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Abstract A recently developed index reduction method is applied to comparatively com-
plicated underactuated mechanical systems in the context of inverse dynamics. The inverse
dynamics formulation is carried out by employing servo constraints in which the outputs
(specified in time) are expressed by state variables. The dynamic equations are governed by
differential-algebraic equations (DAEs) with high index. If redundant coordinates are used
to formulate servo-constraint problems, the algebraic equations in the DAEs contain both
servo and holonomic constraints. It is highly challenging to solve the DAEs with high in-
dex. Hence index reduction approaches are required. Index reduction by minimal extension
facilitates the desired index reduction and thus makes possible the stable numerical inte-
gration of the index-reduced DAEs. In this paper we apply the advocated method to a very
general and versatile formulation of comparatively complicated crane systems. In contrast to
other schemes previously developed for underactuated systems subject to servo constraints,
the present approach makes feasible numerically solving the challenging inverse dynamics
problems presented herein.
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1 Introduction

Underactuated mechanical systems have fewer control inputs/outputs than degrees of free-
dom. When the systems are underactuated, it is highly challenging to solve inverse dynamics
problems.

A specific projection approach [9-11] has already been applied to solve some inverse dy-
namics problems, see also [7, 23]. In the present work we use a recently developed method
[2, 8] to determine the control inputs that force underactuated mechanical systems to com-
plete the partly specified motion. The partly specified motion can be described by servo
constraints [9, 14, 17, 19, 22], in which the desired control outputs (specified in time) are
expressed in terms of state variables and can be modeled as constraints on the system.
Therefore, the concept of servo constraints can be used to deal with the inverse dynam-
ics problems. Our proposed approach mainly relies on servo and holonomic constraints. In
this paper servo constraints focus on the specification of trajectories of a specific point of a
multibody system such as the payload of a crane system.

The partial specification of the motion of underactuated mechanical systems with servo
constraints typically leads to a mathematical formulation in the form of differential-algebraic
equations (DAEs). If minimal coordinates are used, the differential equations of the DAEs
correspond to the dynamic equations of the system while the algebraic equations are re-
lated to servo constraints. Servo constraints enforce the desired motion along the prescribed
trajectory and thus specify the control outputs of the system. To determine the associated
control inputs that are required to force the system to execute the prescribed trajectory, the
DAE:s need to be solved. In this way a feedforward control law is provided for the underac-
tuated mechanical system in the partly specified motion. If possible external disturbances or
perturbations are present, the solution can then be modified to include the feedback control
to provide the stable tracking of the required reference load trajectory. A closed-loop con-
trol strategy with feedback of the actual errors can thus be constructed (see [5, 11] for more
details).

If fully actuated mechanical systems are considered, the formulation with servo con-
straints for the inverse dynamics simulation yields a set of index-3 DAEs that can be in-
tegrated in analogy to DAEs corresponding to constrained mechanical systems (see, for
example, [21]). However, the situation changes considerably if underactuated mechanical
systems are dealt with. Examples of underactuated systems are cranes and flexible multi-
body systems.

The use of servo constraints in the context of underactuated multibody systems leads
to a broad diversity of servo-constraint problems (see [1, 4, 10, 12, 20]). One indicator of
problem diversity is the (differentiation) index of the underlying DAEs that typically ranges
from three to five and even higher. Consequently, to facilitate a stable numerical integration,
an index reduction approach needs to be applied.

To reduce the high index of DAEs, we apply a specific method, called index reduction
by minimal extension [2, 8, 16, 22], to solve servo-constraint problems of underactuated
mechanical systems. The method is based on the introduction of new algebraic variables
(dummy derivatives) along with the enlargement of DAEs by appending time derivatives
of the constraints. By exploiting the specific structure provided by underactuated multi-
body systems, we have applied the method [2, 8] to servo-constraint problems of a family
of differentially flat cranes which are formulated either by minimal or redundant coordi-
nates. Servo-constraint problems dealing with differentially flat cranes are typically based
on index-5 DAEs. It turned out that index reduction by minimal extension is a viable alter-
native to the aforementioned projection approach.
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Numerical integration for the inverse dynamics of a large class of cranes 3

In the present work we apply index reduction by minimal extension to much more com-
plicated servo-constraint problems, which have not been approached before. In particular,
we focus on a uniform modeling framework for a large class of cranes and weight handling
equipments developed in [15]. The modeling approach proposed in [15] is based on the
use of a uniform set of redundant coordinates which are associated with a singular inertia
matrix. Due to the noninvertibility of the inertia matrix, it is not obvious how to apply the al-
ternative projection method for the solution of the servo-constraint problems resulting from
the involved crane systems considered herein. In sharp contrast to that, index reduction by
minimal extension can be successfully used to deal with complicated crane systems that fit
into the general framework of [15]. It has been shown in [15] that the uniform modeling
approach leads to differentially flat systems. Moreover, it can be concluded from [15] that
the associated servo-constraint problems are governed by DAEs of index five.

An outline of the rest of the paper is as follows. In Sect. 2, we introduce the general
description of underactuated mechanical systems subjected to both holonomic and servo
constraints. In Sect. 3, we present index reduction by minimal extension and link the present
formulation to the previous work [2, 8]. After the discretization in time of the underlying
DAEs in Sect. 4, four new sample applications are presented in Sects. 5 and 6 that demon-
strate the capability of the present approach to successfully handle complicated inverse dy-
namics problems that have not been treated before. Appendices A and B provide some in-
sight into the property of differential flatness and further support the fact that the present
servo-constraint problems are governed by DAEs of index five. Eventually, conclusions are
drawn in Sect. 7.

