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Abstract Existing Floating Offshore Wind Turbine (FOWT) platforms are usually designed
using static or rigid-body models for the concept stage and, subsequently, sophisticated inte-
grated aero-hydro-servo-elastic models, applicable for design certification. For the new tech-
nology of FOWTs, a comprehensive understanding of the system dynamics at the concept
phase is crucial to save costs in later design phases. This requires low- and medium-fidelity
models. The proposed modeling approach aims at representing no more than the relevant
physical effects for the system dynamics. It consists, in its core, of a flexible multibody
system. The applied Newton–Euler algorithm is independent of the multibody layout and
avoids constraint equations. From the nonlinear model a linearized counterpart is derived.
First, to be used for controller design and second, for an efficient calculation of the response
to stochastic load spectra in the frequency-domain. From these spectra the fatigue damage is
calculated with Dirlik’s method and short-term extremes by assuming a normal distribution
of the response. The set of degrees of freedom is reduced, with a response calculated only in
the two-dimensional plane, in which the aligned wind and wave forces act. The aerodynamic
model is a quasistatic actuator disk model. The hydrodynamic model includes a simplified
radiation model, based on potential flow-derived added mass coefficients and nodal viscous
drag coefficients with an approximate representation of the second-order slow-drift forces.
The verification through a comparison of the nonlinear and the linearized model against a
higher-fidelity model and experiments shows that even with the simplifications, the system
response magnitude at the system eigenfrequencies and the forced response magnitude to
wind and wave forces can be well predicted. One-hour simulations complete in about 25
seconds and even less in the case of the frequency-domain model. Hence, large sensitiv-
ity studies and even multidisciplinary optimizations for systems engineering approaches are
possible.
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1 Introduction

Floating wind turbine platforms can be grouped into the ones with taut mooring lines
called Tension Leg Platforms (TLPs) and the ones with slack mooring lines. The latter are
called spar in case of a single deep-drafted cylinder with a low center of gravity. Semisub-
mersibles or barges achieve the hydrostatic restoring moment from the waterplane area
(barge effect), together with gravitational forces. To date, first full-scale prototype tests
of FOWTs were successfully completed, such as Statoil’s Hywind spar with a 2.3 MW
turbine [23], Principle Power’s WindFloat [71] with a 2 MW turbine, or the Japanese
Kabashima project with a 2 MW turbine on two different platform types [86].

Currently, the design of FOWTs builds on the existing and established methodologies for
onshore wind turbines on the one side and on the methodologies for offshore platforms on
the other side. It is stated in [61] that the design process of the wind turbine and the sub-
structure is currently rather independent. Only limited data are exchanged between the two
designers due to confidentiality requirements. Coupled design tools include aerodynamics,
hydrodynamics, structural dynamics, and control system dynamics. Although they build on
engineering assumptions, they have a level of detail suitable for certification. Tools of lower
order, for quick load analysis, on the other side, are not common. Consequently, an inte-
grated design optimization is beyond the state-of-the-art, and the substructure is designed
without considering the specific design requirements related to the wind turbine.

This work aims at providing a concept-level simulation methodology to facilitate an in-
tegrated design. The proposed simulation model includes all physical effects relevant for
the dynamics of the overall system. In the same way as the physical effects are simplified,
the necessary model parameters are less detailed than for common aero-hydro-servo-elastic
models, easing the issue of confidentiality in practice. The holistic view on the system dy-
namics at an early stage of the development helps to improve the decision-making at early
design stages, where most of the committed lifecycle costs are determined; see [27, p. 44].

1.1 Floating wind turbine dynamics and modeling

Nonlinear time-domain modeling with a number of realizations of the stochastic wind and
wave conditions is common for FOWT load case simulations. Hydrodynamics, on the other
side, are usually modeled in the frequency-domain in ocean engineering [63]. The currently
consented method of a coupled modeling of FOWTs has its origins in the open-source FAST
tool by National Renewable Energy Laboratory, Boulder, USA (NREL) [67], developed
within the thesis project by Jason Jonkman [29]. This open-source tool is used as a reference
model in this work. Other available FOWT models with comparable approaches are, among
others, the commercial tools Bladed by Det Norske Veritas–Germanischer Lloyd (DNV-
GL), Hawc2 by Technical University of Denmark (DTU), Simo-Riflex by Sintef Ocean,
Norway, and Simpack by Dassault Systèmes. The structural model is commonly a flexible
Multibody System (MBS) with modal shape functions, reducing the number of Degrees of
Freedom (DoF) of a Finite Element (FE) representation. Some models include nonlinear
beam models for the rotor blades to account for large deflections; see, for example, [21].
The floating platform is usually modeled as a rigid body. Studies were made recently to
include the substructure flexibility in the dynamic system analysis; see [7, 10, 55].
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For the aerodynamic forces, most models use Blade Element Momentum (BEM) the-
ory [22], including semiempirical corrections to avoid computationally expensive high-
fidelity fluid dynamic models. Recently, models were presented, which can better predict
the unsteady effects from the fore-aft motion of the rotor due to the floating platform mo-
tion. A first increase of complexity is the potential flow free-wake vortex method, which was
used in [16, 51, 59, 78], and [90]. An even higher fidelity can be expected from Computa-
tional Fluid Dynamics (CFD) simulations as done in [40, 85], and [53]. Experimental tests
have also been conducted by [74] and [5]. In summary, the importance of these unsteady ef-
fects depends on the frequency of the fore-aft motion, the wind speed, and the aerodynamic
loading of the rotor.

The control system is of critical influence to FOWTs because of the low-frequency fore-
aft motion of the rotor. In above-rated conditions, the actuation of the blade pitch angle has
the goal of reducing the aerodynamic torque when the controlled variable rotor speed has
a positive error. However, if this overspeed results from an increase of the apparent wind
speed due to a fore-aft motion of the floater, then this motion can become unstable. The
reason is that the pitching of the blades decreases not only the aerodynamic torque but also
the thrust. This effect yields a Right Half-Plane Zero (RHPZ) in the dynamics from the blade
pitch angle to the rotor speed; see [17, 30, 39], and [47]. The results of this work are made
with a robust Single-Input-Single-Output (SISO)-controller, which was developed using the
presented model. The integrated controller design procedure was published first in [72] and
automated and extended in [49].

The DoFs of common simulation models include, next to the platform rigid-body DoFs,
elastic DoFs for the tower bending in fore-aft and side–side directions and multiple elas-
tic DoFs per blade. FAST has two flapwise and one edgewise DoF. Additional DoFs are
the rotor rotation, the drivetrain torsion, and the blade pitch actuator model DoFs, usually
represented by a second-order dynamic system. Whereas the blade pitch actuator model is
not included in FAST, the yaw drive actuator is included through a rotational spring-damper
element. The total number of DoFs of the standard FAST v8.16 [67] configuration is 22. To
focus on the overall system dynamics, the reduced-order model of this work limits the DoFs
allowing only a planar platform motion in the vertical 2D plane, and it neglects the elasticity
of the blades.

The hydrodynamic modeling in coupled FOWT models uses frequency-dependent co-
efficients, derived from potential flow panel codes with the Boundary Element Method.
This methods assumes a linear superposition of the problem of a stationary floating body
in waves including wave diffraction and the problem of a moving body in still water, ra-
diating waves. Due to a frequency-dependency of the acceleration-dependent and velocity-
dependent coefficients of the rigid body oscillator, a convolution integral is necessary in the
time-domain [19]. Additionally, nonlinear effects can be of importance. For FOWTs, this is
mainly viscous drag, which is neglected by potential flow theory and usually reintroduced
through empirical Morison’s equation. Furthermore, free-surface effects represent nonlin-
earities, which yield slow-drift forces below the first-order wave frequencies; see [15] and
for FOWTs, [14] and [20]. A summary on hydrodynamic FOWT modeling can be found
in [50].

