of the PM1

Symbol Parameters Value a Value b

v0 Initial velocity of the plate (m/s) [0.1, 0.2, 0.4, 0.5, 0.55, 0.6, 0.75, 0.8, 0.95, 1.0] 0.01

E1 Young’s modulus of the ground (N/m2) 1.5e10 0.01

E2 Young’s modulus of the ball (N/m2) 2e11 0.06

υ1 Poisson’s ratio of the ground 0.3 0.04

υ2 Poisson’s ratio of the ball 0.3 0.09

λ Damping ratio 0.1 5e-3

Table 8 Parameters of the PM2
Symbol Parameters Values

k Contact stiffness 8.28e9

n Power exponent 1.51

ce Restitution coefficient 0.97

Table 9 Structure of the
data-driven error model Inputs Hidden layers Output

Position of the ball (m) [10,5] Contact force error (N)

Velocity of the ball (m/s)

Position of the plate (m)

Velocity of the plate (m/s)

Table 7, was established to represent the flat-shot experiment. The PM1 had different initial
velocities. In particular, the initial velocity set of the plate was defined as [0.1, 0.2, 0.4,
0.5, 0.55, 0.6, 0.75, 0.8, 0.95, 1.0] (m/s). Each initial velocity of the plate was repeatedly
simulated 100 times to acquire the simulation results, which were classified into the S1 set
and the S2 set. The S1 set contained the simulation results at the initial velocity v0 ∈ [0.1,
0.2, 0.4, 0.5, 0.55, 0.6, 0.75, 0.8, 1.0] (m/s), while the S2 set was specialized to the simulated
data at v0 = 0.95 (m/s).

Then the Lankarani-Nikravesh contact model with its parameters identified by the genetic
algorithm method was used to constitute the PM2. Table 8 lists the contact parameters of the
PM2.

The data-driven error model was trained using the error data extracted from the simulated
data of the PM2 and the S1. The specific structure of the data-driven error model in this
example is illustrated in Table 9. The training time for the data-driven error model is almost
an hour.
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Table 10 Simulation results of the S2, the PM2 and the HCM

Contact process S2
(Mean value)

PM2 HCM Error of PM2 Error of HCM

Maximum contact force (N) 1.6878e3 1.6955e3 1.6905e3 0.46% 0.16%

Contact impulse (Ns) 1.0610e-1 1.0718e-1 1.0608e-1 1.02% 0.02%

Contact energy loss (Nm) 0.0024 0.0015 0.0025 37.50% 4.17%

Contact duration (s) 1.16e-4 1.17e-4 1.16e-4 0.86% 0.01%

Fig. 12 Contact force results of
the HCM, the PM2 and the S2

Finally, the HCM was combined with the data-driven error model and the PM2 to achieve
an accurate description of the flat-shot example. The feasibility and accuracy of the HCM
were evaluated and tested by the S2.

5.2.3 Results and discussion

The maximum contact force, contact impulse, contact energy loss and contact duration of
the flat-shot example were analyzed. The simulation results of the S2, the PM2 and the
HCM are shown in Table 10. For the indicators of the maximum contact force and contact
impulse, the error decreases from 0.46% and 1.02% with the PM2 to 0.16% and 0.02%
with the HCM, respectively. The contact duration error decreases from 0.86% with the PM2
to 0.01% with the HCM. With the refinement of the data-driven error model capturing the
damping terms from the error data, the HCM succeeds in reducing the error of the contact
energy loss from 37.50% with the PM2 to 4.17%.

The contact-force results during the contact process and the contact-force errors are plot-
ted in Figs. 12 and 13, respectively. Studied and constructed based on the simulation results
of the S1, the HCM still demonstrates an improved description of the contact process of the
S2 at the initial velocity v0 = 0.95 (m/s) (compared with the PM2), which illustrates the
feasibility and accuracy of the HCM method in the flat-shot example.

5.3 Peg-in-hole example

5.3.1 Dynamic model

Figure 14 shows a peg-in-hole example. The hole is fixed to the inertial frame, and the peg is
inserted into the hole during free fall under the influence of gravity. During the insertion of
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Fig. 13 Contact force errors of
the HCM and the PM2

Fig. 14 Peg-in-hole example

the peg, there are collisions between the peg and hole. The dynamic equation of the cuboid
peg insertion process can be written as{

mξ̈ = F + mg

Iω̇ + ω × Iω = T
(22)

where m is the mass of the inserting peg; I ∈R
3×3 is the centroidal inertia tensor of the peg;

ξ ∈ R
3×1 represents the position of the body frame of the peg corresponding to the global

frame; ω ∈ R
3×1 represents the angular velocity of the peg; F ∈ R

3×1 and T ∈ R
3×1 stand

for the contact force and the contact torque of the peg about its mass center expressed in the
body frame of the peg, respectively; g ∈R

3×1 represents the gravitational acceleration.