2 Inverse dynamics of underactuated mechanical systems

To simulate the inverse dynamics of underactuated mechanical systems, we introduce a gen-
eral formulation of mechanical systems subjected to both holonomic and servo constraints.
In particular, the present description takes into account the specific structure of the equations
of motion resulting from the uniform modeling framework for a large class of cranes devel-
oped in [15]. Accordingly, the servo-constraint problems under consideration are governed
by the following DAEs:

My 018 _[fie. 0] [BI(®) .
[0 Mz] [:‘é]_[flz(x,x)]’L[ 0 ]"—G (p, X)L, (1a)
0=2g(p,x), (Ib)
= (10)

The first row block in (la) corresponds to the robot (input) subsystem with coordinates
p € R"™%,  whereas the second row block in (1a) corresponds to the load (output) subsystem
with coordinates x € R“. The n redundant coordinates

q= [ﬁ] @)

are subject to the holonomic constraints (1b), with associated constraint functions g € R™.
The total number of holonomic constraints is denoted by m. The Jacobian of the holonomic
constraints assumes the form

G(p.x)=[Gi(p.x) Gi(p,x)|=[3,8(p.x) d:g8(p,x)] eR™". 3)
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4 Y. Yang et al.

The Lagrange multipliers associated to the m holonomic constraints are contained in
A € R™. Due to the presence of holonomic constraints, the configuration space of the con-
strained mechanical system is defined by

0={qeR"|g(p.x)=0}. 4)

The constraints are assumed to be independent. Consequently, the constraint Jacobian G has
full row rank and the discrete mechanical system under consideration has n — m degrees of
freedom.

The servo constraints (1c) specify the desired trajectory of the load via the prescribed
function y: I — R?, where I = [#, t/] is the time interval of interest. In the present work
we focus on underactuated mechanical systems in which the number of control inputs is
smaller than the number of degrees of freedom, that is, a <n — m.

The control inputs u € R” characterize the control forces which act on the robot subsys-
tem and regulate the motion of the robot subsystem to force the load subsystem to execute
the prescribed motion. In this connection the matrix B, € R***~% denotes the input trans-
formation matrix. Besides the constraint and control forces, additional forces acting on the
system are contained in the conjugate force vectors f, € R"™ and f, € R?. Similarly, the
inertia matrix is split into the submatrices M| € R®~®*®=4 and M, € R**“, As mentioned
above, the inertia matrix resulting from the uniform modeling approach due to [15] is typ-
ically singular. Correspondingly, matrix M is assumed to be singular, while matrix M, is
assumed to be nonsingular.

Due to the property of underactuation and the use of servo constraints, the (differentia-
tion) index of DAEs (1a)—(1c) exceeds three. The DAEs of (differentially flat) crane systems
typically have an index of five. Consequently, prior to the application of a numerical inte-
grator, the index of the DAEs should be lowered. To this end, we apply index reduction by
minimal extension of the previous work [2, 8] to the DAEs (1a)—(1c). Note that in the for-
mulation (1a)—(1c) the number of holonomic constraints, m, is just restricted by m < n. This
facilitates the arbitrary selection of redundant coordinates best suited for the description and
numerical simulation of the specific inverse dynamics problems.

3 Index reduction by minimal extension
3.1 Formulation in terms of redundant coordinates

It has been shown in [2, 8] that in the context of underactuated crane systems the index
of the DAEs (1a)—(1c) can be reduced by applying index reduction by minimal extension.
To this end, we first enlarge the system of equations (1a)-(1c) by appending the first and
second time derivatives of the servo constraints to obtain the reduced derivative array [16].
To maintain a square system and reduce the index, we next introduce new (dummy) variables
(derivatives) ¥ and X, which will replace each occurrence of the corresponding derivatives
of control outputs x in the minimally extended system. That is, X := % and X := ¥. After
that, the index of DAE:s is reduced and the minimally extended system of equations reads

M, 0 1lp|_|fip. D) BT (p) G (p.x)
[" Mz] M_[fz(x,f)]*[ [ ]"‘[Gi(p,x)}*’ (52)
0=g(p.x), (5b)
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Minimal dinat
Index-5 DAEs (1a)—(1c) inimal coordinates

Redundant coordinates

Minimal extension

Minimal dinat
Index-3 DAEs (5a)—(5¢) inimal coordinates

Index-5 DAEs (10a)—(10b)
Minimal coordinates

Minimal extension

Redundant coordinates

Index-3 DAEs (20a)—(20d)
Minimal coordinates

Fig.1 Commutative diagram for the index reduction (vertical lines) and the introduction of minimal coordi-
nates (horizontal lines)

x=y, (5¢)
x=y, (5d)
F=7. (5¢)

Originally, in [2], we dealt with the special case where m < a and M, is nonsingular.
In the subsequent work [8] we extended the method to the case where the number of holo-
nomic constraints m exceeds the number of servo constraints (control outputs) a, that is,
a <m < n. We also proved that under certain assumptions the minimally extended system
(5a)—(5e) is of index 3. To solve the index-reduced DAEs, we apply the backward Euler
scheme (see Sect. 4).