1.2 Reduced-order modeling

A number of researchers have made efforts in recent years to derive simplified numerical
FOWT models. This was mostly done with the objective to derive linearized models for
controller design. These models aimed in the first place at including the “soft” fore-aft mo-
tion of the floating platform in control design models. Only a single representative DoF of
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this fore-aft motion was considered in [11] and [17]. A dedicated model, specific to TLP-
type FOWTs, was derived in [6]. It approximates the FAST response without modeling the
tower flexibility. A more detailed structural model for control design was developed in [25]
with semiempirical Morison’s equation for substructures composed of slender cylinders and
regular wave conditions. The model has 16 states and couples the aero-hydro-servo dy-
namics but with a mechanical model of a single rigid body only. A recent control-oriented
model [18] uses hydrodynamic coefficients from a panel code, valid also for nonslender
structures. Both of the latter models, however, neglect the tower flexibility.

Reduced-order models were also developed for efficient concept-level load-case simu-
lations. In [35], a model for spar-type platforms was presented. Here, a relatively detailed
(BEM) aerodynamic model was employed but only a filter to represent the controller dy-
namics. The computational efficiency is only slightly increased, compared to FAST. An-
other rather detailed model is the one in [58], which is derived from a nonlinear FE-model
including a potential flow model using classical Model Order Reduction (MOR) techniques.
A comparable approach employing two different MOR techniques to a FAST model, with
the goal of developing a wind farm model, was presented in [52]. Other authors also relied
on the approximation of the FAST dynamics but more related to system identification tech-
niques than linear MOR, like Pegalajar-Jurado et al. [68]. They approximate the controller
dynamics by identifying the aerodynamic fore-aft damping from the nonlinear closed-loop
FAST model. The present model was compared to the one by Pegalajar-Jurado et al. [43].
The model in [89] neglects the controller but features load-case dependent (or response-
dependent) hydrodynamic drag and a dynamic mooring line model. The model in [70] also
simplifies aerodynamics and neglects wind turbine structural flexibility and the controller
dynamics, but it includes nonlinear hydrostatics and nonlinear wave excitation forces. A sim-
ilar modeling approach for hydrodynamics and aerodynamics but with tower flexibility and
wind turbine controller was presented in [1] with a comparison against various FOWT sim-
ulators. The results show differences between the models in terms of steady states and the
response magnitude at the platform eigenfrequencies. Another dedicated model for the de-
sign of suction anchors in ultimate loading conditions was developed in [2]. It considers a
spar-type FOWT and represents aerodynamics through a constant drag force.

Most models drastically simplify the aerodynamic part. For a linearized description, only
a small number of simulation codes is able to derive the linearized aeroelastic equations for
onshore wind turbines. The problem is complex, as the lift and drag depend quadratically on
the wind speed and the correction models are mostly nonlinear, like dynamic stall models for
large angles of attack; see [22]. Only one work on FOWTs addressed aerodynamic lineariza-
tion techniques: In [57] the frequency-domain load response in deterministic environmental
conditions is studied, as well as the errors through linearization of the blade-resolved aero-
dynamics, structural dynamics, and hydrodynamics. The hydrodynamic model also includes
hydrodynamic second-order slow-drift forces.

In summary, many approaches for simplification of FOWT models have been proposed
for different purposes. Most of them, however, simplify drastically either the aerodynamic
or the hydrodynamic problem by neglecting the controller dynamics on the aerodynamic
side, or diffraction effects, viscous effects, and second-order slow-drift forces on the hydro-
dynamic side. Often, codes are limited to a specific FOWT-type.

The motivation for the derivation of the present model is a system-oriented representa-
tion with a “fair” simplification of all disciplines. Thus, effects that do not drive the over-
all system are neglected equally in the structural model, the hydrodynamic model, and the
aerodynamic model. Thereby an important consideration is the computational efficiency. It
should be research-oriented, meaning that the MBS layout should not be hardcoded but de-
fined by the users (allowing, for example, for additional bodies, like tuned mass dampers, or
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new DoFs, to model elastic members of the floater). The model should be control-oriented,
with single (scalar) disturbance inputs (wind and wave) and a linear counterpart to a nonlin-
ear time-domain model for model-based controller design. At the same time, it should allow
a quick identification of critical load cases and integrated FOWT optimization. The equa-
tions should be exportable for model-predictive control applications as in [76]. It should be
flexible with respect to the floater shape (not limited to slender cylinders).

A first development of the model was presented in [73] with a verification across dif-
ferent load cases in [62]. Earlier versions of the model were used in the European projects
INNWIND.EU [87], LIFES50+ [43], and TELWIND [92] for controller design and prelimi-
nary load case analysis. A comparison of the model predictions with scaled experiments was
made in [9]. The integrated optimization of the floating platform, including the wind turbine
controller [44], showed a significant margin of the global tower load reduction. Another
application of the model to 2-bladed onshore wind turbines was presented in [56].

The paper provides a review of different common engineering models for FOWTs for
structural dynamics, aerodynamics, and hydrodynamics. Intermediate results of these sub-
models will be shown on the way, backing the selected approaches for the new low-order
model, called Simplified Low-Order Wind Turbine (SLOW) in the following. Sections 2–7
address the derivation of the model, followed by its verification in Sects. 8–9 and final con-
clusions in Sect. 10.

2 Structural model

The derivation of the structural Equations of Motion (EQM) follows the Newton–Euler
approach, as opposed to the Lagrangian approach, which is often found in wind turbine
research [57, 93]. The method allows for a user-defined MBS layout, independent of the
configuration of bodies and DoFs; see [75] or [79]. Therefore the derivation, which is here
shown for a FOWT, holds also for any other multibody system with the same assumptions.
This is different from the equations in FAST: Although the approach following Kane [34] is
comparable to the current one, the FAST equations are exclusively derived for horizontal-
axis wind turbines. The method chosen here follows Schiehlen [75] for rigid bodies and
Schwertassek [77], specifically for flexible bodies. Symbolic programming will be used,
which facilitates cross-platform applications of the EQM. The right-hand side of the EQM,
formulated as Ordinary Differential Equation (ODE), is available symbolically and allows
an efficient time-stepping because no matrix algebra is necessary. This is due to the formu-
lation in minimal coordinates, meaning that not more second-order dynamic equations are
necessary than the number of DoFs without constraint equations. Symbolic codes are effi-
cient but limited by the size of the EQM. A large number of DoFs and kinematics involving
several relative rotations result quickly in code, too large to compile efficiently. A discussion
and possible alternatives can be found in [37]. Although the MBS equations can be found
in the literature, a concise description will be given in this paper with particular additions,
specific to FOWTs.

2.1 Equation of motion

The Newton–Euler equation can be written for an elastic body i as the sum of inertial
forces M izIII,i , centrifugal, gyroscopic, and Coriolis forces hω,i , gravitational forces hg , ap-
plied discrete forces hd,i , inner elastic forces he,i based on the selected deformation tensor,
and the reaction forces hr,i . The accelerations zIII,i = [ai ,αi, q̈e,i]T include the rigid-body
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Fig. 1 Topology of the
developed multibody model,
reprinted from [48] with
permission from MDPI, 2018

acceleration in translational and rotational directions ai and αi and the generalized acceler-
ations in q̈e,i ∈ R

(fe,i×1) from the body deformation. The EQM results with a dimension of
(6 + fe,i ) for each body i as

M izIII,i + hω,i = hg,i + hd,i + he,i + hr,i . (1)

2.2 Kinematics

The vector of generalized coordinates q is a combination of rigid and flexible (elas-
tic) DoFs q = [qr ,qe]T . For the results in this paper, a model with 2D-motion of the floating
platform rigid body in surge (xp), heave (zp), and pitch (βp), a flexible tower with one rep-
resentative coordinate xt , the rotor speed �, and the blade pitch actuator θ1 is selected; see
Fig. 1. Thus the vector q of the generalized rigid and flexible coordinates is

qr = [xp, zp,βp,ϕ, θ1]T and qe = [xt ]. (2)

The p = 4 bodies used in this work are the platform, tower, nacelle, and rotor; see Fig. 1.
For FOWTs, the inertial frame I is usually located at the Center of Flotation (CF) (at the
intersection of the tower centerline with the Still Water Level (SWL)).

