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Abstract Different inertia representations can lead to different formulations of the
differential-algebraic equations for the quaternion-based rigid body dynamics. In this paper,
the inertia representations are classified into α-type and γ -type, according to the additional
parameters in the kinetic energy. These two types of representations and the corresponding
parameters α and γ are theoretically equivalent if the constraint qT q = 1 is satisfied exactly.
Nevertheless, the error estimation demonstrates that they can present entirely different nu-
merical features in simulation and suggests that the parameter γ can be used to optimize
the numerical performance of the integrations in simulation. To further verify the numeri-
cal difference between the inertia representations of α-type and γ -type, the corresponding
modified Hamilton’s equations are discretized by the IMS (implicit midpoint scheme), EMS
(energy–momentum preserving scheme) and Gauss–Lobatto SPARK methods. Numerical
performance for the examples of the spinning symmetrical top is shown to result from the
comprehensive effect of the discretization schemes including the distribution of discretized
points and the convergence order, the inertia representations and their combinations. Numer-
ical results further suggest that the integrations of γ -type are superior to those of α-type and
the optimized values of γ can be used to achieve better numerical accuracy, convergence
speed and stability.

Keywords Unit quaternion · Rigid body dynamics · Mass matrix · Singularity · High
accuracy · Conserving integrations

1 Introduction

The kinematics and dynamics of rigid bodies constitute an important part of the simulation
of multibody system. Many kinds of coordinates can be used to represent the rotational
motion of a rigid body, such as Euler angles and unit quaternions [1]. As a non-minimal
representation, the unit quaternion has found new attraction in recent years because of its
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simplicity in the mathematical formulation and the ability to avoid the singularity which
may occur when using Euler angles.

A unit quaternion describes the three-dimensional rotational motion using four real pa-
rameters, with a unit length constraint, which essentially extends the motion equations by
a holonomic constraint and yields a set of differential-algebraic equations (DAEs) of In-
dex 3, instead of ordinary differential equations (ODEs). In 1980s, the unit quaternion was
investigated in detail by Nikravesh and Haug et al. [2–5] for the dynamic analysis of a three-
dimensional constrained mechanical system. Later, the quaternion-based rigid body dynam-
ics was developed rapidly owing to many theoretical researches and applications about unit
quaternions [6–22]. Some of these researches focused on various equivalent formulations
for rotational motion in the Lagrangian or Hamiltonian framework [6–14], and the others
concentrated on the numerical integrations in terms of unit quaternions for the simulation of
rigid body dynamics, especially the conserving integrations [11, 15–20].

In this previous work, an essential process is to derive the dynamic description of rigid
body rotation, which leads to different inertia representations in terms of unit quaternions,
embodied by the mass matrix in the kinetic energy. In rigid body dynamics, the quaternion-
based kinetic energy is commonly derived from the standard quadratic form of the angular
velocity, which generally results in a singular mass matrix. To avoid the singularity, Betsch
and Siebert [11] proposed an augmented mass matrix when deriving the conserving nu-
merical integration in terms of unit quaternions for rigid body dynamics. Besides, similar
approaches [12–16] were proposed to describe the motion equations, which also lead to a
non-singular mass matrix. In this work, an additional parameter denoted as α in this paper,
is generally added in the original formulation of kinetic energy. Nielsen and Krenk [16] de-
veloped the quaternion-based momentum scheme based on the non-singular mass matrix,
and suggested that the additional parameter served as a multiplier on the kinematic con-
straint, and better convergence characteristics could be achieved by choosing this parameter
somewhat larger than the inertial moments in numerical simulation. Recently, a modified
inertia representation [23] was proposed for the quaternion-based rigid body dynamics, in
which a new parameter, denoted γ in this paper, was introduced in the kinetic energy. The
parameters α and γ are mathematically equivalent if the unit length constraint is satisfied
exactly. Nevertheless, the two parameters are different in discretization, and numerical re-
sults demonstrate that the parameter γ is superior to α because it can be used to improve the
numerical accuracy of integration in simulation.

In this paper, the numerical performance of different inertia representations is inves-
tigated at great length for the quaternion-based rigid body dynamics. In Sect. 2, we first
derive the Hamilton equations for the rigid body dynamics in terms of unit quaternions, and
classify these equations into two types: the first is based on the augmented formulation of
kinetic energy, denoted as α-type, and the other is according to the modified inertia repre-
sentation, denoted as γ -type. In Sect. 3, error estimation demonstrates that the Hamiltonians
in α-type and γ -type are essentially different from the point of view of discretization, and it
suggests that the parameter γ is expected to have great influence on the discretization error
of kinetic energy. Based on the error estimation, two predetermined values γm and γh are
recognized to reduce numerical errors for the integrations of γ -type.

Section 4 develops several kinds of integrations, especially the specialized partitioned
additive Runge–Kutta methods (SPARK) [24] for rigid body dynamics in terms of unit
quaternions, according to the Hamilton equations of α-type and γ -type. Section 5 system-
atically investigates the numerical accuracy and stability for these integrations. Numerical
results demonstrate that most of the integrations of γ -type assigned with γ = γm or γh

can present impressively better numerical accuracy than those of α-type, especially for the
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Gauss SPARK methods. All the integrations of γ -type can present better convergence speed
and stronger robustness for the newton iteration than those of α-type. A large amount of nu-
merical comparisons reveal that the numerical performance of the integrations is extensively
influenced by the inertia representations, discretization schemes and their combinations. The
findings of this paper suggest that numerical integrations in terms of unit quaternions should
be constructed with an appropriate inertia representation in order to obtain better numerical
accuracy, convergence speed and stability.

2 Kinematic description

The unit quaternion can be considered as a four-parameter vector [16]:

qT = [
q0 q1 q2 q3

]
(1)

with an algebraic constraint,

qT q − 1 = 0. (2)

An important application of unit quaternions is that the three-dimensional orthogonal matrix
can be expressed in terms of unit quaternions:

R(q) =
⎡

⎢
⎣

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎤

⎥
⎦ , (3)

where R satisfies the orthogonal condition RT R = RRT = I 3 and I 3 is the 3-dimensional
identity matrix. In rigid body dynamics, R is named the rotation matrix; it maps from the
space-fixed coordinates X to the body-fixed coordinate x, i.e.,

x = RX. (4)

Differentiating (4), we can derive the following motion equations:

Ṙ = RΩ̂, (5)

where the superscript ‘dot’ denotes the derivation of variables with respect to time, and the
matrix Ω̂ is in the form of

Ω̂ =
⎡

⎣
0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎤

⎦ , (6)

where Ω = [Ω1 Ω2 Ω3 ]T is the angular velocity vector. Substituting (3) into (5) leads to
the quaternion-based motion equations [11]

Ω = 2L(q)q̇, (7)

where

L(q) =
⎡

⎣
−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

⎤

⎦ . (8)
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Noting that qT q = 1, a direct calculation reveals that

L(q)q = 0, L(q)q̇ = −L(q̇)q, L(q̇)q̇ = 0, (9)

L(q)LT (q) = I 3, (10)

L(q)T L(q) = I 4 − qqT , (11)

where I n denotes the n-dimensional identity matrix. These identity relations are useful in
later discussion.

3 The rotational motion equations in the Hamiltonian framework

In the Hamiltonian description of conservative system, the motion equations can be ex-
pressed in a unified form [25]:

q̇ = Hp(q,p),

ṗ = −Hq(q,p) − gq(q)λ,

0 = g(q),

0 = gq(q)T Hp(q,p),

(12)

where the third and fourth equations denote the constraint conditions. The Hamiltonian

H = T (q,p) + V (q) (13)

consists of the kinetic energy T and the potential energy V , and the abbreviations are defined
as Hp = ∂H/∂pT , Hq = ∂H/∂qT and gq(q) = ∂g/∂qT . λ is the Lagrange multiplier which
preserves the path of quaternions satisfying g(q) = 0, and p denotes the generalized mo-
mentum. For the quaternion-based rigid body rotational motion, we have g(q) = qT q − 1
and gq(q) = 2q .

Suppose that the body-fixed coordinate axes are aligned along the principal axes of the
inertia of the rigid body, and J = diag(I1, I2, I3) denotes the inertia matrix whose principal
elements are three principal moments of inertia. Combined with (7), the kinetic energy of
the rigid body rotation can be expressed as

T = ΩJΩ/2 = 2q̇T L(q)T JL(q)q̇. (14)

Based on a Legendre transformation, the generalized momentum can be derived as

p = ∂T /∂ q̇T = Mq̇, (15)

where

M = 4L(q)T JL(q) (16)

is defined as the mass matrix. Multiplying (15) with qT from the left and recalling
L(q)q = 0, we have

qT p = pT q = 0, (17)
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which is equivalent to the constraint 0 = gq(q)Hp(q,p) for unit quaternions. Multiplying
(15) with L(q) from the left and recalling L(q)L(q)T = I 3, we have

L(q)p = 4L(q)L(q)T JL(q)q̇ = 4JL(q)q̇. (18)

Noting that Ω = 2L(q)q̇ and l = JΩ where l denotes the local angular momentum, it can
be derived that

l = JΩ = 2JL(q)q̇ = 1

2
L(q)p = −1

2
L(p)q, (19)

where the local angular momentum can be expressed as a function of q and p. Substitute
Ω = J−1l into (14) and we can derive the kinetic energy in the Hamiltonian framework:

T = lT J −1l/2 = 1

8
pT L(q)T J −1L(q)p. (20)

Substituting (20) into the first two equations in (12), we can derive the differential parts of
the Hamilton’s equations in the following form:

q̇ = 1

4
L(q)T J−1L(q)p,

ṗ = −1

4
L(p)T J−1L(p)q − ∂V/∂q − 2λq,

(21)

where the multiplier λ is used to preserve the constraint qT q − 1 = 0.