3.2 Formulation in terms of minimal coordinates

It has been shown in [2] that the commutative diagram in Fig. 1 applies. Accordingly, in-
stead of applying index reduction by minimal extension to the formulation in terms of re-
dundant coordinates, we may first introduce minimal coordinates and then apply the index
reduction procedure. That is, we may first perform a size reduction by introducing minimal
coordinates. In the wake of the size reduction the holonomic constraints (5b) are eliminated
and the number of coordinates is reduced from n to f =n — m. Assume that a mapping
¢ : R/ — R” can be found such that

g=9) o B}{g&ﬂ, ®)

where u € R/ contains the minimal coordinates. Note that the mapping (6) has to satisfy
the holonomic constraints (5b) identically for all & € R/. Consequently,

g(ew) =0. ™
The first and second time derivative of mapping (6) can be calculated by
g=Pj ®
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6 Y. Yang et al.

and
§=Pji+Pp, )

with the null space matrix P = Do(u).
Premultiplying Eq. (1a) by PT and taking into account Egs. (8) and (9) yield the size-
reduced DAEs

P'"MPji+P"MPj=P"f+ P Bu, (10a)
o (W)=y (10b)

in terms of minimal coordinates, where

M= Ag‘ Agz], (11a)
_[fip. b
f= _fL(ch)] (116)
rpT
B = 310(1’)] (11¢)

and the condition P G” = 0 has been applied.

Next, we apply index reduction by minimal extension to the DAEs (10a)—(10b) in terms
of minimal coordinates. In order to find appropriate dummy variables, we divide the minimal
coordinates into two groups pt; € R/~% and p, € R* such that

Dy, (1, k) € R?*? s nonsingular. (12)
The mapping (6) can be rewritten as

q=0(, 1) (13)

after the coordinate partition has been performed. Moreover, the partial derivative of the
mapping (13) with respect to the first or second argument is given by D, (i, g,) with
a =1 or o« = 2. Now we choose the dummy variables

ﬁz = iy, (14a)
ﬁz = I.iz, (14b)

which will replace the corresponding derivatives of u, in the extended system of equations.
Differentiating the servo constraints (10b) twice with respect to time yields the constraint
condition on the velocity level

D@, (11, )ty + Dag (1o, o)y = P (15)
and the condition on the acceleration level
D19, (1, k)i + Doy (s )y + (R, B, 1y, o) = 7, (16)
with

N d ) d -
Wy, Koy g, y) = E[Dw)x(ul, m) iy + E[thpx(ul, ) i, (17)
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Numerical integration for the inverse dynamics of a large class of cranes 7

For convenience, we rewrite the size-reduced DAEs (10a)—(10b) as

Mwii = F, i)+ B (o, (18a)
0. (m) =y, (18b)
where
M(u)=P"MP, (192)
fuwiy=P"f— P MPj, (19b)
B (w=P"B". (19¢)

The minimally extended formulation can then be written as

_ . _ o oy
Mp,, 1y) [I’éj =fy o iy, 1) + B (1, 1o)u, (202)
D1, (1, )ity =P — Do, (s o) By — WLy, Ros fy, Ir), (20b)
Do, (1, k)i =y — D2, (14, W), (20c)

O (i k) =Y. (20d)

The index-reduced system (20a)—(20d) constitutes a set of index-3 DAEs with f + 3a equa-
tions for the determination of the differential variables u; € R/~ and the algebraic variables

u, Lo, /”\“2’ 17’2 e R

4 Numerical discretization

In this section we discretize the minimally extended index-3 DAEs. In this connection, we
consider both the minimally extended system in terms of redundant coordinates and in terms
of minimal coordinates.

4.1 Index-3 DAEs in terms of redundant coordinates

The minimally extended system of equations (5a)—(5e) assumes the form of semiexplicit
DAE:s. Thus we can expect that the backward Euler discretization of (5a)—(5e) works well
(see Ascher and Petzold [3, Sect. 10.1.1]). The DAEs (5a)—(5¢) can be recast in the form

M, p=f (p,p)+ Bl (pu—Gi(p,y)A, (21a)
0=M,5 — f,(y,9)+ G (p, YA, (21b)
0=g(p,y). (21c)

The DAEs (21a)—(21c) provide n — a differential equations (21a) along with a + m algebraic
equations (21b) and (21c) for the determination of p € R"™“, u € R%, and A € R™. The
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8 Y. Yang et al.

application of the backward Euler scheme yields

Puy1 — Py = Al Uy, (22a)

(vn+l - vn)

M,
At

= f1(Ppsrs V) + B1T(Pn+|)un+1 - G1T(Pn+1 s }’(fn+1)))»n+1a (22b)

0= M2j’.(tn+1) - fz(}’(trH»l)s }.’(t"+l)) + Gg(er—l’ Y(tn+l))xn+la (220)
0=g(pos1> 7 tar)), (22d)

where v = ¢. In a typical time step of size At =1, —t,, approximations (), to (®)(f,11)
need to be found if the corresponding quantities (e),, are given as the results of the previous

step. For the initial time step, the consistent initial values p, and v, are required and they
have to satisfy g(p,, ¥ (%)) = 0 along with

3p8(Po> ¥ (10)) vo + 0:8(Po. ¥ (o)) ¥ (9) = 0. (23)

The scheme (22a)—(22d) provides 2n + m — a algebraic equations for the determination of
Ppi1> Vap1t €ER" i €RY and A, € R™.