The limitation of the two-dimensional model, avoiding side-side DoFs, is justified by [4],
who demonstrated that the dominant loads can be expected in the vertical plane of wind and
wave direction, whereas lateral (side–side) loads are of lower magnitude. In [82, Fig. 10] the
average variation of wind/wave misalignment angles over the considered US-sites is small.
Consequently, it is reasonable to limit the present model to the two-dimensional plane in the
predominant wind/wave direction.

2.2.1 Rigid bodies

The model includes the rigid bodies, platform, nacelle, and rotor. For these bodies, no gener-
alized coordinate qe for the body deformation exists, and thus q ≡ qr . In this case the body
accelerations zIII,i are written for the body Center of Mass (CM) in inertial coordinates. The
kinematic quantities of the translational velocity vi and the translational acceleration ai of
each body’s CM in inertial coordinates can now be calculated from the position vectors r i
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to each body’s CM. The velocity vi is the time-derivative of the position vector r i . It can
be expressed in terms of the generalized coordinates via the Jacobian matrix J t,i following
Schiehlen [75] as

vi (q, q̇) = ṙ i (q, q̇) = ∂r i (q, q̇)

∂q
q̇ = J t,i(q, q̇)q̇. (3)

The partial differentiation with respect to time is omitted, since no time-dependent boundary
conditions exist here (scleronomic system). Accordingly, the translational accelerations ai

are

ai = v̇i (q, q̇) = ∂vi (q, q̇)

∂ q̇
q̈ + ∂vi (q, q̇)

∂q
q̇ = J t,i (q, q̇)q̈ + v̄i (q, q̇) (4)

with the second summand v̄i , called the local velocity [75].

2.2.2 Flexible bodies

The flexible bodies are described with respect to the “floating frame of reference”, according
to Schwertassek [77] and Shabana [80]: It is an arbitrary body reference coordinate system
for the definition of the flexible body. This formulation is useful for a precomputation of
the elastic properties of the bodies. A standard format for these precomputed coefficients
was developed in [88]. This Standard Input Data (SID) is used in the present model. As
a consequence, the kinematics of an elastic body can be described by the motion of the
reference frame and the body deformation.

The position vector ρk
i (t) to the flexible nodes k can be written as the sum of the refer-

ence position Rr i , the relative undeformed reference coordinates RR, and the deformation
field Ruk

i (t), relative to the undeformed reference coordinates:

Rρk
i (t) = Rr i (t) + RRk

i + Ruk
i (t) = ST

i
Iρk

i (t). (5)

The rotation tensor Si ≡ ISR
i transforms the kinematics from the reference frame R to the

inertial frame I . All kinematics of the flexible bodies are described in the reference frame R.
Therefore the superscript R will be omitted in the following.

For the orientation, the same description holds: Equally to Rk
i , the tensor �k

i represents
the orientation of node k of the flexible body i in the undeformed configuration with respect
to the reference frame.

A deformed body has the nodal orientation

Dk
i = �k

i (t)�
k
i . (6)

The additional rotation induced by the deformation is given by the linearized rotation ten-
sor �k

i (t).

Shape functions As with FE models, shape functions can be used with flexible MBS to
characterize the body deformation through a limited number of coordinates. For wind tur-
bine blades and the tower, the eigenmodes are usually used as shape functions. A discussion
can be found in [24].

The shape function for translation �k
i ∈ R

(3×fe,i ) for each node k has fe columns, corre-
sponding to the number of generalized elastic coordinates defined for flexible body i. The
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shape function for the rotation is �k
i ∈ R

(3×fe,i ). The nodal rotation tensor �k
i (t) is calcu-

lated assuming small, linear displacements from the rotation shape function ϑk
i with the

identity matrix E and the cross-product operator S̃(x)y = x × y as

�k
i (t) = E + S̃

(
ϑk

i

)
. (7)

The general relative deformation field for translation uk
i (t) of Eq. (5) and for rotation ϑk

i (t)

of Eq. (6) can now be formulated as a function of the generalized coordinates qe,i (t) of the
elastic body as

uk
i (t) = �k

i qe,i (t) and ϑk
i (t) = �k

i qe,i (t). (8)

A wind turbine tower or a blade with zero sweep (blade sections are stacked along the
axis of the aerodynamic center) has reference coordinates R with the first two elements R1 =
R2 = 0. The tower or beam longitudinal coordinates are given by R3. The shape functions
for a linear Bernoulli beam with only one DoF for bending are

�i (R) =
⎡

⎢
⎣

Wi,1(R3)

0

−R2W
′
i,1(R3)

⎤

⎥
⎦ , (9)

where Wi,1(R3) represents the lateral deflection of the beam axis for the first shape. The
term −R2W

′
i,1(x) is a function of the lateral coordinate R2. The third component of �i does

not contain a function of R3, as opposed to FAST. There, the latter component is named
the axial reduction shape function [67]. The linearized shape function for the beam element
rotations reads

� i (R) =
⎡

⎢
⎣

0

W ′
i,1(x)

0

⎤

⎥
⎦ . (10)

With these shape functions, the resulting nodal orientation ISk
i with respect to the inertial

coordinate system I can be calculated using Eqs. (7) and (8) as

Sk
i = (

E + S̃
(
�k

i qe,i (t)
))

�k
i Si (t). (11)

The rotation of the reference system of body i is Sk=0
i ≡ Si . Equation (11) is needed for

the definition of the orientation of the nacelle, attached to the top of the flexible tower. The

upper node k̂ of the tower determines the nacelle orientation Snac = S k̂
twr . Accordingly, the

angular velocity ωk
i can be calculated from the rotation tensor Sk

i using ṠiS
T
i = S̃(ωi ).

In the same way as for rigid bodies, the flexible body velocity and acceleration vec-
tors zII,i and zIII,i of Eq. (1) can be written in terms of the generalized coordinates q with
the Jacobian matrices J t,i and J r,i following [79] as

zII,i =
⎡

⎢
⎣

Rvi

Rωi

q̇e,i

⎤

⎥
⎦=

⎡

⎢
⎣

J t,i (q)

J r,i (q)

J e,i

⎤

⎥
⎦ q̇, zIII,i =

⎡

⎢
⎣

Rai

Rαi

q̈e,i

⎤

⎥
⎦=

⎡

⎢
⎣

J t,i (q)

J r,i (q)

J e,i

⎤

⎥
⎦ q̈ +

⎡

⎢
⎣

J̇ t,i (q, q̇)

J̇ r,i (q, q̇)

0

⎤

⎥
⎦ q̇.

(12)
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The selection matrix J e,i assigns the elastic coordinates qe,i of q to the respective bod-
ies. The rows of the generalized elastic deformation are unchanged when transforming the
system into minimal coordinates. The global Jacobian matrix J for flexible bodies is

J = [J t,1,J r,1,J e,1, . . . ,J t,p,J r,p,J e,p]T . (13)

2.3 Mass matrix

The mass matrix of Eq. (1) for a flexible body i (subscript will be omitted in the following)
related to the coordinates zI is given by [77] as

M =
⎡

⎢
⎣

M t t sym.

M rt M rr

Met Mer Mee

⎤

⎥
⎦=

⎡

⎢
⎣

m sym.

mS̃(c) I

C t Cr Me

⎤

⎥
⎦ . (14)

Coupling elements between translations (t), rotations (r), and elastic coordinates (e) are
present. This means that inertial forces on the flexible body frame R result from a general-
ized acceleration q̈e and vice versa. No couplings occur between translations and rotations
in the case of rigid bodies because their kinematics are in the present model written with
respect to their CM, denoted c in reference coordinates. The inertial forces resulting from
the beam deformation in translational directions are represented by C t ∈R

(fe×3) as

C t =
∫ l

0
ρA�T

i (R3)dR3. (15)

The mass moment of inertia I = I (qe) is the sum of that of the undeformed body I 0 and
the contributions from elasticity I 1(qe) and I 2(qe):

I (qe) = I 0 + I 1(qe) + I 2(qe) with

I 1 =
∫ l

0

(
S̃(R)S̃(�qe)

T + S̃(�qe)S̃(R)T
)

dm and

I 2 =
∫ l

0
S̃(�qe)S̃(�qe)

T dm.