3.1 The inertia representations of α-type and γ -type

The numerical application of the Hamilton’s equations (21) is complicated because of the
singularity of the matrix 1

4L(q)T J −1L(q). To avoid the singularity, researchers [11–16]
introduced an additional term α−1(pT q)2 into the original formulation of kinetic energy.
Generally, the augmented formulation of the kinetic energy can be expressed as

T = 1

8
pT L(q)T J−1L(q)p + 1

8
α−1

(
pT q

)2
. (22)

Because of pT q = 0, the term 1
8α−1(pT q)2 has no influence on the value of the kinetic

energy. Substituting (22) into (12), we can derive the Hamilton’s equations of α-type:

q̇ = 1

4
L(q)T J −1L(q)p + 1

4
α−1qqT p,

ṗ = −1

4
L(p)T J−1L(p)q − 1

4
α−1

(
pT q

)
p − ∂V/∂q − 2λq,

(23)

where the multiplier λ is used to preserve the constraint qT q − 1 = 0. The corresponding
matrix 1

4L(q)T J−1L(q) + 1
4α−1qqT in (23) is non-singular if only α−1 �= 0. Numerical

results demonstrate that the conserving integrations of α-type can present good long-time
behavior in simulations [11, 16].

Noting that l = − 1
2L(p)q , L(q)T L(q) + qqT = I 4 and qT p = 0, we have

lT l = 1

4
pT p. (24)
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Let us reformulate the kinetic energy in the following form:

T = lT J−1l/2 = γ −1lT l/2 + lT J ∗
γ l/2, (25)

where γ is an arbitrary constant and γ �= 0, and J ∗
γ = J−1 − γ −1I 3. Substituting (19) and

(24) into (25) yields a new formulation:

T = 1

8
γ −1pT p + 1

8
pT L(q)T J ∗

γ L(q)p, (26)

where the kinetic energy is split into two components. The first is a square term of the quater-
nion momentum, whose magnitude is adjusted by the parameter γ . The other is a quadratic
form in the derivatives with quadratic coefficients in the quaternion parameters. Equation
(26) is the modified inertia representation presented by Xu and Zhong [23]. Substituting
(26) into (12) yields the Hamilton’s equations of γ -type:

q̇ = 1

4
γ −1p + 1

4
L(q)T J ∗

γ L(q)p,

ṗ = −1

4
L(p)T J ∗

γ L(p)q − ∂V/∂q − 2λq,

(27)

where the multiplier λ is used to preserve the constraint qT q − 1 = 0.
The inertia representations of α and γ -type are mathematically equivalent under certain

condition. To be specific, it can be derived that

T = 1

8
γ −1pT p + 1

8
pT L(q)T

(
J−1 − γ −1I 3

)
L(q)p

= 1

8
α−1pT

[
L(q)T L(q) + qqT

]
p + 1

8
pT L(q)T

(
J−1 − α−1I 3

)
L(q)p

= 1

8
pT L(q)T J −1L(q)p + 1

8
α−1

(
pT q

)2
(28)

by considering γ = α and I 4 = L(q)T L(q) + qqT . The mathematical equivalence implies
that the parameters α and γ theoretically have no influence on the value of the kinetic energy
if the constraint qT q − 1 = 0 is satisfied exactly. In the following, the two representations
and the corresponding parameters α and γ will be systematically studied both in theoretical
analysis and numerical simulation, and the numerical performance of the two parameters
α and γ would be investigated intensively with several different discretized schemes and
convergence orders.

3.2 The discretization error estimation

Suppose that q = q(t) and p = p(t) denote the real solutions of rotational motion of a single
body, and that q+ = q+(t)and p+ = p+(t) are their interpolation approximation solutions.
We can define the real angular momentum and its approximation in the following form:

l = l(q,p), l+ = l
(
q+,p+)

. (29)

Then the local discretization error of q and l can be defined, respectively, as

δq = q+(t) − q(t), δp = p+(t) − p(t) (30)
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and

δl = l+ − l = 1

2
δ
(
L(q)p

) = 1

2
(δL)p + 1

2
Lδp + 1

2
δLδp, (31)

where δL = L(q+) − L(q). The constraint qT q = 1 is satisfied approximately as

q+T q+ = 1 + 2qT δq + δqT δq. (32)

Considering the inertia representation of γ -type, the discretization error of kinetic energy
can be formally expressed as

δTγ = T
(
q+,p+, γ

) − T (q,p, γ ). (33)

Consider Eq. (26) and substitute (29) and (31) into (33), and then the discretization error of
kinetic energy of γ -type can be expressed as

δTγ = ksγ
−1 + δT0, (34)

where the slope is defined as

ks = 1

8

(
p+T p+ − 4l+T l+)

, (35)

and the intercept is of the form of

δT0 = δlT J−1l + δlT J−1δl/2. (36)

Note that δT0 is the discretization error of the original formulation of kinetic energy pre-
sented by (20). Similarly, we can derive the discretization error of kinetic energy of α-type,
which is

δTα = T
(
q+,p+, α

) − T (q,p, α)

= kaα
−1 + δT0 (37)

with the slope

ka = 8−1
(
p+T q+)2

. (38)

Equations (34) and (37) reveal the linear relation between the energy error and 1/γ or
1/α. This relation can be exploited to reduce the numerical errors of integrations by choosing
the appropriate γ or α to cancel out the intercept term δT0, as done in [23]. For this to work,
the slope should ideally be of the same convergence order as δT0. However, this is not always
the case for the inertia representation of α-type. More specifically, substituting q+ = q + δq

and p+ = p + δp into (38) and recalling qT p = 0 yield

ka = 8−1
(
qT δp + pT δq + δpT δq

)2
. (39)

When the error terms δqand δp are of the same convergence order (i.e., O(δq) = O(δp)),
Eq. (39) means ka is generally a second-order small quantity with respect to δq and δp.
In this case, the slope ka vanishes more quickly than the term δT0 when the discretization
errors δq and δp tend to be zero. Accordingly, the corresponding parameter α has nearly no
influence on the discretization errors.
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On the other hand, for the inertia representation of γ -type, the slope ks can be expanded
as

ks =
(

1

4
δpT p − δlT l

)
+ 1

2

(
1

4
δpT δp − δlT δl

)
, (40)

where the second term on the right side is a second-order small quantity. Ignoring the
second-order small quantity and considering L(q)T L(q) + qqT = I 4 and pT q = 0, we
can obtain

ks ≈ −1

4
pT (δL)T Lp, (41)

where the error term δL is of the same order with the discretization error δq . One can expect

ks ∝ O
(‖δq‖) (42)

for any q and p, where ‖δq‖ = √
δqT δq denotes the 2-norm of δq . This implies that the

slope ks is of the same order as δT0, and the discretization error of kinetic energy will be
greatly influenced by the parameter γ .

We note that it is not always straightforward to verify (42) when we investigate the
integration schemes. Instead, a more practical condition can be used. Substituting l+ =
− 1

2L(p+)q+ into (35) and considering that(p+T q+)2 = O[(δq)2, (δp)2], the slope ks can
be reformulated as

ks + O
[
(δq)2, (δp)2

] = 1

8
p+T

(
I 4 − L

(
q+)T

L
(
q+) + q+q+T

)
p+. (43)

This suggests that the interpolation function should satisfy a necessary but not sufficient
condition:

L
(
q+)T

L
(
q+) + q+q+T = I 4 + O(δq) (44)

for q+ = q+(t), to preserve ks ∝ O(δq).
Condition (44) means that, for ks to be exploitable, we actually want the constraint on

the unit quaternion to be satisfied only to the same order approximately, but not to higher
order or exactly. As we will show in the following, Condition (44) can easily be verified,
especially for the Gauss SPARK methods.

3.3 The optimal value of parameter γ

Suppose that the integrations satisfy (42) at every discretized points. The error estimation
in (34) suggests a linear relationship between δT and γ −1. Let δT = 0 in (34), and it gives
the optimal value of the parameter γ in the following form:

γopt = − ks

δT0
≈ 1

4

pT (δL)T Lp

δlT J −1l
, (45)

where higher-order terms are neglected. This is a reasonable value for the parameter γ to
obtain a smaller discretization error and is expected to improve the numerical accuracy for
the integrations of γ -type. Unfortunately, the quantities ks and δT0 are unknown during the
simulation. Substituting l = − 1

2 Lp and δl ≈ 1
2 (δL)p + 1

2 Lδp into (45), yields

γopt ≈
∑3

i=1 wi
∑3

i=1 wiI
−1
i

, (46)
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where l = [l1, l2, l3]T , wi = liδli (i = 1,2,3) and the error term δp is neglected. Let w1 =
w2 = w3 = 1, and it gives the harmonic average of the three principal moments:

γh = 3

I−1
1 + I−1

2 + I−1
3

. (47)

Let w1 = I1, w2 = I2 and w3 = I3, and it gives the arithmetic average of the three principal
moments:

γm = I1 + I2 + I3

3
. (48)

The values γm and γh are recommended as two reasonable values of γ for integrations of
γ -type.