4.2 Index-3 DAEs in terms of minimal coordinates

Similarly, we can apply the backward Euler scheme to the minimally extended index-3
DAE:s (20a)—(20d) in terms of minimal coordinates. Accordingly, we have

Ry, — R, =Atvy,,,, (24a)
n+liv1"l

V1
~ —ntl n ~ ~ ~T
M(IL,1+|) |: LA :| = f(”’n+] ’ vl,,+] ’ lLZ,lH) +B (ﬂn+]) Un+1, (24b)

2n+]

(v1n+] - Vl,,)

D@ (i) = = P (tar) = D20 (1) H,
= W(lyg1s V1,5 B, ) (24c¢)

D@ (Hy1) V1,0 =V (tas1) = D2gp (g ) W, (24d)

O (yyy) =Y (Ear1), (24e)

where p,, represents p  and , ., and v = ft. The scheme (24a)—(24e) provides
2(f + a) algebraic equations for the determinationof w; vy, € R/~% and o\ o
,7'2,[“ yUpnt1 € Re.

n+1 n+1’

5 Planar US Navy crane

We start with the description of a planar US Navy crane by applying the uniform modeling
framework for cranes developed in [15]. We consider two specific versions of the planar US
Navy crane. The property of differential flatness facilitates the calculation of an analytical
reference solution (see Appendices A and B).
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Numerical integration for the inverse dynamics of a large class of cranes 9

A Z

Fig. 2 Planar US Navy crane with neglected pulley mass (1 = 0) in terms of n = 7 redundant coordinates

5.1 Planar US Navy crane with neglected pulley mass

The mechanical model of the planar US Navy crane is shown in Fig. 2. Two motor winches
(radius r,, moment of inertia J,, actuating torque u,, « = 1, 2) are located on a rigid crane
boom at points A and P, respectively. The crane boom is fixed in the (X, Z)-plane and
makes angle o with the vertical axis. The load at point C (mass m;, coordinates x, z) is linked
to the motor drives through the main pulley (mass mg, coordinates xg, zo). In particular, the
first rope (length L) connects the first motor winch with the main pulley, while the second
rope (length L,) goes through the main pulley and thus connects the load with the second
motor winch, see also Fig. 3.

For modeling purposes the total length L, of the rope winching the load is further decom-
posed into length Ly and L, — L. This decomposition makes possible to take into account
the whole topology of the crane by means of holonomic constraints. This procedure is a
typical feature of the uniform modeling framework for cranes proposed in [15]. It will be
shown in the sequel that using L as additional variable eventually renders the inertia matrix
singular.

It is worth mentioning that all ropes are assumed to be massless and can not be stretched.
The ropes can, of course, only carry tensile forces and no compressive ones. Furthermore,
in the following description of the crane topology, the radius of the winches is assumed to
be small in comparison to the other dimensions of the crane, such as distance / between the
two motor winches fixed at the boom (see Fig. 2).
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10 Y. Yang et al.

Fig. 3 Schematic drawing of the Lo
main pulley at point B

L1

In the present example the mass of the main pulley is neglected, i.e., my = 0. In the next
example (Sect. 5.2) we deal with the case m( > 0, which requires three motor winches.

5.1.1 Formulation in terms of redundant coordinates

According to the general description of cranes introduced in [15], we use n = 7 redundant
coordinates subjected to m = 3 holonomic constraints. The set of redundant coordinates (see
Fig. 2) is given by
T
p= [Ll L, Ly xo Zo] (25)
and
T
x=[x z] . (26)

When the motor winches are rotating with angular velocity w,, their kinetic energy is given
by Ty, = %Jawi (o =1, 2). Using the kinematic relation L, = w,7, the total kinetic energy
of the crane system under consideration can be written in the form

1., 1Jh., 1 o
T=-SLi+-=L+= . 27
2r} 1+2r22 2+2ml()C +2) @7
The last equation can be rewritten as
1. .1 ;
T:Ep-M|p+5x-M2x, (28)

where the inertia matrices corresponding to the crane coordinates and the load coordinates
are given by

L0 000
i
)
M_orzzooo [0 .
I=10 0 0 O O} z—oml- 29
0 0 000
0 0 000
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Numerical integration for the inverse dynamics of a large class of cranes 11

Note that the singularity of inertia matrix M is caused by (i) using the “noninertial” vari-
able Ly, and (ii) the neglect of the pulley mass m.

As has been mentioned above, the topology of the crane is described by means of holo-
nomic constraints. With regard to Fig. 2, the length L, can be connected to the coordinates
of the main pulley, (xo, zo), through the constraint

x5+ 25 = L3, (30)
Similarly, concerning length L, we get the constraint
(xo +Isina)® + (zo + 1 cosa)* = L7. (31)

The distance between the main pulley m and the load m; is given by L, — Ly, giving rise
to the additional constraint

(x — x0)* + (z — 20)* = (L2 — Lo)*. (32)

Accordingly, we have a total of m = 3 holonomic constraints g(p, x) = 0, with associated
constraint function

1((xo +Isina)? + (z0 + [ cosa)* — L?)
g(p.x)= 55+ 25— L) : (33)
2((x —x0)? 4 (z = 20)* — (L2 — Lo)?)
With regard to (26), the coordinates of load m;, (x,z), are directly contained in the set

of redundant coordinates. Accordingly, the trajectory of the load can be easily prescribed
through servo constraints. Further quantities needed in Egs. (1a)—(1c) and (3) are given by

Lo 0
0 i 0 0 u
Bi=|o 0|. fi=|0]. fz—[_m ] uz[l], (34)
0 0 0 18
0 0 0
and
—L, 0 0
0 0 Lo— L,
Gl = 0 —Ly La—Lo |, 65:[8 8 x_xo]. (35)
Xo+Ilsina  xg Xo— X LT
zo +1lcosa 20 20— 2

To summarize, the crane system at hand has f =n —m = 4 degrees of freedom and a =2
control inputs corresponding to the two winch torques ©; and u5.