(16)

The coupling between elastic deformations and rotations Cr is given by

Cr =
∫ l

0
�T S̃(�qe)

T dm. (17)

The generalized elastic mass matrix Me can be calculated by integrating over the squared
shape functions

Me =
∫ l

0
��T dm. (18)

2.4 Inner elastic forces

The elastic restoring forces he of Eq. (1) require a description of the strain ε in terms of the
generalized elastic coordinates qe . To this end, the linear coefficient matrix BL is introduced
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following [77]:

ε = BLqe. (19)

A derivation of the quadratic terms BN , resulting, for example, from geometric stiffen-
ing (centrifugal stiffening) of the rotor blades, can be found in [77, p. 356]. The linear
restoring stiffness for mode k = 1 can be calculated with Young’s modulus E as

KeL =
∫

V

BT
LEBL dV =

∫ l

x=0
EJ22W

′′2
1 (R3)dR3. (20)

The second moment of area J22 about R2 results from an integration over the cross-section A

with the lateral coordinate R1. The linear generalized stiffness matrix KeL ∈ R
(fe×fe) has as

many dimensions as elastic degrees of freedom defined for the body. The diagonal entries
are the modal stiffnesses, which are a good approximation for simpler models, that is, tower-
fore aft dynamics in the controller design model used in [76].

The modal damping matrix De ∈ R
(fe×fe) can be obtained from the modal stiffness KeL

and the modal mass Me for mode k with a given structural damping ratio ξk :

De = diag(Dek) with Dek = 2ξk

√
KekMek. (21)

The modal damping ratios are user-defined inputs in FAST [67]. Finally, the vector of inner
elastic forces he results as

he =
⎡

⎢
⎣

0

0

−KeLqe − Deq̇e

⎤

⎥
⎦ . (22)

2.5 Quadratic velocity vector

Centrifugal, gyroscopic, and Coriolis forces are combined in the quadratic velocity vec-
tor hω of Eq. (1). For planar systems, as the present one, only centrifugal forces appear.
Therefore we omit the derivation of hω . It can be found in [77, p. 296] (for a reference in
English, see [79]). Nonetheless, in the present model, we implement the quadratic velocity
vector.

2.6 External applied forces

Aerodynamic and hydrodynamic forces acting on a multibody system need to be trans-
formed into the reference frame of the flexible body. The system transformation matrix
given by Fossen [19, p. 176] is here of good use. The discrete applied forces hd of Eq. (1)
are again a combination of translational, rotational, and elastic forces, aligned with the coor-
dinates zI defined in Eq. (2). Based on the nodal forces F k and torques Mk in the reference
frame, the generalized forces are

hd =
⎡

⎢
⎣

hdt

hdr

hde

⎤

⎥
⎦=

∑

k

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

E

S̃(Rk + �kqe)

�kT

⎤

⎥⎥
⎦F k +

⎡

⎢⎢
⎣

0

E

�kT

⎤

⎥⎥
⎦Mk

⎞

⎟⎟
⎠ . (23)

The same transformation is necessary to obtain the generalized gravitational forces hg of
Eq. (1).
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2.7 Nonlinear equations of motion

The global Newton–Euler equations for all bodies can now be assembled and transformed
into minimal coordinates with the global Jacobian matrix J of Eq. (13) as

J T [MzIII + hω] = J T [hg + hd + he + hr ]
= M(q)q̈ + hω(q, q̇) = hg(q) + hd(q, q̇) + he(qe). (24)

With this operation, the reaction forces hr of Eq. (1) vanish due to their orthogonality with q .
Thus the nonlinear EQM results with one dimension for each generalized coordinate of
Eq. (2). The overline (·) indicates that the quantity is formulated in the space of generalized
coordinates q . The above derivation can be automated based on a user-defined MBS layout.

2.8 Linearized equations of motion

The structural EQM of Eq. (1) are linearized with respect to the states x and inputs u.
The control inputs are the blade pitch angle �θ and the generator torque �Mg , and the
disturbance inputs are the rotor-effective wind �v and the incident wave height ζ ≡ �ζ

collected in vector u. The equations are linearized about the set point of the states x0 and
the setpoint of inputs u0 as

x = x0 + �x, u = u0 + �u, (25)

where �x and �u are the new vectors of linear (differential) states and inputs, respectively.
The coupled linearized equations of motion in state-space description can be separated for
position- and velocity-dependent terms Q and P . The state-space description with the input
matrix B is

�ẋ =
[

0 E

−M−1Q −M−1P

]

︸ ︷︷ ︸
A

�x + B�u. (26)

The linearization takes advantage of the symbolic EQM: No perturbation analysis is neces-
sary, but the Jacobians can be calculated analytically. The derivation of the force models and
their linearization will be addressed in the following sections.

3 Aerodynamic model

Most engineering models for wind turbines rely on BEM theory, a combination of the mo-
mentum equation for annuli elements of the rotor and blade element theory (lift and drag as
functions of the angle of attack). A difficulty of this model for implementation in the low-
order model to be developed is the fact that the blade span needs to be divided into various
sections and an iteration for the solution of the set of the BEM equations is necessary. The
approach selected for this work neglects a calculation of distributed loads along the span but
reduces the problem to the integral rotor loads. It has been applied previously to onshore
turbines, for example, by [8, 41], and [76]. The method has proven to be computationally
efficient, well suitable for linearization, and able to reproduce the forcing relevant for the
system dynamics.
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Fig. 2 Rotationally sampled wind veff (left), rotor thrust coefficient from BEM simulation as a function of
blade pitch θ and TSR λ (right)

3.1 Nonlinear model

The aerodynamic torque about the shaft Maero and the thrust force in shaft-direction Faero

can be calculated with the air density ρa as

Maero = 1

2
ρaπR2 cp(λ, θ1)

�
v3

rel and Faero = 1

2
ρaπR2ct (λ, θ1)v

2
rel. (27)

The power and thrust coefficient cp and ct , shown in Fig. 2, can be computed as the steady-
state solution of a standard BEM code. Here FAST [67] is used with rigid blades of radius R

and a rotor shaft aligned with the global x-axis, requiring only few iterations for conver-
gence. The coefficients are calculated for different Tip Speed Ratios (TSRs) λ = �R/v̄hub

and blade pitch angles θ (v̄hub is the mean free-stream wind speed) as shown in Fig. 2.
The relative rotor-effective wind speed vrel is a function of the component of the velocity

of the rotor body vrotor aligned with the global x-direction IeI1:

vrel = veff − IeI1 · Ivrotor, (28)

where (·) denotes the dot-product. The two components Faero and Maero of the external aero-
dynamic force vector exert on the rigid rotor body in SLOW.

One way to obtain a representative wind speed veff is to apply a weighted averaging of
the full 3D turbulent wind field of, for example, TurbSim [28], over the rotor plane in each
timestep. This averaging, however, yields to time series of Faero and Maero not represent-
ing the individual excitation of the blades. Mainly the azimuth-dependent excitation at the
Three-Times-Per-Revolution (3p) frequency is important for the system response. A simple
method to represent this forcing is to rotationally sample the turbulent wind at the rotor angu-
lar velocity of the operating point as illustrated in Fig. 2. Consequently, a “blade-effective”
wind speed is used as veff in Eq. (27).

3.2 Linearized model

The aerodynamic thrust force Faero and torque Maero can be written as a Taylor series up
to the first order. The partial derivatives are calculated with respect to the differential ro-
tor speed ��, the differential blade pitch angle �θ1, and the differential relative wind
speed �v. The linearized formulations can be found in [72]. The linearized coefficients are
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obtained here with a fixed-size central difference scheme. In [57] the method of this work is
called tangent linearization, which was compared to harmonic linearization, respecting the
expected variation of model inputs. The next section shows that sufficiently accurate results
can be obtained using the tangent linearization.

3.3 Verification

To verify the introduced structural and aerodynamic models, a comparison of the nonlin-
ear and the linearized SLOW response against FAST to a deterministic gust at still water is
shown in Fig. 3. This load case yields large transient rotor loads and an impulse response-like
behavior (the duration of the gust is rather short in the time-scales of the FOWT). Nonethe-
less, the platform DoFs, the tower bending, and the rotor signals well follow the FAST
results. The only visible difference is the steady state in surge (xp). This is due to the ne-
glected aerodynamic torque on the hub about the horizontal y-axis from wind shear and
oblique inflow.