In addition, the two optimal values γm and γh present very similar numerical performance
when the three principal moments (i.e., I1, I2 and I3) have close values. Nevertheless, the
values γmand γh become very different if there are large differences among the three princi-
pal moments. For instance, suppose that I3 → 0, and that I1 and I2 remain unchanged. We
thus obtain

γh → 0, γm → I1 + I2

3
. (49)

Because δTγ = ksγ
−1 + δT0 → ∞ when γ → 0, Eq. (49) implies a potential risk of serious

accuracy loss in simulation for the integrations of γ -type with γ = γh. On the other hand, it
can be derived that T = (I1Ω

2
1 + I2Ω

2
2 )/2 = (I−1

1 l2
1 + I−1

2 l2
2)/2 by setting I3 = 0. It means

that l3 has no contribution to the kinetic energy nor to the discretization error if I3 = 0.
Consequently, substituting [w1,w2,w3] = [1,1,0] and [w1,w2,w3] = [I1, I2,0] into (46)
and we can derive the correct optimal values of the parameter γ for the case I3 → 0 as
follows:

γ̃h = γh(I3 → 0) = 2

I−1
1 + I−1

2

, γ̃m = γm(I3 → 0) = I1 + I2

2
. (50)

Compared to (49), it reveals that the value γh in (47) tends to magnify the numerical in-
fluence of the smallest value of the three principal moments. These subtleties should be
considered in simulation.

4 Numerical integrations of γ -type and α-type

There is no restriction on the convergence order of the numerical integrations in the error
analysis, which implies that the inertia representation of γ -type can be used to improve the
numerical accuracy regardless of the convergence order of the algorithm. In the following,
numerical integrations with different discretization schemes are developed and compared
between the α-type and the γ -type, in order to demonstrate the widespread applicability of
the inertia representation in numerical simulation.

4.1 Numerical integrations of order 2

Let the phase space coordinates (qk−1,pk−1) at tk−1 along with the step-size �t = tk − tk−1

be given. Define the mean values as

q̄ = 1

2
(qk−1 + qk), p̄ = 1

2
(pk−1 + pk) (51)
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and the increments as

�q = qk − qk−1, �p = pk − pk−1 (52)

for time interval t ∈ [tk−1, tk].
Implicit midpoint scheme (IMS) Approximating the Hamilton’s equation in (12) by the
midpoint rule gives the following scheme:

�q/�t = Hp(q̄, p̄), 0 = g(qk),

�p/�t = −Hq(q̄, p̄) − 2λq̄,
(53)

where the unknowns qk , pk and λ can be solved for the given qk−1 and pk−1. The schemes
are abbreviated as IMS-α and IMS-γ for the integrations of α-type and γ -type, respectively.

The second integration we are interested in is the energy–momentum preserving integra-
tion developed in Refs. [11, 16, 26]. To this end, we consider the increment of the Hamilto-
nian:

�H = �T + �V, (54)

where the increments �T = T (qk,pk) − T (qk−1,pk−1), �V = V (qk) − T (qk−1) and
�g = g(qk) − g(qk−1) = 2�qT q̄ . After that we can define the increment of the augmented
Hamiltonian as follows:

�Hλ = �H + λ�g. (55)

The energy–momentum preserving integration is constructed by setting �Hλ = 0. To this
end, we first express �V in terms of its finite derivative ∂V∗/∂qT , defined by [27]

�V = �qT ∂V∗
∂qT

. (56)

Substituting (22) and (56) into (54) yields

�H = �pT
(
L(q̄)J−1L(q)T p + α−1q̄qT p

)

+ �qT
(
L(p̄)J−1L(p)T q + α−1p̄pT q + ∂V∗/∂qT

)
, (57)

where the overbar denotes the arithmetic mean, (#) = 1
2 [(#)k−1 + (#)k]. According to (57),

we can define the finite derivatives of H as

∇̄qH = L(q̄)J−1L(q)T p + α−1q̄qT p,

∇̄pH = L(p̄)J −1L(p)T q + α−1p̄pT q + ∂V∗/∂q
(58)

for the inertia representation of α-type. Similarly, according to (26), we can define the finite
derivatives of H as

∇̄qH = γ −1p̄ + L(q̄)J ∗
γ L(q)T p,

∇̄pH = L(p̄)J ∗
γ L(p)T q + ∂V∗/∂q,

(59)

for the inertia representation of γ -type. Based on (58) or (59), Eq. (55) can be expressed as

�Hλ = �pT ∇̄qH + �qT (∇̄pH + 2λq̄). (60)
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Energy–momentum preserving scheme (EMS) Let the increment �Hλ = 0, the dis-
cretized scheme is constructed as follows:

�q/�t = ∇̄pH(qk−1,pk−1,qk,pk), 0 = g(qk),

�p/�t = −∇̄qH(qk−1,pk−1,qk,pk) − 2λq̄,
(61)

where the unknowns qk , pk and λ can be solved for the given qk−1 and pk−1. The schemes
are abbreviated as EMS-α and EMS-γ for the integrations of α and γ -type, respectively.

EMS-α is just the same as the energy–momentum conserving integration [11] for rigid
body dynamics in terms of unit quaternions. The specific algorithms of IMS and EMS are
summarized in pseudocode format in Appendix B.3.

4.2 Numerical integrations of higher order

Runge–Kutta methods form an important class of methods for the integration of differen-
tial equations. Recently, Jay [24] proposed the specialized partitioned additive Runge–Kutta
(SPARK) methods for differential-algebraic equations (DAEs), which provide a straight-
forward way to construct conserving algorithms with an optimal order of convergence.
Small [28] further presented the unified definition of the discontinuous collocation meth-
ods (Ref. [28], p. 64), which covers all SPARK methods of interest in this paper.

4.2.1 Discontinuous collocation type methods

Let c1, . . . , cs be distinct real numbers, c̄1, . . . , c̄q be distinct real numbers, and c̃0, . . . , c̃p

also be distinct real numbers with c̃0 = 0 and c̃p = 1. Consider the Hamilton system in
(12) with the consistent initial values (qk,pk) at tk and the step-size �t , and we search for
polynomials Q(t) of degree s, Λ(t) of degree p, P f (t) of degree q , and P r (t) of degree
p − 1 such that

Q(tk) = qk, P (tk) = P f (tk) + P r (tk),

P f (tk) = pk − �tb̃0β δ̂(tk), P r (tk) = −�tb̃0δ̃(tk)
(62)

with the defects

δ̂(t) = Ṗ f (t) + Hq

(
Q(t),P (t)

)
, δ̃(t) = Ṗ r (t) + gq

(
Q(t)

)
Λ(t) (63)

and satisfying the following conditions:

Q̇(tk + ci�t) = Hp

(
Q(tk + ci�t),P (tk + ci�t)

)
, i = 1, . . . , s, (64)

Ṗ f (tk + c̄i�t) = −Hq

(
Q(tk + c̄i�t),P (tk + c̄i�t)

)
, i = 1, . . . , q, (65)

Ṗ r (tk + c̃i�t) = −gq

(
Q(tk + c̃i�t)

)
Λ(tk + c̃i�t), i = 1, . . . , p − 1, (66)

P (t) = P f (t) + P r (t), (67)

0 = g
(
Q(tk + c̃i�t)

)
, i = 0, . . . , p. (68)

If these polynomials exist, the numerical solution is defined by

qk+1 = Q(tk + �t), pk+1 = P (tk + �t) − �tb̃p

(
β δ̂(tk+1) + δ̃(tk+1)

)
,

0 = gq(qk+1)Hp(qk+1,pk+1).
(69)
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Table 1 Comparison of s-stage Gauss–Lobatto and Lobatto IIIA-B methods

Discontinuous collocation s-stage Gauss–Lobatto s-stage Lobatto IIIA-B

s for Q(t) s s

c1, c2, . . . , cs Gauss points Lobatto points

q for P f (t) s s − 2

c̄1, c̄2, . . . , c̄q c̄i = ci , i = 1, . . . , s c̄i−1 = ci , i = 2, . . . , s − 1

p for Λ(t) s s − 1

c̃0, c̃1, . . . , c̃p Lobatto points c̃i−1 = ci , i = 1, . . . , s

p − 1 or P r (t) s − 1 s − 2

c̃1, c̃2, . . . , c̃p−1 c̃i , i = 1, . . . , s − 1 c̃i−1 = ci , i = 2, . . . , s − 1

β 0 1

Convergence order 2s 2s − 2

We take into consideration two types of Gauss SPARK methods, which can be con-
structed in the form of discontinuous collocation type methods with the following condi-
tions.

s-stage Gauss–Lobatto SPARK methods (s-G-L) Let {ci}, i = 1, . . . , s, be the s nodes of
the Gauss quadrature, p = s, q = s, β = 0, c̄i = ci for i = 1, . . . , s, and {c̃i}, i = 0,1, . . . , s

be the s +1 nodes of the Lobatto quadrature and then the discontinuous collocation methods
(62)–(69) lead to the s-stage Gauss–Lobatto SPARK methods of order 2s. The schemes are
abbreviated as G-L-α and G-L-γ for the integrations of α-type and γ -type, respectively.

s-stage Lobatto IIIA-B SPARK methods (s-LIIIA-B) Let {ci}, i = 1, . . . , s, be the s

nodes of the Lobatto quadrature, q = s − 2, p = s − 1, β = 1, c̃i−1 = ci and c̄i−1 = ci

for i = 2, . . . , s − 1, and then the discontinuous collocation methods (62)–(69) lead to the
s-stage Lobatto IIIA-B SPARK methods of order 2s − 2. The schemes are abbreviated as
LIIIA-B-α and LIIIA-B-γ for the integrations of α-type and γ -type, respectively.