5.1.2 Formulation in terms of minimal coordinates

We next illustrate the use of minimal coordinates by proceeding along the lines of Sect. 3.2.
To this end, we introduce f =4 minimal coordinates (see Fig. 4)

=B v 0 L], (36)
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12 Y. Yang et al.

~(t)

Fig. 4 Planar US Navy crane with neglected pulley mass (g = 0) in terms of n = 4 minimal coordinates

where L = L, — Ly. By applying the law of sines to the triangle PAB in Fig. 4, we obtain
for the coordinate mappings in Eq. (6):

r Isin 8 T
siny
Isin(y —pB) +L

siny

Isi —
9,1 = nr=h) 37)
Isin(y — .
— S sin(e — B)
— =P cos(a — B)

siny

and

— =B Gin(w — B) + L sin9:| a8)

_ _siny
0. (n) [_M cos(a — ) — LcosO

siny

Then we calculate the Jacobian matrix (null space matrix) P along with its first time deriva-
tive P, and insert these quantities into the DAEs (10a)—(10b) to perform the size reduction.
To apply index reduction by minimal extension, we divide the minimal coordinates into two
groups:

m=[p v]" and wy=[0 L] (39)

@ Springer



Numerical integration for the inverse dynamics of a large class of cranes 13

such that the Jacobian

Lcosf  siné ] (40)

Do, (1, py) = |:L sinf —cosf

is guaranteed to be nonsingular. Accordingly, the condition in Eq. (12) is satisfied. Even-
tually, we obtain the minimally extended index-3 DAEs (20a)—(20d) in terms of minimal
coordinates for the planar US Navy crane with neglected pulley mass.

5.1.3 Inverse dynamics simulation

To perform the numerical simulation, we make use of the following parameters: m; =
100kg, J1 =J,=0.1 kgmz, ri=r,=01m,a= %, and / = 10 m. To prescribe a rest-to-
rest maneuver of the load, the following function is used in the servo constraints:

YO =vo+@;—roe() 41)
with the initial position
yo— [_ o m} atip=0 “2)
and the final position
Y= [__134121] atry =4s. (43)
In (41), c¢(7) is a 5-6-7-8-9 interpolating polynomial of the following form:
c(r) =707° — 31578 + 54077 — 4207° + 1267°, (44)
where
= . (45)

The initial configuration of the crane system is defined by

po=[5/3m 10m 5m 0 —Sm]T (46)

at 1o = 0, while the initial coordinates of the load are given by
xo=[0 —10m]". (47)

As can be observed from Fig. 5, the numerical results for the redundant coordinates are
very close to those of the analytical reference solution (see Appendix A) for a time step size
At = 0.1 s. Figure 6 shows that the numerical solution for the control inputs converges to
the reference solution when the time step size is reduced. In addition to that, Fig. 7 (left)
depicts the relative error in the control inputs, calculated by

— Jtoum = ter]

0w =
|uref|

(43)

at time 1 = 1.5 s. In the last equation, the value of the numerical solution is denoted by uym,
whereas the reference value is given by u.. Figure 7 (right) shows the numerical solution
for the Lagrange multipliers related to the three holonomic constraints. The tension forces
N and N, in the two ropes with length L, and L, are depicted in Fig. 8.
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14 Y. Yang et al.
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Fig.5 Planar US Navy crane with neglected pulley mass: Comparison between the numerical results (NUM)
obtained with Ar = 0.1 s and the analytical reference solution (REF)
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Fig. 6 Planar US Navy crane with neglected pulley mass: Comparison between the numerical results (NUM)
obtained with Ar = 0.1 s (left) and At = 0.01 s (right) and the analytical reference solution (REF)
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Fig. 7 Planar US Navy crane with neglected pulley mass: Relative error in control inputs (left). Numerical
results of Lagrange multipliers obtained with At = 0.01 s (right)

The effect of increasing the duration of the prescribed motion of the load is considered
next. To this end, the final time is changed from 7y =4 s to the new value ¢, = 15 s. The
corresponding results are shown in Fig. 9.
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Fig. 8 Planar US Navy crane with neglected pulley mass: Tension forces in the two ropes obtained with
At =0.01 s (left). The related forces acting at point B at time ¢ = 2.5 s are illustrated on the right-hand side
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Fig. 9 Planar US Navy crane with neglected pulley mass: Comparison between the numerical results (NUM)
obtained with A7 = 0.1 s and the analytical reference solution (REF) for the extended final time 7y =15 s

Eventually, the simulated motion of the crane system is illustrated in Fig. 10 with some
snapshots at consecutive points in time.

5.2 Planar US Navy crane with nonzero pulley mass

We next deal with a more elaborate version of the planar US Navy crane, which comprises
three motor winches (radius r,, moment of inertia J,, actuating torque u,, o« = 1, 2, 3) with
associated ropes of length L, L, and L; (Fig. 11). The three motor winches are again
mounted on a rigid crane boom and are located at points A, S and P, respectively. The
crane boom is fixed in the (X, Z)-plane and makes angle « with the vertical axis. The load
at point C (mass m;, coordinates x, z) is linked to the motor drives through the main pulley
(mass mq > 0, coordinates xg, zo). The first rope (length L) and the second rope (length L)
are both attached to the main pulley, see also Fig. 12. The third rope (length L3) goes through
the main pulley and thus connects the load with the third motor winch.

Again, for modeling purposes the total length L3 of the rope winching the load is further
decomposed into length L, and L3 — L. This decomposition makes possible to take into
account the whole topology of the crane by means of holonomic constraints. As mentioned
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16 Y. Yang et al.