The results show that a lumped rotor model with the inclusion of the controller dynamics
in the model (with a blade pitch-dependent aerodynamic model) can well model the overall
platform motion, the rotor speed, and the tower bending response.

4 Hydrodynamic model

In offshore engineering, it is common to model floating rigid bodies with the six DoFs of
unconstrained motion ξ and the mass matrix M in the frequency-domain [60]:

−ω2
[
M + A(ω)

]
ξ + jωB(ω)ξ + Cξ = X(ω)ζ0(ω) = F (1)

wave(ω). (29)

With the SLOW model in 2D, the generalized rigid-body coordinates of the platform re-
duce to ξ = [xp, zp,βp]T . The hydrostatic restoring stiffness C has only nonzero elements
in (1,1), (3,3), and (5,5) for point symmetric floaters. The frequency-dependent coeffi-
cients result from hydrodynamic potential flow programs. The added mass matrix A(ω) and
the potential damping matrix B(ω) are the acceleration and velocity-dependent integrated
hydrodynamic pressures of a body moving in all six DoFs at the frequency ω. The calcula-
tion of the wave-induced forces X(ω) results from the integrated pressure amplitudes and
phases over the (stationary) wetted surface from a unit wave.

For a time-domain simulation of the hydrodynamics in the present model, Eq. (29) needs
to be transformed from the frequency-domain. The frequency-dependency of the linear coef-
ficients, however, yield a convolution integral; see Cummin’s equation [12]. For the present
model, this is undesirable due to the computational effort required to compute the retarda-
tion forces from radiated waves. A method to overcome these challenges will be introduced
in Sect. 4.1. The calculation of the exciting forces F (1)

wave(t) in the time-domain is a subject
of Sect. 4.2.

The linear potential flow forces excite the FOWT at the frequencies of linear waves
(a peak spectral frequency fwave ≈ 0.1 Hz is common for ocean waves). The linear po-
tential flow solver can be augmented with the quadratic boundary condition for dynamic
pressure [33, pp. 5–8] at the free surface. If the wave pressure on the body is integrated
up to the instantaneous free surface, then the force model becomes nonlinear, and a fre-
quency component off the linear wave spectrum appears. Assuming a bichromatic wave, a
beat pattern arises, showing a low-frequency envelope of the peaks, the so-called bounded
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Fig. 3 Model verification: Extreme Operating Gust (EOG) at 14.0 m/s with linearized SLOW (dark blue),
nonlinear SLOW (red), and FAST (light green) [42] (Color figure online)

long waves. The forces at these frequencies are important because they often coincide with
the low-frequency resonances of FOWTs; see [15]. The second-order force model will be
the subject of Sect. 4.4.

Next to the hydrodynamic pressures from the potential flow solver, viscous forces need to
be accounted for. These are inherently neglected by potential flow theory. Radiation damp-
ing B(ω) is not a direct result of viscous effects but a result of the boundary condition of
the BEM problem, imposing the condition of still water far away from the body. Viscous
effects are, however, included in Morison’s equation [64]. Morison’s equation is a semiem-
pirical alternative to Eq. (29) including a quadratic drag. It works without a numerical panel-
code computation, assuming an undisturbed wave field but neglects diffraction effects and
holds only for slender cylinders. In this work the linear panel-code coefficients are used in
combination with the viscous drag term of Morison’s equation; see Sect. 4.3.
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Fig. 4 Panel code added mass of TripleSpar platform with values interpolated at respective eigenfrequen-
cies [42]

4.1 Radiation model

Most of the current FOWT tools use the above-mentioned convolution integral. One avail-
able alternative is a fitted state-space description, modeling the transfer dynamics from the
body motion to the hydrodynamic forces acting back on the body [69]. In the course of the
presented work an even simpler method has shown promising results: The added mass A(ω)

is interpolated at a single frequency, which avoids the frequency-dependent EQM. This
“constant matrix” approach was already reported for offshore structures in [83]. A viable
approach has been found, interpolating A(ω) at the respective eigenfrequencies of the dif-
ferent DoFs. Figure 4 shows the frequency-dependent added mass with the interpolated
values.

For the potential damping matrix B(ω), an interpolation at a single frequency is not
possible because, unlike A(ω), it is strongly dependent on the frequency; see Fig. 5b.
In the present model, potential damping is entirely neglected such that the only source
of hydrodynamic damping is from Morison’s drag term. Nonetheless, the developed lin-
earized model has the capability of solving Eq. (29) in the frequency-domain with both
frequency-dependent coefficients. However, also in the frequency-domain, the sequential
solution yields a significant computational effort due to the inversion of the mass matrix
at each frequency. A comparison of the computational speed for the entire model will be
shown in Sect. 8.

Neglecting potential damping can be justified through the hydrodynamic properties of
most FOWT platforms. They are such that the potential damping is large at frequencies
above their rigid-body natural frequencies. Damping forces are generally dominant at the
natural frequencies and less important at other frequencies. Consequently, it is a reasonable
simplification to neglect potential damping for FOWTs for the present modeling objectives.
Note that the situation is different for ships because in their case potential damping is dom-
inant over viscous damping and cannot be neglected; see [63, p. 387].

A comparison of the Response Amplitude Operator (RAO) in pitch direction, the linear
transfer function from wave height ζ0 to the platform pitch displacement βp ≡ ξ5 is shown
in Fig. 5a. The resonance frequency at fβp ≈ 0.04 Hz is clearly visible. It is below the fre-
quencies where B55(ω) (Fig. 5b) is large. The first two lines of Fig. 5a show results with and
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Fig. 5 Linear transfer function with frequency-dependent coefficients and with proposed simplification for
TripleSpar platform

without potential damping, calculated for a rigid body in waves by the panel code. There is
no visible difference between the two results, which supports the selected simplification. The
third line is the same transfer function but here calculated with the full SLOW model, Fig. 1.
Here the potential damping is again neglected, but the added mass is now constant, interpo-
lated at a single frequency (Fig. 4). Additionally, all SLOW DoFs are enabled as in Eq. (2),
and aerodynamics are included. Figure 5a shows the same resonance frequency with more
damping due to the aerodynamic damping effects and the above-mentioned viscous drag
from Morison’s equation. The amplification of SLOW above the resonance frequency de-
viates slightly from the rigid-body result, mainly due to the frequency-independent added
mass. However, the overall agreement is satisfactory with a significant increase in computa-
tional efficiency by avoiding the convolution integral of the radiated waves.

4.2 First-order wave force model

The first-order wave forces F (1)
wave result in the frequency-domain from a multiplication of

the wave force transfer function X(ω) with the wave height amplitude spectrum ζ0(ω). The
forces are usually assumed to yield small motion responses such that the wave force model
is independent from the rigid body states ξ . The corresponding time series can be obtained
from an Inverse Discrete Fourier Transform (IDFT).

For the SLOW model and especially for model-predictive controllers, a parametric trans-
fer function has been fitted to X(ω). As a result, the wave height ζ0 is an input to the linear
system description; see Fig. 6. The procedure to obtain the force transfer function was pre-
sented in [45].

4.3 Viscous drag model

The drag properties of the floating platform are discretized through nodes as shown in Fig. 7.
Each node k has associated modified drag coefficients C∗

D,i for all three directions i, which
include the area Aik projected on direction i, associated with the node. Then the drag term
of Morison’s equation is

Fdrag,ik = C∗
D,ik(vw,ik − vb,ik)|vw,ik − vb,ik|, (30)

with the modified hydrodynamic coefficients C∗
D,ik = 1

2 ρwAikCD,ik and nodal body ve-
locities vb,ik . The wave particle velocities vw,ik can be calculated explicitly in time- or
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Fig. 6 Block diagram for parametric first-order wave excitation model

Fig. 7 Hull shape discretization for horizontal and vertical Morison drag coefficients [42] (Color figure
online)

frequency-domain using linear wave theory [33]. For the TripleSpar platform, the horizontal
and vertical drag coefficients are set according to Fig. 7: The vertical drag force is applied
to the representative node of the heave plate at the keel CD,hp = CD,zk and calculated with
the heave plate cross-sectional area. The heave plates have no transverse drag forces, only
the slender columns.