Table 1 lists the comparison between s-stage Gauss Lobatto method (s-G-L) and s-stage
Lobatto IIIA-B method (s-LIIIA-B). It can be observed that s-G-L is of two orders higher
convergence rate than s-LIIIA-B. These two Gauss SPARK methods are symmetric and
symplectic methods proposed by Jay [24, 29]. In Appendix A, we present the unified for-
mulations of SPARK methods and the corresponding Butcher style tableaux of SPARK co-
efficients for LIIIA-B (s = 2,3) and G-L (s = 1,2). The specific algorithms of the Gauss
SPARK methods are summarized in pseudocode format in Appendix B.4.

4.2.2 A geometric interpretation for Gauss SPARK methods

As illustrated in Fig. 1, the Gauss SPARK methods presented by (62)–(69) can be considered
as a two-step projection process, where the abbreviations

Qi = Q(tk + ci�t), Q̄i = Q(tk + c̄i�t), Q̃i = Q(tk + c̃i�t),

P i = P (tk + ci�t), Q̄i = P (tk + c̄i�t), Q̃i = P (tk + c̃i�t)
(70)

are used to describe the physical quantities of the discrete points. In the first step, the map-
ping T 1 defined by the implicit functions (64), (65) and (68), gives the solutions of the in-
termediate variables Q1, . . . ,Qs , P 1, . . . ,P s , and 1, . . . , λp−1. With these variables, qk+1,
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Fig. 1 Gauss SPARK methods overview

Fig. 2 The discrete scheme: (a) 2-stage-G-L, (b) 3-stage-LIIIA-B

P k+1, and Ṗ k+1 can be solved, serving as the input parameters in the next step. The map-
pings are denoted by T 1(α) and T 1(γ ) for the Hamilton’s equations of α-type and γ -type,
respectively. In the process of T 1 mapping, G-L and LIIIA-B methods use two different
distributions of discrete points. More specifically, the discretized points Q1, . . . ,Qs are
mismatched with the constraint points Q̃0, . . . ,Q̃s for s-G-L, as shown in Fig. 2(a). Hence
QT

i Qi �= 1, i = 1, . . . , s, during the simulation. According to (44), this means

L(Qi )
T L(Qi ) + QiQ

T
i = I 4 + O(δQ), i = 1, . . . , s, (71)

where δQ denotes the numerical error in a time step. Consequently, the mapping T 1(α) is
not mathematically equivalent to T 1(γ ), and the discretization schemes of G-L methods are
highly consistent with the assumption of the error analysis in Sect. 3.2. Contrary to s-G-L,
s-LIIIA-B presents a collocated distribution between the discrete points Q1, . . . ,Qs and
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Fig. 3 The discontinuous
collocation for 3-stage LIIIA-B

constraint points Q̃0, . . . ,Q̃s , as illustrated in Fig. 2(b). Hence QT
i Qi = 1 for i = 1, . . . , s

is satisfied exactly for s-LIIIA-B during the simulation. This may render Condition (44)
unsatisfied.

In the second step, the mapping T 2 defined by the implicit function (69), gives the so-
lutions of the quantities pk+1 and λp . For s-G-L, the mapping T 2 which projects the value
P k+1 onto the manifold M = {pT q = 0} to obtain pk+1, has nothing to do with the pa-
rameter α or γ . Hence the parameters α and γ influence the numerical performance of the
integrators solely by the first step presented in Fig. 1. In contrast, s-LIIIA-B gives a mapping
T 2 including the correction term

δ(tk+1) = Ṗ (tk+1) + ∂T (Qk+1)/∂qT + ∂V (Qk+1)/∂q + 2λQk+1. (72)

T 2 not only preserves the path of the solution on the manifold M but also recovers the
convergence order of P k+1 from 2s − 4 to 2s − 2. Figure 3 gives a geometric interpretation
of the correction term, and one can refer to Ref. [25] (pp. 35–38, 247–252) for the discussion
in detail. In general, the term ∂T (Qk+1)/∂qT in (72) can be expanded as

∂T (Qk+1)/∂qT = δν(Qk+1,P k+1) + 1

4
L(P k+1)

T JL(P k+1)Qk+1, (73)

where

δν(Qk+1,P k+1) = −1

4
γ −1L(P k+1)

T L(P k+1)Qk+1 (74)

for the Hamilton’s equations of γ -type, and

δν(Qk+1,P k+1) = 1

4
α−1P k+1P

T
k+1Qk+1 (75)

for the Hamilton equations of α-type. Equation (74) can be reformulated as

δν(Qk+1,P k+1) = 1

8
γ −1∂

[
P T

k+1

(
I 4 − L(Qk+1)

T L(Qk+1)
)
P k+1

]
/∂QT

k+1. (76)

Noting that QT
k+1Qk+1 = 1has been satisfied in the first step, we have

I 4 − L(Qk+1)
T L(Qk+1) = Qk+1Q

T
k+1. (77)

Substituting (77) into (76) and setting γ = α lead to

δν(Qk+1,P k+1) = 1

8
γ −1∂

[
P T

k+1Qk+1Q
T
k+1P k+1

]
/∂QT

k+1 = 1

4
α−1P k+1P

T
k+1Qk+1

∣
∣∣
∣
γ=α

.

(78)
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Recall that the mappings are denoted by T 2(α) and T 2(γ ) respectively for the Hamilton’s
equations of α-type and γ -type. Equation (78) means the mapping T 2(γ ) is mathematical
equivalent to T 2(α), and consequently pk+1 will be solved with the same numerical accuracy
for s-LIIIA-B-γ and s-LIIIA-B-α if qk+1, P k+1 and Ṗ k+1 are assigned with the same inputs.

Go back to the first step to reconsider the mapping T 1 for s-LIIIA-B. Although ∂T /∂Qi ,
i = 2, . . . , s − 1 and ∂T /∂P i , i = 1, . . . , s are also involved in the mapping T 1 in this
case, we must note that QT

i Qi = 1 for i = 1, . . . , s is only satisfied implicitly, which
means QT

i Qi = 1 is an iteration solution of the mapping T 1. Hence, we cannot present a
straightforward and analytical way which is just like those presented by (76)–(78), to prove
T 1(α) = T 1(γ ). Nevertheless, the numerical testing in the next section would show that
s-LIIIA-B-α and s-LIIIA-B-γ are of the same numerical accuracy if α and γ are assigned
with the same value and this implies the equivalence between T 1(α) and T 1(γ ).

These differences presented above make G-L and LIIIA-B essentially two different meth-
ods in the numerical simulation, and we will further investigate the numerical performance
of these methods in the following.

5 Numerical examples

In this section, numerical examples of a top spinning in gravitational field are considered.
As shown in Fig. 4, the top fixed at O is rotating in a uniform gravitational field with the
acceleration g = 9.81 in the negative z-direction. l represents the distance between the mass
center A and the fixed point O , and the rotational motion is expressed by the angle of
nutation θ , the angle of precession φ, and the spin angle ψ . The gravitational potential
energy is written as [11, 16]

V (q) = mgl cos θ = mglqT Kq, (79)

where K = diag(1,−1,−1,1), and then we have ∂V (q)/∂qT = 2mglKq .
Two numerical examples are considered for comparing the numerical performance of

different types of integrators in simulation, and the discussion would concentrate on the
numerical influence of the parameters α and γ in different inertia representations. The con-
figuration parameters and initial conditions for the two examples are presented as follows.