Fig. 10 Planar US Navy crane
with neglected pulley mass:
Snapshots of the crane system at
specific points in time for

(i) (top) a fast transition of the
load from the initial to the final
placement (final time ¢ = 45),
and (ii) (bottom) a slow transition
with final time 7y =155

before, this procedure is a typical feature of the uniform modeling framework for cranes
proposed in [15]. Due to the introduction of the additional variable L, the inertia matrix
becomes singular.

5.2.1 Formulation in terms of redundant coordinates

The description of the crane system in terms of redundant coordinates relies on n = 8 coor-
dinates, which are subject to m = 4 holonomic constraints. In particular (cf. Fig. 11),

p=[Li L, Ly Lo x] (49)

@ Springer



Numerical integration for the inverse dynamics of a large class of cranes 17

¥ o<

Fig. 11 Planar US Navy crane with nonzero pulley mass (mmq > 0) in terms of n = 8 redundant coordinates

Ls

Lo

Ly

Fig. 12 Schematic drawing of the main pulley at point B

and
x=[x z z] . (50)

In addition to the coordinates x, z of the load, the coordinate z( of the main pulley is selected
as third (flat) output. This corresponds to the three control inputs of the system (i.e., a = 3).
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18 Y. Yang et al.

It is worth mentioning that there exist alternative choices for the third output such as the
rope length L3 — L or the coordinate x, of the main pulley.

Similar to the previous example, the total kinetic energy of the crane system under con-
sideration can be written in the form

V. 1.y U, 10 0 1,
Tzing+52L2+EgL3+§mg(x0+zo)+§mz(x +2%), (51)
leading to
1, R .
T==-p-Mp+ —x-Mjyx, (52)
2 2
where
L0 0 0 0
L
0 r’—z 0 0 0 m 0 0
Mi=|o 0 %2 0 0| M=|0 m 0], (53)
ry
0 0 0 0 0 0 0 m
0 0 0 0 m

Note that the singularity of inertia matrix M is caused by the “noninertial” variable L.

The topology of the crane is accounted for by holonomic constraints. With regard to
Fig. 11, the rope length L, can be connected to the coordinates of the main pulley, (x¢, zo),
through the constraint

x4z =13 (54)

Similar geometric relationships can be easily established containing the remaining three
rope-length variables L, L3 and L. This procedure gives rise to a total of m = 4 holonomic
constraints g(p, x) = 0 specified by

%((xo + (I +s)sinw)? + (zo + (L + 5) cosa)? — Lf)

%((xo + s sina)? + (zo + 5 cosa)? — Lg)

g(p,x)= (55)
305 +25 = L3)
3((r = x0)* + (2 = 20)* = (L3 — Lo)*)
Further quantities needed in Egs. (1a)—(1c) and (3) are given by
ﬁ 0 0 0
0 % 0 0 0 ui
B{: 0 0 % s fl_ 0 s f2: —nmg |, u=|uyli, (56)
0 0 0 0 —mog U3
0 0 0 0
and
—L, 0 0 0
0 0 —-L, 0
Gl = 0 0 0 Lo—Ls|, (57)
0 _LO 0 L'; — Lo
xo+ (I +s)sine  xp+ssina  xg Xo— X
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A N

Fig. 13 Planar US Navy crane with nonzero pulley mass (mmq > 0) in terms of n = 4 minimal coordinates

0 0 0 x—xg
G, = 0 0 0 z—2z0|. (58)
Z20+ (+s)cosa zo+scosau zp Z0—2

5.2.2 Formulation in terms of minimal coordinates

Despite the more elaborate geometry of the crane under consideration, it is feasible to find
suitable minimal coordinates. Based on the fact that the present system has f =n —m =4
degrees of freedom, we introduce the following set of minimal coordinates (see Fig. 13)

p=[g v 6 L] (59)

with L = L3 — L. Note that we could also use angle u instead of 8. By applying the law of
sines to the triangle PAB (Fig. 13), we obtain the coordinate mappings in Eq. (6) as follows:

r Isin 8 .
sin(y +60+a—p)
sin(y +6+a)

sin(y+0+a—p) +L

‘pp(ﬂ) = ,/xg +z(2) (60)
Isin(y +6+a)

sin(y +0+a—p)

X0
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20 Y. Yang et al.

and
X0+ Lsin6
o, (n)=|[z0—Lcosb |, (61)
20
where

. Isin(y +6 +a) .
Xo=—ssine — — sin(a — B),
sin(y +6 + o — f)

Isin(y +6 +«)
70 = —SCOSQ — — cos(ax — B).
sin(y +0 +a — )

(62)

The Jacobian matrix (null space matrix) P along with its first time derivative P needed in
(10b) can be obtained by means of symbolic manipulations. To apply index reduction by
minimal extension, we divide the minimal coordinates into two groups

=[] and py=[y 6 L] (63)

such that the Jacobian D¢, (i, i,) is guaranteed to be nonsingular. Thus the condition in
Eq. (12) is satisfied. Now it is a straightforward procedure to obtain the minimally extended
index-3 DAEs (20a)—(20d) in terms of minimal coordinates.