The linearization of the quadratic nodal viscous drag forces is a function of the relative
velocity response Standard Deviation (STD) σ of the nodes. Using Borgman linearization

C̄∗
D,ik =

√
8

π
σ(vw,ik − vb,ik)

1

2
ρwAi,kCD,ik, (31)

we can obtain a linearized drag coefficient C̄∗
D,ik . Here Eq. (30) is linearized with one linear

coefficient of the wave velocity and one linear coefficient of the body velocity. Thus the first
will be part of the external forcing in the input matrix B , whereas the latter will contribute
to the damping matrix P of Eq. (26). The result is the spectral density matrix Smor

FF (ω) of
the Morison forcing and a generalized damping matrix D of the Morison damping. With the
frequency-domain formulation of SLOW, the drag coefficients C̄∗

D,ik can be parameterized
and iteratively determined, based on the dynamic response in the frequency-domain. This is
the subject of the companion paper [48].

4.4 Second-order slow-drift force model

The slowly varying forces, introduced at the beginning of this section, have a strong influ-
ence on the scaled experiments. Figure 8 shows that the simulation significantly underpre-
dicts the response at the platform pitch and surge eigenfrequencies if no slow-drift model is
included.
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Fig. 8 Experimental measurements [91] of platform response of scaled (1:60) TripleSpar of Fig. 1 with and
without slow-drift model

The slowly varying drift force can be calculated based on the Quadratic Transfer Function
(QTF), denoted by T (ω,ω), which results from nonlinear panel codes [15]. The calculation
of the QTF is computationally expensive, depending on the mesh, frequency resolution, and
wave directions. The force spectral density matrix resulting from a wave spectrum Sζζ (ω)

in the frequency-domain was given by Pinkster [38] as

S
(2)
FF(μ) = 8

∫ ∞

0
T (ω,ω + μ)Sζζ (ω)Sζζ (ω + μ)T (ω,ω + μ)∗T dω, (32)

where μ is the difference-frequency of the bichromatic wave, μ = ωi − ωj , and (·)∗T de-
notes the complex conjugate transpose. To simplify Eq. (32), Newman [66] proposed to
obtain the second-order force spectrum S

(2)
FF with the diagonal T (ωi,ωi) only, instead of

the full QTF. This is reasonable because the QTF usually does not change much over the
difference-frequency; see [15, p. 157], and it has the advantage that the diagonal of the QTF
already results from a first-order panel code calculation. The force spectrum with Newman’s
approximation results as

S
(2)
FF(μ) = 8

∫ ∞

0
T (δ, δ)Sζζ (ω)Sζζ (ω + μ)T (δ, δ)∗T dω (33)

with δ = ω+μ/2. In the time-domain the forces result according to [66] from a double IDFT
as

F (2)
wave(t) =

∑

i

∑

j

ζ0(ωi)ζ0(ωj )
∗T (ωi,ωi) cos

[
(ωi − ωj )t + ϕζ,i − ϕζ,j

]
. (34)

Newman [66] explains that the double summation over ωi and ωj of Eq. (34) can be ex-
pressed as the square of a single sum of suitably chosen frequencies of the arguments. In
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this case the time series result (formulation as in [14]) as

F (2)
wave(t) = θ2

∣∣
T (ωi ,ωi )>0

− θ2
∣∣
T (ωi ,ωi )<0

with

θ =
∑

i

∣
∣ζ(ωi)

∣
∣
√

2
∣
∣T (ωi,ωi)

∣
∣ cos(ωit + ϕζ,i),

(35)

where ϕζ,i is the phase angle at ωi . Although this formulation is computationally very ef-
ficient, its disadvantage is that it contains unphysical high frequencies, which need to be
filtered. An improved formulation was proposed by [81] with the product of two sums
as

F (2)
wave(t) = Re

([∑

i

∣
∣ζ(ωi)

∣
∣ sgn

(
T (ωi,ωi)

)√
T (ωi,ωi) exp(ωit + ϕζ,i)

]

×
[∑

j

∣∣ζ(ωj )
∣∣
√

T (ωj ,ωj ) exp(−ωj t + ϕζ,i)

])
. (36)

In Fig. 9 the different formulations for the slowly varying drift force, Eqs. (33)–(36),
are compared for a load case of the experiments published in [91] with the 1/60-scaled
TripleSpar of Fig. 1. Comparing the wave spectrum Sζζ (ω) on top, with the drift force spec-
trum S

(2)
FF(ω), the fact that the drift forces are off the original wave frequencies becomes

clear. The mean drift coefficients for the scaled TripleSpar are shown in surge-direction in
the second plot. The plots below show the second-order force spectra and the corresponding
time series. The direct frequency-domain calculation, Eq. (33), gives the largest response
magnitude. The second largest response magnitude results from the double sum approach of
Eq. (34). Comparing the original Newman formulation, Eq. (35), with the improved formu-
lation by Standing, Eq. (36), the response magnitude is equal at the difference-frequency.
The differences at higher frequencies are due to the above-mentioned unphysical frequen-
cies.

The formulation implemented in SLOW is the one according to Standing et al., Eq. (36);
the same is implemented in HydroDyn; see [32] and [14]. For the linearized frequency-
domain model, the spectral densities S

(2)
FF(ω) are computed through the Discrete Fourier

Transform (DFT) of the force time series of Eq. (36) to ensure equal slow-drift models for
both formulations. The implemented form of Newman’s approximation requires no more
than a preprocessing of the second-order forces, which takes a comparable time as the first-
order forces. Nonetheless, it has to be kept in mind that the model is only an approximation
of the second-order forcing.

5 Mooring line model

The mooring lines are not modeled dynamically. Instead, the quasistatic equations for a
catenary mooring line (e.g., [29]) are solved a priori for different horizontal and vertical ex-
cursions of the attachment point at the platform. The model solving for these forces is based
on the formulation of FAST v7; see [31]. The resulting forces are subsequently summed and
transformed into the generalized platform coordinates in each timestep. Dynamic effects of
the mooring lines were a subject of the theses [3] and [59]. According to these works, dy-
namic effects can be important in certain conditions, but generally a dynamic model is most
appropriate for a detailed design analysis of the lines themselves. For the linearized model,
a generalized stiffness matrix Cmoor|0 can be calculated for each operating point.
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Fig. 9 Wave spectrum (top), mean drift coefficients T11(ω,ω), surge slow-drift force spectrum S
(2)
FF,11(ω),

and time series F
(2)
11 (t) with frequency-domain calculation (Eq. (33)), double IDFT (Eq. (34)), original New-

man approximation (Eq. (35)), and Standing et al.’s formulation (Eq. (36)) for scaled experiment [91] of
TripleSpar (1:60) [42] (Color figure online)

6 Code architecture

Figure 10 shows the workflow for the preparation of a time- or frequency-domain simula-
tion with SLOW. The symbolic processor makes it possible to develop a user-defined MBS
layout (1), with the input data highlighted with an underscore, resulting in a nonlinear and
a linearized state-space description (Eq. (26)). The aerodynamic and hydrodynamic coeffi-
cients and the mooring line restoring forces (2) result from preprocessors (the IDFT method
is shown for the hydrodynamic forces, Sect. 4.2). No black-box system identification is nec-
essary as for other reduced-order models, all preprocessors are physical models. For the
simulation of stochastic load cases turbulent wind speeds, irregular wave heights, and force
time series need to be precomputed (3).

7 Frequency-domain response and load calculation

Load cases defined in standards, such as that by the International Electrotechnical Commis-
sion (IEC) [26], include deterministic wind and wave conditions but mostly more realistic
stochastic ones. The latter are most important for fatigue assessments. In the frequency-
domain the stochastic response can be efficiently obtained. For a Multi-Input-Multi-Output
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Fig. 10 Workflow of writing reduced-order model equations of motion and preparing simulation [42]

(MIMO) system G(s), the response autospectrum Syy(ω) to the matrix Suu(ω) of the input
spectra is simply given by the multiplication:

Syy(ω) = G∗T (ω)Suu(ω)G(ω), (37)

where G∗T (ω) denotes the transfer function complex conjugate transpose. Consequently, no
integration or “time-stepping” as in time-domain methods is necessary for solving the ODE
of the state-space model, which can save orders of magnitude of computational time.