Fast spinning top The configuration parameters are corresponding to m =1, l =0.04
and the principal moments of inertia tensor with respect to the fixed point [I1 = I2, I3] =
[0.002,0.0008]. The following initial conditions are considered:

[φ0, θ0,ψ0] = [0,π/6,0], ΩT
0 = [0,0,40π]. (80)

Fig. 4 A heavy top
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Correspondingly, the initial value q0 and p0 can be obtained by

qT
0 =

[
cos

(
φ0 + ψ0

2

)
cos

(
θ0

2

)
, cos

(
φ0 − ψ0

2

)
sin

(
θ0

2

)
,

sin

(
φ0 − ψ0

2

)
sin

(
θ0

2

)
, sin

(
φ0 + ψ0

2

)
cos

(
θ0

2

)]
(81)

and

p0 = 2L(q0)
T JΩ0. (82)

Regular precession The second example is the regular precession in gravitational field.
The top is represented as a cone with the dimensions equivalent to those used in [17, 23]. The
configuration parameters include the height h = 0.1, the radius r = 1

2h, the length l = 3
4h,

and the mass m = 1
3ρπ2h with the density ρ =2700. The three principal moments of the

inertia matrix with respect to fixed point O are given by

I1 = I2 = 3

5
m

(
r2/4 + h2

)
, I3 = 3

10
mr2. (83)

The initial conditions are as follows:

[φ0, θ0,ψ0] = [0,π/3,0] (84)

with a precession rate φ̇ =10, and the velocity components φ̇ and ψ̇ satisfying the relation

ψ̇ = mgl/I3φ̇ + (I1 − I3)

I3
φ̇ cos(θ). (85)

Correspondingly, the initial angular velocity vector can be obtained by

ΩT
0 = [

0, φ̇ sin(θ0), ψ̇ + φ̇ cos(θ0)
]
. (86)

To precisely evaluate the numerical results among these integrators, we define the mean
values of errors as follows:

E
[|�xc|

] = 1

Nt + 1

Nt∑

k=0

|�xc,k|, E
[|�zc|

] = 1

Nt + 1

Nt∑

k=0

|�zc,k|, (87)

E
[|�H |] = 1

Nt + 1

Nt∑

k=0

|�Hk|, (88)

E
[|�l3|

] = 1

Nt + 1

Nt∑

k=0

|�l3,k|, (89)

E
[|g(q)|] = 1

Nt + 1

Nt∑

k=0

∣
∣qT

k qk − 1
∣
∣, (90)

E
[∣∣qT p

∣∣] = 1

Nt + 1

Nt∑

k=0

∣∣qT
k pk

∣∣. (91)
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In the above, Nt denotes the number of the total time steps; xc and zc denote the coordinates
of mass center in xand z-directions, whose errors are denoted by �xc,k and �zc,k at the grid
point tk = k�t (k = 0,1, . . . ,Nt ); �Hk denotes the pointwise absolute energy error; �l3,k

denotes the pointwise local angular momentum error of the l3-component.

5.1 Conservation of invariants

Conservation of invariants (or termed conserved quantities) has important effects on the nu-
merical performance of integrations. It has been suggested that numerical methods, who
conserve invariants (especially quadratic invariants) automatically, tend to present good per-
formance on long-time behavior in simulation [25]. In this paper, two different inertia repre-
sentations and the corresponding parameters γ and α are introduced when constructing the
numerical integrations. It is interesting whether the introduction of the parameters in differ-
ent inertia representations would destroy the conservation of invariants which has been held
by numerical methods.

Tables 2 and 3 list the numerical results for the two examples, where the error terms
E[|�H |], E[|�l3|], E[|g(q)|] and E[|qT p|] are defined by (88)–(91). Numerical integra-
tions of γ -type and α-type are both considered in the simulation. The errors are bolded if the
invariants are conserved exactly by the integrations. We further show the numerical errors
of the invariants (i.e., the total energy and the local angular momentum l3) in Figs. 5 and 6
for IMS-γ , EMS-γ and 3-LIIIA-B-γ for the first example. Figure 7 shows that qT p = 0
is not preserved exactly for IMS and EMS but presents a periodic error in simulation. We
should emphasize that all these integrations present periodic errors if the invariants are not
conserved exactly in the simulation. These numerical results suggest that the introduction of
the parameter γ or α does not destroy the conservation of an invariant as well as the good
long-time behavior, which has been held automatically by the numerical methods.

Table 2 Conservation of
invariants for fast spinning top,
γ = γm, α = 100γm,
�t = 0.001, Nt = 4000

Algorithms E[|�H |] E[|�l3|] E[|g(q)|] E[|qT p|]

IMS-γ 2.54E-06 1.27E-15 2.97E-17 7.09E-08

IMS-α 1.02E-05 7.66E-16 5.95E-17 7.10E-08

EMS-γ 6.72E-14 8.09E-08 3.24E-17 7.09E-08

EMS-α 9.68E-14 3.25E-07 2.88E-17 1.30E-10

3-LIIIA-B-γ 5.90E-10 1.62E-14 4.30E-17 1.01E-17

3-LIIIA-B-α 3.97E-10 3.28E-13 5.00E-17 1.02E-17

2-G-L-γ 5.34E-10 1.97E-15 3.09E-17 7.69E-18

2-G-L-α 1.75E-09 1.36E-13 4.96E-17 7.56E-18

Table 3 Conservation of
invariants for regular precession,
γ = γm, �t = 0.005, Nt = 800

Algorithms E[|�H |] E[|�l3|] E[|g(q)|] E[|qT p|]

IMS-γ 0.0139 4.48E-14 6.05E-18 4.82E-05

IMS-α 0.0806 6.85E-14 6.27E-18 1.16E-04

EMS-γ 2.00E-12 8.23E-04 5.47E-18 9.62E-05

EMS-α 5.52E-12 0.0051 6.16E-18 2.26E-14

3-L IIIA-B-γ 2.34E-07 6.04E-13 1.04E-17 2.21E-15

3-L IIIA-B-α 2.34E-07 8.02E-13 1.08E-17 1.02E-17

2-G-L-γ 6.09E-07 4.70E-12 1.19E-17 1.43E-15

2-G-L-α 2.57E-06 2.78E-13 9.66E-18 1.39E-15
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Fig. 5 Conservation of invariants for fast spinning top: (a) energy error of IMS-γ , (b) energy error of
EMS-γ , (c) l3-error of IMS-γ , (d) l3-error of EMS-γ ; �t = 0.01, γ = γm

Fig. 6 Conservation of invariants for fast spinning top with 3-LIIIA-B-γ : (a) energy error, (b) l3-error,
�t = 0.01, γ = γm

5.2 Comparison of the numerical accuracy

Tables 4, 5 and 6 list the numerical errors of the integrations for the two examples, where
the error terms E[|�H |], E[|�z|] and E[|�x|] are defined by (87) and (88). Numerical
integrations of γ -type and α-type are both considered. Figures 8 and 9 further show the
numerical results of IMS-αand IMS-γ for the two examples. It can be observed that all the
integrations of α-type are of the same numerical accuracy no matter what values are assigned
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Fig. 7 The orthogonal condition for fast spinning top: (a) qT p-error for IMS-γ , (b) qT p-error for EMS-γ ,
�t = 0.01, γ = γm

Table 4 Fast spinning top: numerical accuracy for the integrations of γ -type, I3 = 0.0008, �t = 0.001,
Nt = 320

γ -type IMS EMS 3-LIIIA-B 2-G-L

E[|�H |] γ = γm 2.35E-06 1.12E-14 5.46E-10 4.94E-10

γ = γh 4.70E-06 8.49E-15 5.46E-10 2.72E-10

γ = 100γm 9.32E-06 1.49E-14 3.79E-10 1.61E-09

E[|�z|] γ = γm 1.48E-05 1.55E-05 7.41E-09 4.86E-09

γ = γh 2.76E-05 5.09E-05 7.41E-09 1.96E-09

γ = 100γm 1.77E-04 2.18E-04 5.41E-09 1.96E-08

E[|�x|] γ = γm 2.07E-04 2.16E-04 1.21E-08 9.83E-09

γ = γh 2.20E-04 2.20E-04 1.22E-08 8.16E-09

γ = 100γm 3.23E-04 3.23E-04 8.87E-09 3.25E-08

Table 5 Fast spinning top: numerical accuracy for the integrations of α-type, I3 = 0.0008, �t = 0.001,
Nt = 320

α-type IMS EMS 3-LIIIA-B 2-G-L

E[|�H |] α = γm 9.43E-06 1.08E-14 5.46E-10 1.60E-09

α = γh 9.43E-06 1.39E-14 5.46E-10 1.60E-09

α = 100γm 9.43E-06 1.03E-14 3.77E-10 1.62E-09

E[|�z|] α = γm 1.78E-04 2.20E-04 7.41E-09 1.96E-08

α = γh 1.78E-04 2.20E-04 7.41E-09 1.96E-08

α = 100γm 1.78E-04 2.20E-04 5.41E-09 1.98E-08

E[|�x|] α = γm 3.26E-04 3.80E-04 1.21E-08 3.25E-08

α = γh 3.26E-04 3.80E-04 1.22E-08 3.25E-08

α = 100γm 3.26E-04 3.80E-04 8.87E-09 3.27E-08

to the parameter α; IMS-γ , EMS-γ and 2-G-L-γ with γ = γm are of much higher numerical
accuracy than those of α-type. These numerical results suggest that the parameter γ can be
used to improve the numerical accuracy of numerical methods, whereas the parameter α has
no influence on the numerical accuracy of the integrations. Tables 4–6 further present that
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Table 6 Regular precession: numerical accuracy for integrations, r = 1
2 h, �t = 0.005, Nt = 80

IMS EMS 3-LIIIA-B 2-G-L

E[|�H |] γ -type γ = γm 1.69E-02 9.03E-12 2.15E-06 1.34E-06

γ = γh 5.09E-01 3.91E-12 3.06E-06 1.08E-06

γ = γ̃h 5.57E-12 4.17E-12 1.69E-06 2.56E-06

α-type α = γm 1.07E-01 2.94E-12 2.15E-06 7.00E-06

E[|�z|] γ -type γ = γm 1.74E-03 3.24E-03 1.96E-05 1.55E-05

γ = γh 9.20E-03 1.44E-02 2.33E-05 1.38E-05

γ = γ̃h 5.61E-16 7.81E-16 1.73E-05 2.14E-05

α-type α = γm 4.39E-03 8.88E-03 1.96E-05 3.53E-05

E[|�x|] γ -type γ = γm 4.35E-02 8.19E-03 5.80E-04 5.42E-04

γ = γh 2.11E-01 4.51E-01 6.82E-04 2.91E-04

γ = γ̃h 9.05E-02 1.01E-01 5.18E-04 7.09E-04

α-type α = γm 2.03E-01 3.18E-01 5.80E-04 1.11E-03

Fig. 8 Trajectory error of mass center for fast spinning top: (a) x-component error, (b) z-component error;
�t = 0.01; IMS-γ (×), γ = γm; IMS-α (- - -), α = γm; analytical (—)

3-LIIIA-B-γ is of the same numerical accuracy with 3-LIIIA-B-α if α and γ are assigned
with the same values. According to the discussion in Sect. 4.2.2, numerical results suggest
that T 1(α) = T 1(γ ) for LIIIA-B, and there is no difference in accuracy between the two
discretization schemes s-LIIIA-B-α and s-LIIIA-B-γ .