5.2.3 Inverse dynamics simulation

In the numerical example we make use of the following parameters: m; = 100 kg, mo =
150kg, i =L =L=01kgm?, ri=rn=rn=01ma= %,s =5m,and/ = 10 m. The
trajectory of the output is again prescribed by using (41) along with (44) from the previous

example. The resulting rest-to-rest maneuver is based on the initial coordinates of the output

_—2\/5 o
yo=|-17.5m | atto=0 (64)
| —12.5m
and the corresponding final coordinates
[ —2m
Y= —16m atty =4s. (65)
| —15m

The initial configuration of the crane system at o = 0 is given by

po=[10m 15m 1323m 10m —3+3m] (66)

along with
xo=[-3/3m —175m —125m] . (67)

It can be observed from Fig. 14 that the numerical results for the redundant coordinates
closely match the analytical reference solution (see Appendix B) for a time step size At =
0.1 s. Figure 15 indicates that the numerical solution for the control inputs converges to
the reference solution when the time step size is reduced. The numerical solution of the
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Fig. 14 Planar US Navy crane with nonzero pulley mass: Comparison between the numerical results (NUM)
obtained with Ar = 0.1 s and the analytical reference solution (REF)
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Fig. 15 Planar US Navy crane with nonzero pulley mass: Comparison between the numerical results (NUM)
obtained with Ar = 0.1 s (left) and At = 0.01 s (right) and the analytical reference solution (REF)

control inputs typically exhibits a slower convergence towards the reference solution than
the coordinates. This can be observed by comparing Figs. 14 and 15. This phenomenon can
be explained by the flatness-based solution. While the coordinates depend on the flat outputs
and derivatives thereof up to the second order, the control inputs depend on the flat outputs
and derivatives thereof up to the fourth order (see Appendix B).

Figure 16 (left) shows a log—log plot of the relative error of the control inputs at time
t = 1.5 s. Furthermore, Fig. 16 depicts the numerical solution for the Lagrange multipliers.

The tension forces in the three ropes are plotted versus time in Fig. 17. The effect of
increasing the duration of the rest-to-rest maneuver by changing the final time from 7, =4 s
to the new value f; = 15 s can be observed from Fig. 18. To illustrate the motion of the
crane system, Fig. 19 contains some snapshots of the crane at consecutive points in time.

6 Three-dimensional US Navy crane

In this section we deal with the three-dimensional extension of the planar US Navy crane
considered above. We again consider two alternative versions of the US Navy crane: In the
first case, the mass of the main pulley is neglected, while in the second case the mass of the
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Fig. 16 Planar US Navy crane with nonzero pulley mass: Relative error in the control inputs (left). Numerical
results for the Lagrange multipliers obtained with Az =0.01 s (right)
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Fig. 17 Planar US Navy crane with nonzero pulley mass: Tension forces in the three ropes obtained with
At =0.01 s (left). Corresponding forces acting on the main pulley (point B) at time t = 2.5 s (right)
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Fig. 18 Planar US Navy crane with nonzero pulley mass: Comparison between the numerical results (NUM)
obtained with At = 0.1 s and the analytical reference solution (REF) for the extended final time tf = 15 s
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Fig. 19 Planar US Navy crane
with nonzero pulley mass:
Snapshots of the crane system at
specific points in time for the
short duration (1 y =4 s) (top)
and the extended duration

(tf =15 s) (bottom) of the
rest-to-rest maneuver. In addition
to that, the trajectory of the main
pulley and the trajectory of the
load are shown

t=0t=1
haaaaa¥

1:02
———

main pulley is taken into account. In the three-dimensional case, the use of minimal coor-
dinates turns out to be quite cumbersome. Accordingly, we focus on redundant coordinates
following the uniform modeling approach proposed in [15].

6.1 Three-dimensional US Navy crane with neglected pulley mass
We first consider the three-dimensional extension of the US Navy crane treated in Sect. 5.1.

It can be observed from Fig. 20 that the topology of the 3D crane essentially remains un-
changed. In the 3D case, the coordinates of the main pulley (mass m) and the load (mass m;)
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Fig. 20 Three-dimensional US
Navy crane with neglected pulley
mass (mg =0) in terms of n =11
redundant coordinates

IT>

are given by (x, yo, z0) and (x, y, z), respectively. We make use of the enlarged setof n = 11
redundant coordinates given by

p=[Li Ly Ly xo Yo 20 X )’2]T (68)
and
x=[x y . (69)

The whole crane can now rotate about the vertical Z-axis. According to the modeling ap-
proach due to [15], the rotational motion of the crane is accounted for by using the coordi-
nates (X7, y») associated with the position of the motor winch hoisting the load (see point
P in Fig. 20). In particular the kinetic energy associated with the rotational motion of the
whole crane is given by T, = %Jbgbz, where ¢ denotes the angular velocity about the Z-axis,
see Fig. 21.

Furthermore, J;, is the moment of inertia of the crane (without m and m;) relative to the
Z-axis. Instead of using angle ¢ as variable, coordinates (x,, y,) associated with point P are
used. Taking into account the kinematic relationships X, = —¢@y, and y, = ¢x, (Fig. 21),
gives rise to the relation

(52)* + (72 = ¢*((02)* + (1)?). (70)
Since coordinates x; and y, are not independent, we impose the holonomic constraint
() + () =r?, (71)

where r denotes the constant perpendicular distance between point P and the Z-axis. Sub-
stituting from the last equation into (70) leads to the expression ¢? = (x5 + y3)/r*. Similar
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Fig. 21 View onto the
(X, Y)-plane Y A