7.1 Fatigue

For fatigue assessments, the Damage-Equivalent Load (DEL) is usually calculated through
a rainflow counting [54]. In the frequency-domain, it can be approximated with Dirlik’s
method [13]. The method has been applied to wind turbine blades in [84]. It has not been
yet applied to the sectional loads of a FOWT structure. Figure 11 shows the DEL for each
of the chosen wind bins, calculated with the rainflow method of the tower-top displacement
from elastic deformation of the nonlinear model, compared against Dirlik’s method. Dirlik’s
method was applied twice: once to the Power Spectral Density (PSD) obtained from the
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Fig. 11 DEL for tower-top displacement xt for operational winds. Calculated with (1) rainflow counting,
(2) Dirlik’s method with spectra obtained from the same time series data as (1), and (3) Dirlik’s method with
spectra obtained from linearized frequency-domain model [42]

time series through Welch’s method and once to the spectra directly obtained from the linear
frequency-domain model. The DEL values are calculated for each bin and extrapolated for a
lifetime of 20 years. We can see that the match is fairly good. There is a maximum deviation
of only 0.4% for the time series data. This confirms that Dirlik’s method is valid for the
nature of the tower-top bending signal under the given load conditions. The damage from
the linear model data implies no larger deviations than Dirlik’s method itself.

7.2 Short-term extremes

Next to the response STD and DEL, also the short-term extreme responses are important
for the design. Especially, for the design of wind turbine controllers, the overshoot of the
electrical power response or the generator torque is an important design criterion. A means to
obtain these extremes from frequency-domain spectra has been implemented in the model.
Assuming stationary Gaussian waves and a narrow-banded response signal, the response
amplitudes are Rayleigh distributed [33]. The short-term probability density function fst of
the response amplitudes Ay is then

fst(Ay) = Ay

m0y

exp

(
− A2

y

2m0y

)
. (38)

The zeroth spectral moment m0y of the response is equal to the variance σ 2
y .

For a given time period T , the probability of exceedance of the amplitudes Ay can be
estimated with the Cumulated Distribution Function (CDF) Pst . It is the integral of Eq. (38)

Pst(Ay > a) =
∫ ∞

a

Ay

m0y

exp

(
− A2

y

2m0y

)
dAy. (39)

The number of times NT of Ay exceeding a limit a can be estimated with the average zero-
upcrossing period T2r . This follows from the idea that “there is only one peak value between
an upcrossing and a subsequent downcrossing of any level a” [65, p. 237]. It results in

NT = T

T2r

Pst (Ay > a). (40)
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Fig. 12 Short-term extremes for tower-top displacement xt for operational winds. Calculated from (1) time
series directly, (2) from PSD of time series, and (3) from linear frequency-domain model response spectrum
using Eq. (38) [42]

Table 1 Environmental conditions for operational load cases of [36, Chap. 7]

Wind speed v̄ [m/s] 5.0 7.1 10.3 13.9 17.9 22.1 25
Significant wave height Hs [m] 1.4 1.7 2.2 3.0 4.3 6.2 8.3
Peak spectral period Tp [s] 7.0 8.0 8.0 9.5 10.0 12.5 12.0

For design tasks, the amplitude that is reached or exceeded NT times in a given time T needs
to be calculated. This can be done by solving Eq. (40) for the amplitude a. A comparison of
this estimation with direct time-domain data is shown in Fig. 12 with the metocean condi-
tions of Table 1. The graph shows that the estimation from the frequency-domain spectrum
underpredicts the maximum around rated winds. This is likely because in these highly non-
linear response cases the signal is not normally distributed. In the other cases the method
very well predicts the maximum amplitudes of the tower bending.

7.3 Reference design

The FOWT design “TripleSpar”, used in this paper, was initially developed in the European
project INNWIND.EU. It is an open concept design for the research community and can be
downloaded [46]. It is a semisubmersible of deep draft with a large portion of the hydrostatic
restoring coming from gravitational forces; see Fig. 1. The main parameters are listed in
Table 2. The concept was already tested in a scaled experiment; see [9] and [91].

8 Coupled model verification

In this section, the developed model will be compared to the widespread and verified FAST
model (version 8.16) to assess its validity. A set of metocean conditions over operational
wind speeds has been taken from the project LIFES50+ [36, Chap. 7] for the evaluation of
the models. The conditions are shown in Table 1.

The most significant difference between the introduced concept-level SLOW and the
reference model FAST is the aerodynamic model and the reduced number of struc-
tural DoFs (2D motion only). The modeling approaches are summarized and compared
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Table 2 Reference case
parameters: INNWIND.EU
TripleSpar platform and
DTU10 MW wind turbine

Platform draft [m] 54.5

Platform column diameter [m] 15.0

Platform column spacing (to centerline) [m] 26.0

Platform mass [106 kg] 28.3

Number of mooring lines [–] 3

Water depth [m] 180.0

Mooring line length [m] 610.0

Turbine mass [106 kg] 1.1

Rated rotor speed [rpm] 9.6

Rated wind speed [m/s] 11.4

Table 3 Comparison of modeling approaches between FAST, SLOW nonlinear, and SLOW linear

FAST SLOW (nonlinear) SLOW (linear)

Structural dynamics nonlin. flex. MBS nonlin. flex. MBS lin. flex. MBS
6 platform DoFs surge, heave, pitch-DoFs surge, heave, pitch-DoFs
4 tower DoFs 1 fore-aft DoF 1 fore-aft DoF
3 · 3 blade DoFs rigid rigid
drivetrain torsion DoF rigid shaft rigid shaft

2nd-order blade pitch actuator

Aerodynamics BEM w/corr. cp, ct -model (nonlin.) cp, ct -model (lin.)
distrib. blade forces lumped rotor forces lumped rotor forces
full 3D turb. wind field blade-averaged wind field with

rotationally sampled turbulence
quasi-static, no dynamic inflow

no tower shadow

Hydrodynamics convolution integral “constant matrix” frequency-domain
potential damping – potential damping

relative form of Morison’s equation cross-corr. approximtd.
quadr. Morison drag quadr. Morison drag lin. Morison drag

2-order slow-drift with Newman’s approximation
no wave stretching

Mooring dynamics quasistatic model quasistatic model quasistatic model
nonlin. force-disp. nonlin. force-disp. linearized stiffness
eq. solved online eq. solved a priori eq. solved a priori

between SLOW and FAST in Table 3. For an improved computational efficiency, the re-
sults of the linearized model in this work are made with a constant added mass, neglecting
the potential damping.

Figure 13 shows the PSD of the response of the full-scale TripleSpar to stochastic
wind and wave loads for a load case with mean wind v̄hub = 18 m/s and significant wave
height Hs = 4.3 m with a peak period of Tp = 10 s. SLOW proves to reproduce well the
eigenfrequencies of the platform-DoFs surge xp , heave zp , and pitch βp and also their re-
sponse magnitude. The forced response to the first-order wave loads at fwave = 0.1 Hz can
be clearly seen in the xp and xt signals. The tower-top displacement xt has a second peak
above the wave frequency, below its coupled eigenfrequency of 0.42 Hz at about 0.18 Hz.



Multibody modeling for concept-level floating offshore wind turbine design 227

Fig. 13 Model verification: PSD of response to LIFES50+ DLC 1.2 case @17.9 m/s. Linearized model (dark
blue), nonlinear model (red), FAST (light green) [42] (Color figure online)



228 F. Lemmer et al.

This effect has its origin in the wave force transfer function X(ω) from the potential flow
calculation. It has two peaks divided by an attenuation range. The slow drift force model of
Sect. 4.4 is the main force exciting the amplitudes at the resonance frequencies of surge xp

and pitch βp , also reflected in the tower bending xt . The rotor speed � responds to the βp-
motion, which is related to the discussed zeros in the right half-plane, induced by the con-
troller dynamics. The generator torque is constant above rated (vrated = 11.4 m/s), and thus
the rotor speed � is proportional to the electrical power P . The tower eigenfrequency is
mainly excited by the 3p forces on the rotor, coming from the vertical wind shear. It is well
captured by the reduced-order model with the rotational sampling method of Sect. 3. The
tower-base bending moment Myt is widely proportional to the tower-top displacement xt ,
except for the nonconservative structural damping forces.