In Table 6, besides γm and γh, γ is also assigned with γ̃h to account for the large difference
between I1 and I3 (i.e., I1 = I2 = 8.5I3). It can be observed in Table 6 that IMS-γ and EMS-
γ with γ = γh have larger numerical errors than the others and the numerical accuracy is
improved evidently if we use the corrected optimal value γ̃h presented in (50). We further
change the radius by r = 1.5h for the example of regular precession which makes I1 =
I2 = 1.39I3. It can be observed in Table 7 that the numerical accuracy of IMS-γ and EMS-
γ assigned with γ = γh is greatly improved, especially compared with those presented in
Table 6. Recall the discussions in the last paragraph of Sect. 3.3, and these numerical results
are highly consistent with those discussions.

Figure 10 shows the relative error with time step increasing, where the error is obtained
by evaluating the maximum of the relative error. These numerical results can be summarized
as follows: IMS and EMS have the convergence of order 2; 2-G-L and 3-LIII-A-B have the



The numerical influence of additional parameters of inertia 257

Fig. 9 Trajectory error of mass center for regular precession top: (a) x-component error, (b) z-component
error; �t = 0.007; IMS-γ (×), γ = γm; IMS-α(- - -), α = γm; analytical (—)

Table 7 Regular precession: numerical accuracy for integrations, r = 1.5h, �t = 0.01, Nt = 80

IMS EMS 3-LIIIA-B 2-G-L

E[|�H |] γ -type γ = γm 3.15E-05 3.03E-12 7.32E-11 3.48E-12

γ = γh 4.99E-05 2.58E-12 7.49E-11 2.47E-12

α-type α = γm 2.92E-03 1.46E-12 7.10E-11 7.72E-09

E[|�z|] γ -type γ = γm 5.94E-05 2.16E-05 9.03E-08 2.15E-08

γ = γh 7.49E-05 2.72E-05 9.04E-08 5.65E-10

α-type α = γm 5.72E-04 2.14E-04 9.03E-08 9.32E-07

E[|�x|] γ -type γ = γm 1.01E-02 1.36E-02 1.91E-05 6.84E-06

γ = γh 8.74E-03 1.31E-02 1.91E-05 8.64E-06

α-type α = γm 6.70E-02 3.51E-02 1.91E-05 6.74E-05

Fig. 10 Fast spinning top: the relative periodic error with time step increasing

convergence of order 4. It suggests that the convergence property keeps consistent regardless
of whether the integrations are derived in γ -type or α-type, and all the integrations of γ -type
present higher accuracy than those of α-type, except for 3-LIII-A-B.

The discussions and conclusions presented in Sects. 5.1 and 5.2 are also suitable to those
SPARK methods of order 2, 6 or 8, although the numerical results are only listed for the cases



258 X. Xu et al.

of order 4. According to these numerical results, the inertia representation of γ -type can be
used to improve the numerical accuracy of integrations without destroying the conservation
of invariants. These results further suggest that the improvement of numerical accuracy can
be achieved simultaneously for both the energy and trajectory by choosing a proper value
of the parameter γ . In addition, the integrations of γ -type with the proposed optimal values
γm and γh can give impressively good numerical accuracy, especially compared with those
of α-type, and γm is more robust for IMS and EMS if there are large differences among the
three principal moments.

5.3 Comparisons between the integrations of γ and α-types

The conservation of invariant and the numerical accuracy of the integrations of α-type and
γ -type have been investigated in the above. Many other differences of numerical perfor-
mance will be found if we consider the convergence orders, error-parameter relations, the
discretization schemes and their combinations, as discussed in the following.

5.3.1 The error-parameter relations for IMS, EMS and G-L SPARK methods

Figures 11, 12 and 13 shows the linear relation between the periodic error and 1/γ for IMS-
γ , EMS-γ and G-L-γ in the example of fast spinning top. Figure 13 further shows that

Fig. 11 Energy error of IMS-γ for fast spinning top: (a) the periodic error-time curve, �t = 0.001, (b) the
periodic error-1/γ curve

Fig. 12 Fast spinning top: the
periodic error of l3-angular
momentum for EMS-γ ,
�t = 0.001
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Fig. 13 Periodic energy error with 1/γ increasing for fast spinning top: (a) 1-stage G-L-γ , (b) 2-stage
G-L-γ , (c) 3-stage G-L-γ , (d) 4-stage G-L-γ

the linear relation remains unchanged for G-L SPARK methods of γ -type when the order
of the integration is changed. This implies that the error estimation discussed in Sect. 3.2
is probably independent of the order conditions. Figure 14 shows the relation between the
periodic error and 1/α for the example of the fast spinning top. It can be observed that the
parameter α has nearly no influence on the energy error for the integrations of α-type. As
referred to the discussion in Sect. 4.2.2, all three integrations IMS, EMS and G-L show the
mismatch of the discretized points between the differential part and the algebraic part. We
believe that this mismatch makes these results highly consistent with the error estimation in
Sect. 3.2.

5.3.2 The error analysis for LIIIA-B SPARK methods

Figure 15 shows the periodic error of LIIIA-B-γ changing with 1/γ for the example of the
fast spinning top. The figures of LIIIA-B-αare not shown in this paper because s-LIIIA-B-
α presents exactly the same results as s-LIIIA-B-γ . An interesting numerical phenomenon
can be observed: the numerical errors are linear functions with 1/γ for 2-LIIIA-B and 4-
LIIIA-B, whereas 3-LIIIA-B and 5-LIIIA-B present a logarithmic increasing (or decreasing)
error-curve. Figure 16 further shows the convergence rate for the LIIIA-B SPARK methods.
It presents that the parameter γ influences the numerical accuracy of 2-LIIIA-B and 4-
LIIIA-B regardless of the size of the time step, and in contrast the influence of parameter γ

declines rapidly for 3-LIIIA-B and 5-LIIIA-B with the time step decreasing.
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Fig. 14 Energy error changes with 1/α for fast spinning top: (a) IMS-α, (b) EMS-α (c) 2-stage G-L-α,
(d) 3-stage G-L-α, (e) 4-stage G-L-α

Although we predicted the mathematical equivalence of LIIIA-B-α and LIIIA-B-γ in
Sect. 4.2.2 and confirmed it by numerical results, the parameter α or γ is not entirely useless
for improving the numerical accuracy. Rather, it may somehow affect the integrations whose
numbers of the stage are even, and we can still apply γm and γh to reduce the integration
error, at least for even-stage schemes.

Though the results of 2-LIIIA-B and 4-LIIIA-B is preferable, the authors are not able to
give an explanation to this phenomenon. Further work is needed to precisely study the role
of parameters α and γ for the LIIIA-B SPARK methods.
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Fig. 15 Energy error changes with 1/γ increasing for fast spinning top: (a) (2,1)-LIIIA-B-γ ,
(b) (3,2)-LIIIA-B-γ , (c) (4,3)-LIIIA-B-γ , (d) (5,4)-LIIIA-B-γ

Fig. 16 Fast spinning top: the
periodic relative error with time
step increasing for LIIIA-B

5.4 Robustness of the integrations with different parameters

Robustness of the parameters γ and α is also discussed in this paper. The introduction of
undetermined parameters to differential equations generally involves potential numerical
risks if inappropriate values of the parameters are applied in the algorithm. Firstly, this may
destroy the good long-time behavior, which has been discussed for the parameters γ and
α in Sect. 5.1. Secondly, an inappropriate value of the introduced parameter may cause an
ill-conditioned problem of the iteration matrix, which means serious restriction of the time
step to obtain a convergent result of Newton iteration.
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Table 8 Fast spinning top: maximum of the time step for convergent results