5.3.2 Simulation

Similar to the above examples, we conducted the 3D peg-in-hole case to show the appli-
cation of the HCM method in a complex contact case. The physical parameters of the peg
and hole are listed in Table 11. With the assumption described in Sect. 4, the PM1 based
on the IMPACT force contact model and the velocity-based friction model where noise is
added to their parameters, as shown in Table 12, was established to represent the peg-in-hole
experiment.
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Table 11 Physical parameters of the peg-in-hole example

Parameters Values

Peg Mass (kg) 0.8

Inertia (kg m2) [5.6e-4 0 0; 0 3.7e-4 0; 0 0 5.6e-4]

Initial position (m) [-0.005; 0.05; 0.005]

Initial attitude [0.056; -0.037; 0.056; 0.996]

Initial velocity (m/s) [0; 0; 0]

Initial angular velocity (rad/s) [0; 0; 0]

Hole Mass (kg) 5.4

Inertia (kg m2) [8e-3 0 0; 0 1e-2 0; 0 0 8e-3]

Initial position (m) [0; -0.041; 0]

Initial attitude [0; 0; 0; 1]

Gravitational acceleration (m/s2) 9.81

Table 12 Contact parameters of
the PM1 Symbol Parameters Value a Value b

k Contact stiffness coefficient (N/m) 1e7 5e-3

dmax Maximum damping coefficient (Ns/m) 1e4 5e-3

e Contact force exponent 1.6 5e-3

δmax Boundary penetration (m) 1e-4 5e-3

μs Static friction coefficient 0.3 0.05

μd Dynamic friction coefficient 0.25 0.05

vs Static transition velocity (m/s) 0.1 0

vd Dynamic transition velocity (m/s) 1.0 0

Table 13 Contact parameters of
the PM2 Symbol Parameters Values

k Contact stiffness coefficient (N/m) 3.7538e7

dmax Maximum damping coefficient (Ns/m) 9.1264e3

e Contact force exponent 1.5

δmax Boundary penetration (m) 1e-4

μs Static friction coefficient 0.2920

μd Dynamic friction coefficient 0.2670

vs Static transition velocity (m/s) 0.1

vd Dynamic transition velocity (m/s) 1.0

Then the exponent parameter of the PM2 contact-force model was assumed to be a con-
stant, as shown in Table 13. The other contact parameters of the PM2 were directly deter-
mined by using the genetic algorithm method. Table 13 lists the contact parameters of the
PM2.

Considering only the moving body in the 3D peg-in-hole case (a free-fall peg), we for-
mulated the data-driven error model including six BPNN models by training with the error
data, as listed in Table 14. The training time for those BPNN models is almost a day. After
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Table 14 Structure of the data-driven error model

Inputs Hidden layers Output

Position of the peg (m) [26,13,5] Contact force error (N or Nm)

Attitude of the peg

Velocity of the peg (m/s)

Angular velocity of the peg (rad/s)

Table 15 Simulation results of the S2, the PM2 and the HCM

Contact
process

S2
(Mean value)

PM2 HCM Error of PM2 Error of HCM

First
contact

Maximum contact force (N) 1.23e2 1.21e2 1.21e2 1.63% 1.63%

Maximum contact torque (Nm) 8.81 8.66 8.65 1.70% 1.82%

Contact impulse (Ns) 1.38e-1 1.43e-1 1.36e-1 3.62% 1.45%

Contact angular impulse (Nms) 8.48e-3 8.84e-3 8.52e-3 4.25% 0.47%

Second
contact

Maximum contact force (N) 4.64e2 6.99e2 4.57e2 50.65% 1.51%

Maximum contact torque (Nm) 1.24e1 1.83e1 1.20e1 47.58% 3.23%

Contact impulse (Ns) 1.92e-1 2.24e-1 1.91e-1 16.67% 0.52%

Contact angular impulse (Nms) 6.06e-3 5.88e-3 5.93e-3 2.97% 2.15%

combining the trained data-driven error model and the assumed PM2, the HCM for the peg-
in-hole case was obtained. The feasibility and accuracy of the HCM method were tested by
the data in the S2 data set.

5.3.3 Results and discussion

During the peg insertion process, the contact between the free-fall peg and the fixed hole
occurs more than once. Specifically, in this peg-in-hole simulation, the peg experiences two
contacts before hitting the bottom of the hole. We analyzed the four indicators of the con-
tact process, including the maximum value of the contact force, the maximum value of the
contact torque, the linear impulse, and the angular impulse.

Table 15 lists the simulation results of the S2, the PM2 and the HCM. The errors in the
linear and angular impulses between the HCM and the S2 decrease significantly compared
to those of the PM2. During the first contact process, the contact impulse error decreases
from 3.62% with the PM2 to 1.45% with the HCM; the contact angular impulse decreases
from 4.25% with the PM2 to only 0.47% with the HCM. During the second contact process,
the contact impulse error decreases to 0.52% with the HCM from 16.67% with the PM2; the
contact angular impulse error also decreases to 2.15% with the HCM from 2.97% with the
PM2. These simulation results clearly illustrate the benefit of the proposed HCM method in
the 3D contact case.

6 Conclusions

In this paper, we exploited a novel hybrid contact modeling (HCM) method. Unlike the
traditional physics-based contact modeling method, which uses the modeled factors of a
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contact phenomenon to construct the contact model, the HCM method combines both the
physics-based contact model and the data-driven error model and produces an improved
accurate simulation of the contact phenomenon; meanwhile, it retains the generalization
ability of the physics-based contact model. We validated the HCM method by the examples
of a bouncing ball, a flat-shot, and a 3D peg-in-hole case. The results demonstrate that the
proposed HCM method has a better performance than the traditional physics-based contact
modeling method in describing a contact.

We have laid the theoretical groundwork for the proposed HCM method in this paper. In
addition, some experimental studies are conducted using a bouncing ball. The experimental
data that need to be measured include the contact-force data and the motion data. An impact-
force sensor and a high-speed camera are adopted to measure those data. Future work might
include the comprehensive studies of the characteristics of the error data between the contact
experiment and the physics-based contact model and the construction of the data-driven
error model.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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