To realize a time-domain comparison of the same load case as Fig. 13, the same turbulent
wind time series were input to SLOW and FAST, and the wave height time series ζ0(t)

of FAST were used in SLOW. The comparison of Fig. 14 shows that the transients and
steady states (means) well compare between SLOW and FAST. The wind speed signal on top
has more high-frequency oscillations for SLOW. This is because of the rotational sampling,
introduced in Sect. 3, as opposed to the rotor-effective wind speed, shown for FAST. The
steady-state deviation of surge (xp) and the blade pitch angle θ are due to the same effects
as in the deterministic case of Fig. 3.

Figure 15 shows a comparison against FAST of statistics of selected response signals over
all metocean bins of Table 1. Again, the same stochastic process was used for the SLOW
and FAST models to allow a valid assessment of short-term extremes. The wave conditions
are rather severe with significant wave heights of up to 8 m. These conditions yield large
deviations from the operating point of the linearized model. The STD σ is shown for the
rotor speed �, the tower-top bending xt , and the measured blade pitch angle θ1. The fatigue
damage, condensed in the DEL, was calculated for the tower-base bending moment Myt .
Additionally, the one-hour maxima of the rotor speed �, the tower-top deflection xt , and the
blade pitch angle θ1 are shown for the metocean conditions of Table 1. Most signals show
to be driven by the significant wave height Hs . It increases with the mean wind speed v̄hub

as shown by Table 1. The other load driver are the aerodynamic forces, which increase up
to rated wind v̄hub = 11.4 m/s and decrease above.

The aerodynamic force model of Eq. (27) involves significant nonlinearities. Their ef-
fect can be observed in the rotor speed response σ(�). The signal agrees well between the
nonlinear SLOW and FAST models, whereas the linear SLOW model deviates for severer
conditions. Another nonlinear effect is the transition from below-rated to above-rated con-
ditions. It involves a nonlinear switching of the controller. This effect cannot be modeled by
the linear model, which leads to the shown differences in this wind speed range.

The agreement of the STDs of the tower-top displacement xt is remarkable with devi-
ations of less than 10%. The tower bending is, opposed to the rotor speed, dominated by
the wave loads equally to the tower-base bending Myt . The wave force model involves less
important nonlinearities than the aerodynamic model. The constant offset across the wind
speed bins of σ(xt ) and DEL(Myt ) is due to the rotor disk model of Sect. 3 with rotational
sampling. The azimuth-dependent forcing from wind shear is only approximately included
in SLOW. This forcing is particularly large for the TripleSpar design, because the rated 3p
frequency is close to the tower eigenfrequency. The blade pitch angle θ1 does not respond to
the wave frequencies due to the PI-controller bandwidth.

The model difference of the short-term extremes for � is comparable to the STD due to
the controller switching and the nonlinear aerodynamic model, which cannot be accurately
predicted by the linear model. The nonlinear SLOW model, however, shows deviations of
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Fig. 14 Model verification: Time-series of response to LIFES50+ DLC 1.2 case @17.9 m/s. Nonlinear
model (dark red), FAST (light green) [42] (Color figure online)

less than 10%. The extremes of xt also have an agreement of around 10%, except for the
switching around rated winds. The deviation for below-rated winds is again due to the ap-
proximate azimuth-dependent aerodynamic force model. The blade pitch angle extremes θ1

show small deviations of less than 10%.
Although the results are shown for the TripleSpar concept, another study [44] has shown

that the model validity holds also for other semisubmersibles with larger column diameters
and smaller drafts.
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Fig. 15 Model comparison of STD, fatigue damage and short-term extremes over operational wind speeds
of SLOW linear (dark blue), SLOW nonlinear (red), and FAST (light green) with environmental conditions
of Table 1 (Color figure online)

9 Computational efficiency

The main prospect of the presented modeling approach is a simplification for efficient
concept-level design studies and optimization. A computational speed assessment is shown
in Table 4. The simulation times are given for a PC with a 2.5 GHz processor and one hour
simulations with n = 500 frequencies for the linear frequency-domain computations. The
preprocessing of wind and waves is necessary for each load case, but the preprocessing
of the aerodynamic coefficients and the mooring line forces is only necessary when a new
model is set up. The wave-preprocessing includes the first-order wave force time series and
spectra, the Morison force spectra, and the slow-drift frequency spectra.
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Table 4 Comparison of
computational speed between
SLOW and FAST for stochastic
load case of 3600 s in
time-domain. Linear SLOW
model calculates response in
frequency-domain. Preprocessing
of mooring lines and
aerodynamics only
design-dependent, not load
case-dependent [42]

Pre-processing Simulation

SLOW Wind: 75 s nonlinear 30 s

Waves: 30 s linear 1 s

Aerodynamics: 7200 s

Mooring dynamics: 30 s linear (incl. radiation) 15 s

FAST Wind: 560 s 1250 s

10 Conclusions

The developed simulation method provides a new means to design, investigate, and optimize
FOWT concepts. Unlike the widely used coupled models for FOWTs, the presented method
enables more efficient concept-level studies on the dynamic behavior. Physical white-box
instead of surrogate models are used. The comparison of the common approaches for struc-
tural dynamic, hydrodynamic, and aerodynamic modeling has led to the development of a
reduced-order model, which includes effects of all disciplines, relevant for the system dy-
namics without focusing on one of the disciplines in more detail. This means that the design
of the model has been done persistently aiming at the best tradeoff between accuracy and
efficiency for a representation of system-level dynamics. Symbolic programming acceler-
ates the model execution and makes real-time applications possible. The linear frequency-
domain model is a counterpart to the nonlinear model, allowing a direct quantification of
nonlinear effects. Different frequency-domain methods have been applied to estimate fa-
tigue damage and short-term extremes from response spectra. The model is fully parameter-
ized allowing for optimization tasks. Less detailed model parameters are necessary than for
other models, which eases confidentiality issues in industrial design and an application at
early conceptual design stages. The applied multibody system algorithm can be automated,
which makes quick adjustments of the mechanical topology easily possible. All types of
FOWTs can be simulated. The set of features and the level of development represents is a
new contribution over existing reduced-order models.

The main findings on the modeling assumptions are on the structural side that a two-
dimensional approach is sufficient to capture the dominant loads. On the aerodynamic side
the controller is important to be included in the aerodynamic force model. Simplifying the
blade forces to the integral rotor loads accelerates the model and simplifies linearization
but still gives an accurate prediction of the low-frequency forces from turbulence. The sim-
plification results in an approximate representation of the azimuth-dependent forcing from
wind shear, influencing the high-frequency tower loads. On the hydrodynamic side the panel
code coefficients enable a modeling across FOWT platform types. Neglecting the potential
damping from wave radiation and the frequency-dependency of the fluid added mass is the
major contribution to the computational efficiency without impairing significantly the accu-
racy.

It could be shown that it is possible to simulate the main FOWT dynamics of a 1 h load
case in less than 30 s with only 6% of difference (STD) to the widespread FAST model in se-
vere metocean conditions with significant wave heights of more than 8 m. The agreement is
remarkable, considering that no system identification or order-reduction techniques are ap-
plied but only physical white-box models. The performance improvement allows for a better
adaptation of future FOWT designs for a rejection of wind and wave forces and an increased
lifetime. Also, an adaptation of the design to given site conditions is possible. Besides load
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simulations, the method has proven to be useful for model-based controller design. Due to
the computational efficiency, a real-time prediction of the dynamics for model-predictive
controllers or structural health and fault monitoring is a promising application. Generally,
the research contributes a new level of fidelity for FOWT modeling, completing the range
of available numerical approaches from preliminary static to high-fidelity methods.
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