Convergence order Parameter IMS EMS LIII A-B G-L

2nd order γ -type γ = γm 0.022 0.019 0.016 0.020

γ = γh 0.035 0.022 0.017 0.022

α-type α = γm 0.084 0.025 0.027 divergent

α = γh 0.085 0.024 0.020 divergent

α = 100γm 0.007 0.019 0.0011 divergent

α = 0.01γm 0.021 0.012 0.0014 divergent

4th order γ -type γ = γm – – 0.024 0.025

γ = γh – – 0.028 0.028

α-type α = γm – – 0.014 0.016

α = γh – – 0.014 0.017

α = 100γm – – 0.0016 0.0016

α = 0.01γm – – 0.0048 0.014

6th order γ -type γ = γm – – 0.029 0.030

γ = γh – – 0.033 0.032

α-type α = γm – – 0.018 0.021

α = γh – – 0.018 0.021

α = 100γm – – 0.0022 0.0019

α = 0.01γm – – 0.018 0.015

8th order γ -type γ = γm – – 0.030 0.029

γ = γh – – 0.033 0.033

α-type α = γm – – 0.022 0.022

α = γh – – 0.022 0.024

α = 100γm – – 0.0025 0.0025

α = 0.01γm – – 0.019 0.016

Annotation: εr = 10−20, iter_max = 50, Nt = 160

Table 8 lists the maximum of the size of time-step (denoted as �tmax) to receive a conver-
gent result of integrations for the example of the fast spinning top, where iter_max denotes
the maximum number of iterations, εr denotes the maximum of the iteration error and Nt

denotes the number of the total time steps. The Newton iteration stops and goes to the next
time step if the iteration number is greater than the maximum iter_max or the iteration error
is less than εr . It can be observed that: IMS-α and EMS-α allow larger sizes of �tmax than
IMS-γ and EMS-γ ; G-L-γ assigned with γ = γm or γh allows a larger size of �tmax than
G-L-α; LIII A-B-γ assigned with γ = γm or γh allows a larger size of �tmax for s = 3, 4 and
5. Numerical results also suggest that 1-stage G-L-α is divergent in simulation. It seems that
(1,1)-G-L-α suffers from serious morbidity of the iteration matrix, and plenty of numerical
tests suggest that the energy error will increase linearly for 1-G-L-α even if it is assigned
with a very small size of time step.

Tables 9, 10, 11, 12, 13 and 14 list the mean values of iterations at which the iteration
error becomes less than εr for IMS, EMS and LIII A-B. We select four different sizes of
the time step to compare the convergent speeds of different integrations. It can be observed
that the integrations of γ -type assigned with γ = γm generally have quicker convergence
than those of α-type. Table 9 shows that the iteration increases with decreasing size of the
time step for IMS-α, which means much more computational cost compared with IMS-γ .
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Table 9 Fast spinning top: iteration number for IMS

IMS Parameter �t = 0.02 �t = 0.01 �t = 0.005 �t = 0.001

γ -type γ = γm 9 6.9 6 5.1

γ = γh 8 6 6 5.0

α-type α = γm 10.9 14.3 22.7 54.3

α = γh 10.6 15.1 29.1 62.8

α = 100γm divergent divergent divergent 92.6

α = 0.01γm 12 8.0 15.65 41.9

Annotation: εr = 10−15, iter_max = 100, Nt = 80

Table 10 Fast spinning top: iteration number for EMS

EMS Parameter �t = 0.02 �t = 0.01 �t = 0.005 �t = 0.001

γ -type γ = γm divergent 7 6 5

γ = γh 8 6 6 5

α-type α = γm 9 7 6 5

α = γh 9 7 6 5

α = 100γm 13 10.0 14.3 24.6

α = 0.01γm divergent 8 6 5

Annotation: εr = 10−12, iter_max = 100, Nt = 80

Table 11 Fast spinning top: iteration number for 2-LIII A-B

2-stage Parameter �t = 0.02 �t = 0.01 �t = 0.005 �t = 0.001

γ -type γ = γm 73 30.0 16.0 9.0

γ = γh 46.9 23.9 14.0 8.0

α-type α = γm 67.8 divergent 25.0 10.0

α = γh 74.9 divergent 24.0 10.0

α = 100γm divergent divergent divergent 61.4

α = 0.01γm divergent divergent divergent 10.1

Annotation: εr = 10−12, iter_max = 100, Nt = 80

Tables 11–14 shows that LIII A-B-γ assigned with γ = γm or γh has quicker convergence
speed than LIII A-B-α. This means less computational cost for the integrations of γ -type.
Although we have not listed the numerical results, the G-L methods present the same nu-
merical features as the LIIIA-B methods.

These numerical results suggest that the numerical performance for the integrations of
γ -type are harmonious between the numerical accuracy and stability, which means we can
obtain higher numerical accuracy as well as better convergence speed by choosing the proper
parameter (γm or γh). Although these tables only list the numerical results for the example
of the fast spinning top, a large amount of numerical testing demonstrates that nearly the
same numerical phenomenon can be observed for other configuration parameters or initial
conditions.
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Table 12 Fast spinning top: iteration number for 3-LIII A-B

3-stage Parameter �t = 0.02 �t = 0.01 �t = 0.005 �t = 0.001

γ -type γ = γm 27.7 19 13.0 8.0

γ = γh 21.9 17.0 12.0 8.0

α-type α = γm 67.8 divergent 25.0 10.0

α = γh 74.9 divergent 24.0 10.0

α = 100γm divergent divergent divergent 42.7

α = 0.01γm divergent 30 divergent 9

Annotation: εr = 10−12, iter_max = 100, Nt = 80

Table 13 Fast spinning top: iteration number for 4-LIII A-B

4-stage Parameter �t = 0.02 �t = 0.01 �t = 0.005 �t = 0.001

γ -type γ = γm 21 17 13.0 9.2

γ = γh 18 15 11.7 8.0

α-type α = γm 43.0 26.0 16 9.0

α = γh 40 24 15 9.0

α = 100γm divergent divergent divergent 54.6

α = 0.01γm 27.8 20.0 14.1 8.7

Annotation: εr = 10−12, iter_max = 100, Nt = 80

Table 14 Fast spinning top: iteration number for 5-LIII A-B

5-stage Parameter �t = 0.02 �t = 0.01 �t = 0.005 �t = 0.001

γ -type γ = γm 19 15.9 12 11.7

γ = γh 17.0 14.0 11.0 14.1

α-type α = γm 29.0 21 15 12.5

α = γh 28.0 20.0 14 14.9

α = 100γm divergent divergent divergent 55.9

α = 0.01γm 23.8 18.1 12.8 10.2

Annotation: εr = 10−12, iter_max = 100, Nt = 80

6 Conclusion

The inertia representations of γ -type and α-type have been developed for the simulation
of the quaternion-based rigid body dynamics. The two inertia representations formally lead
to different formulations of Hamilton’s equations, which are theoretically equivalent if the
constraint qT q = 1 is satisfied exactly. However, error estimation demonstrates that the two
kinds of inertia representations are different due to the discretization and suggests that the
parameter γ can be used to optimize the numerical performance of the integrations in sim-
ulation.

The implicit midpoint scheme (IMS), the energy–momentum conserving scheme (EMS),
and two types of Gauss SPARK methods (G-L and LIIIA-B) are derived to investigate the
two inertia representations in simulations. The numerical results show that the parameters
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α and γ can greatly influence the numerical performance of the integrations in simulation
and the numerical influences are the result of the comprehensive effect of the discretization
scheme, the inertia representations and their combinations. To be specific, IMS-γ , EMS-γ
and G-L-γ present a linear relation between numerical errors and the parameter γ regardless
of the convergence order of the integration, whereas the parameter α has no influence on the
numerical accuracy for these integrations of α-type; s-LIIIA-B-αand s-LIIIA-B-γ are of the
same numerical accuracy in simulation, if the parameters α and γ are assigned with the
same value; all the integrations of γ -type can present quicker convergence speed and better
stability than those of α-type. A large amount of numerical testing demonstrates that the two
values γm and γh, referring to three principal moments, can be considered as two reasonable
values of γ , with which the integrations of γ -type can present better numerical accuracy,
convergence speed and stability for these integrations.
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Appendix A: The Gauss SPARK methods in unified form

A.1 A unified formulation of SPARK methods

In Sect. 4.2.1, we present two types of Gauss SPARK methods based on the discontinuous
collocation type methods. It is more efficient in computation to derive a unified formulation
of SPARK methods in which the discretization schemes are formulated with Butcher style
tableaux of SPARK coefficients.

One step of an (s, p)-SPARK method applied to the Hamiltonian system of (12) with
consistent initial values (qk , pk) at tk and step-size �t is given as follows [24, 28]:

ki = Hp(Qi ,P i ), i = 1, . . . , s,

k̂i = −Hq(Qi ,P i ), i = 1, . . . , s,

k̃i = −gq(Q̃i )Λi, i = 0, . . . , p,

(A.1)

g(Q̃i ) = 0, i = 0,1, . . . , p, (A.2)

qk+1 = qk + �t

s∑

j=1

kj bj , (A.3)

g(qk+1) = 0, (A.4)

pk+1 = pk + �t

s∑

j=1

bj k̂j + �t

p∑

j=0

b̃j k̃j , (A.5)

gq(qk+1)Hp(qk+1,pk+1) = 0, (A.6)
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where Λi for i = 0,1, . . . , p is the Lagrange multiplier. Qi , Q̃i and P i denote quantities
discretized as the inner points, defined by

Qi = qk + �t

s∑

j=1

kj aij , i = 1, . . . , s,

Q̃i = qk + �t

s∑

j=1

kj āij , i = 0, . . . , p,

P i = pk + �t

s∑

j=1

k̂j âij + �t

p∑

j=0

k̃j ãij , i = 1, . . . , s.

(A.7)

The coefficients (bj , cj )
s
j=1 and (b̃j , c̃j )

p

j=0 are generally two distinct quadrature formulas
and the SPARK coefficients can be expressed in the form of Butcher style tableaux:

ci aij

A bj

âij

Â b̂j

ãij

Ã b̃j

c̃i āij

Ā

To ensure the existence and uniqueness of the SPARK solution [24, 28], we should as-
sume ā0j = 0 and āpj = bj for j = 1, . . . , s, which imply that Q̃0 = qk and Q̃p = qk+1.
Hence Eqs. (A.2), (A.4) and (A.6) give p + 1 independent constraints to solve p + 1 La-
grange’s multipliers (i.e., Λi , i = 0, . . . , p).

We are especially interested in the SPARK methods whose coefficients are the weights
and nodes of Gauss quadrature, to have an optimal order of convergence. The Gauss SPARK
coefficients satisfy the following conditions [24, 28]:

B(s):
s∑

i=1

bic
k−1
i = 1

k
, k = 1, . . . ,2s,

C(s):
s∑

j=1

aij c
k−1
j = ck

i

k
, k = 1, . . . , s, i = 1, . . . , s,

(A.8)

Ĉ(s):
s∑

j=1

âij ĉ
k−1
j = ĉk

i

k
, k = 1, . . . , s, i = 1, . . . , s, (A.9)

B̃(p):
p∑

i=0

b̃i c̃
k−1
i = 1

k
, k = 1, . . . ,2p, (A.10)

C̃(p):
p∑

j=0

ãij c̃
k−1
j = ck

i

k
, k = 1, . . . , p + 1, i = 1, . . . , s, (A.11)

and

C̄(s):
s∑

j=1

āij c
k−1
j = c̃k

i

k
, k = 1, . . . , s, i = 0, . . . , p. (A.12)

The two types of Gauss SPARK methods concerned in this paper can be obtained by the
following conditions.
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s-stage Lobatto IIIA-B method Let p = s − 1, ā(i−1)j = aij , ãi(j−1) = âij , bj = b̂j =
b̃j−1, c̃i−1 = ci , for i = 1, . . . , s, j = 1, . . . , s, and c1, . . . , cs , be the s nodes of the Lobatto
quadrature. The Lobatto IIIA-B SPARK method is defined with the coefficients aij , bj and
âij determined by

âi1 = b̂1, âis = 0 for i = 1, . . . , s (A.13)

and

B(s), C(s) and Ĉ(s − 2) (A.14)

with the conditions B(s), C(s) and Ĉ(s) defined by (A.8) and (A.9).

s-stage Gauss Lobatto method Let p = s, âij = aij , bj = b̂j , for i = 1, . . . , s, and
c1, . . . , cs be the s nodes of the Gauss quadrature and c̃1, . . . , c̃s be the s + 1 nodes of
the Lobatto quadrature. The Gauss–Lobatto SPARK method is defined with the coefficients
aij , bj , ãij , b̃i and āij , determined by

ãi0 = b̃0, ãis = 0 for i = 1, . . . , s (A.15)

and

B(s), C(s), B̃(s), C̃(s − 2) and C̄(s) (A.16)

with the conditions B(s), C(s), B̃(p), C̃(p) and C̄(s) defined by (A.8)–(A.12).

A.2 Butcher style tableaux of Gauss SPARK coefficients

SPARK coefficients can be calculated by substituting nodes of quadrature and the solu-
tion conditions presented by Lobatto IIIA-B or Gauss–Lobatto SPARK methods into (A.8)–
(A.12). The Lobatto nodes of quadrature c1, c2, . . . , cs are the zeros of

ds−2

dxs−2

(
xs−1(x − 1)s−1

)
. (A.17)

The Gauss nodes of quadrature c1, c2, . . . , cs are the zeros of the sth shifted Legendre poly-
nomial

ds

dxs

(
xs(x − 1)s

)
. (A.18)

A.2.1 SPARK coefficients for s-stage -Lobatto IIIA-B SPARK methods

The 2-stage and 3-stage Lobatto IIIA-B SPARK methods correspond to the following
Butcher style tableaux of SPARK coefficients:

0 0 0
1 1/2 1/2
A 1/2 1/2

1/2 0
1/2 0

Â 1/2 1/2

1/2 0
1/2 0

Ã 1/2 1/2

0 0 0
1 1/2 1/2

Ā

and

0 0 0 0
1/2 5/24 1/3 −1/24
1 1/6 2/3 1/6
A 1/6 2/3 1/6

1/6 −1/6 0
1/6 1/3 0
1/6 5/6 0

Â 1/6 2/3 1/6
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1/6 −1/6 0
1/6 1/3 0
1/6 5/6 0

Ã 1/6 2/3 1/6

0 0 0 0
1/2 5/24 1/3 −1/24
1 1/6 2/3 1/6

Ā

A.2.2 SPARK coefficients for s-stage Gauss–Lobatto SPARK methods

The 1-stage and 2-stage Gauss–Lobatto SPARK methods correspond to the following
Butcher style tableaux of SPARK coefficients:

1/2 1/2
A 1

1/2

Â 1

1/2 0

Ã 1/2 1/2

0 0
1 1

Ā

and

1/2 − √
3/6 1/4 1/4 − √

3/6
1/2 + √

3/6 1/4 + √
3/6 1/4

A 1/2 1/2

1/4 1/4 − √
3/6

1/4 + √
3/6 1/4

Â 1/2 1/2

1/6 1/3 − √
3/6 0

1/6 1/3 + √
3/6 0

Ã 1/6 2/3 1/6

0 0 0
1/2 1/4 + √

3/8 1/4 − √
3/8

1 1/2 1/2

Ā

Appendix B: Algorithms in pseudocode formats

B.3 Implicit midpoint scheme and energy–momentum conserving scheme

The implicit midpoint scheme and the energy–momentum conserving scheme presented by
(53) and (61) can be summarized in pseudocode format in Table 15.

Table 15 State-space integration
algorithm of order 2

1) Initial condition: q0, p0, λ = 0, k = 1

2) Prediction step: gk = gk−1, gT = [qT ,pT ,λ].
3) Residual calculation: rT = [rT

q , rT
p ,qT

k
qk − 1]

Implicit midpoint scheme (IMS):{
rq = �q/�t − Hp(q̄, p̄)

rp = �p/�t + Hq (q̄, p̄) + 2λq̄

Energy–momentum conserving scheme (EMS):{
rq = �q/�t − ∇̄pH(qk−1,pk−1,qk,pk)

rp = �p/�t + ∇̄qH(qk−1,pk−1,qk,pk) + 2λq̄

4) Update incremental rotation parameters:

δg = −K−1
J

r,gk = gk + δg,

where KJ = ∂r/∂gk and if ‖r‖ > εr , repeat from 3).

5) k = k + 1, return to 2), or stop.
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Table 16 Algorithm for Gauss
SPARK methods

1) Initial condition: q0, p0, x−1 = 0, k = 0

2) Prediction step: xk = xk−1 where x is defined by (B.2)

3) Residual calculation-1: rT = [rT
q , rT

p , rT
c ]

4) Update incremental parameters:

δx = −K−1
J

r,xk = xk + δx,

where KJ = ∂r/∂xk and if ‖r‖ > εr , repeat from 3).

5) Update the configurations: qk+1 = qk + �t
∑s

j=1 kj bj , Λs̃ = 0

6) Residual calculation-2:

pk+1 = pk + �t
∑s

j=1 bj k̂j + �t
∑p

j=0 b̃j k̃j , r̃ = pT
k+1qk+1

7) Update incremental parameter: δΛ = −r̃/KΛ, Λp = Λp + δΛ

where KΛ = ∂r̃/∂Λp and if ‖r‖ > ε̃r , repeat from 6).

8) k = k + 1, return to 2), or stop

B.4 Gauss SPARK methods

Consider the SPARK method presented by (A.1)–(A.6). We can define the residual vectors
in the following form:

r =
⎡

⎢
⎣

rq

rp

rc

⎤

⎥
⎦

rq = [rT
q,1, . . . , r

T
q,s]T

rq = [rT
q,1, . . . , r

T
q,s]T

rc = [rT
c,1, . . . , r

T
c,p]T

rq,i = ki − Hp(Qi ,P i ), i = 1, . . . , s,

rp,i = k̂i + Hq(Qi ,P i ), i = 1, . . . , s,

rc,i = g(Q̃i ), i = 1, . . . , p,

(B.1)
where Qi , P i and Q̃i are defined by (A.7) and k̃i = −gq(Q̃i )Λi . Define the unknowns as

x =
[
kT

1 kT
2 · · · kT

s k̂
T

1 k̂
T

2 · · · k̂
T

s Λ0 Λ1 · · · Λp−1

]T

. (B.2)

Then the Gauss SPARK methods can be summarized uniformly in pseudocode format as in
Table 16.
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