>
X
to (27), the total kinetic energy of the 3D crane system at hand can be written as
1 L2 .2 1Ji., 1Jh., 1 L2 .2
T:EM(xz—f—yz)—f—EELI-I—EELz-f—EmJ(X +2%), (72)
where M = )J—’z’ has been introduced. Kinetic energy (72) can be rewritten in the form
L. A .
T==p-Mp+ =-x -Msyx, (73)
2 2
where the inertia matrices are given by
_ﬂ —
r2
1
h
’42
2
0 m
M1 o 0 s MZ = my . (74)
0 m
0
M
L M ]

In complete analogy to the 2D version of the crane dealt with in Sect. 5.1, the topology of the
crane is described by means of three additional holonomic constraints. Since the crane boom
is assumed to be rigid, the placement of the first motor winch (point A) can be expressed in
terms of the coordinates of point P, by introducing the parameter 8; = % In particular, we
have (Fig. 20) EZ = ﬂ.ﬁ, or x; = B1x2, y1 = B1y2 and z; = B;22. Now, length L, can be
connected to the coordinates of the main pulley, (xo, yo, Zo) via the constraint

(X0 — x2) + (o — y2)* + (20 — 22)* = L§. (75)
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Similarly, for length L; we get

(X0 — B1x2)* + (yo — B1y2)* + (20 — Brz2)* = L7. (76)

The distance between the main pulley m and the load m; is given by L, — Ly, giving rise
to the constraint

(x —x0)* + (y — y0)* + (z — 20)* = (L2 — Lo)*.

Accordingly, the last three constraints together with constraint (71) lead to a total of m =4
holonomic constraints g(p, x) = 0, with associated constraint function

(77)

303 +33 = r?)
%((xo — Bix2)* + (Yo — B1y2)* + (zo — Bi1z2)> — LY)
3 (X0 = x2)* + (yo — y2)* + (20 — 22)* — L)
Hx = x0)* + (v = 0)* + (2 — 200> = (L2 — Lo)?)

g(p,x)= (78)

It is worth noting that, since the crane can only rotate about the Z-axis, coordinate z, does
not change, i.e., z, = (k + 1) cosa (Fig. 20).

The actuating torque u3 acting on the crane boom about the Z-axis can be incorporated
into the present formulation by envisioning forces (F\, F)) conjugated to the redundant
coordinates (x,, y») (Fig. 21). Choosing F, = —f—%u3 and F) = f—%m, the resulting torque
about the Z-axis is given by

2 2
Y2 X2 3 +x
_ny2+Fyx2=(r2y2+r2x2)'43= e

(79

uz =us,

where constraint (71) has been used. Now, the description of the crane system can be com-
pleted by providing further quantities needed in Egs. (1a)—(1c) and (3):

'% 0 07 0]
0 % 0 0
0 0 0 0 0 2
T _ _ _ _
B, = o o o |’ fi= ol fa= _n(ig ; u= Zz . (80)
0 0 0 0 ! 3
0 O —f—% 0
LO 0 3 1 0]
and
0 —L, 0 0 ]
0 0 0 Lo— L,
8 X —Oﬂx x_—L(;c sz_—fco 00 0 x—x
G’ — 0o — Bix2 0—X2 Xp GI=10 0 0 y—y
0 Yo — Biy2 Yo—Y2 Yo—Y B
0 0 0 z—2
0 20 — Biz2 20—22 20—2
X2 —Pilxo— Bix2) x2—xo 0
[ y2 —Bi(yo—Bi1y2) y2— o 0
(81
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In summary, the three-dimensional US Navy crane with neglected pulley mass has f =7
degrees of freedom and a = 3 control inputs.

Remark The present description of the rotational motion of the crane is closely related to
the rotationless formulation of multibody systems including the prominent description in
terms of natural coordinates. Proceeding along the lines of [6, Sect. 3.3], the actuating forces
conjugated to the coordinates associated with point P, collected in vector r, = [x2, y2, 017,
can be calculated via

1
F,,:r—zmxr,,,

where the actuating torque vector is given by m = [0, 0, u3]” (or m = usez). The result of
the above formula is ¥, = [F,, Fy, 0], where the components F, and F, coincide with
those used in (79). The above formula can be derived by considering the power of the torque
u3 acting on the crane boom about the Z-axis, which is given by P, =m -w =F, - v,
where w = ¢ez and v, =F, = w x r, (cf. Fig. 21). The last kinematic relationship gives
risstow=r, xv,/r’.

6.1.1 Inverse dynamics simulation

In the numerical simulation we make use of the following parameters: m; = 100 kg,
M=64%kg, J; =J,=0.1 kgmz, ri=r,=01ma= %, and / = k =5 m. The required
trajectory of the load is prescribed by

y@& =yo+ ¥, —voc@) (82)

with the initial position

543 m
Yo= 0 atfy=0 (83)
—10m

and the final position

2m
yf = S5m at l_f =20s. (84)
—5m

The reference function c(¢) is here composed of three phases,
ci(t) forO0<t<5s,

c(t)=qcn(t) for5s<t<15s, (85)
c(t) for15s<t<20s,

with

o 1 5¢8 1007 1445 78 (86a)
all) = st~ =<t a

! T—T7 2‘[07 ‘L'()6 21’05 2‘[04

1
en(t) = (z - E), (86)
T—T1 2
50—0)% 10t —¢t)) 14 -1 T —1)
=1 — — . 86

cm(®) + T—1 ( 21,7 + 700 2140 + 27* (86¢)
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Fig. 22 Three-dimensional US Navy crane with neglected pulley mass: Numerical results obtained with
At=0.01s

The initial configuration of the crane system is specified by

po=[3v3m 15m 25m 5/3m 0 25m 5/3m 0] (87)
at o = 0, while the initial output coordinates are given by
xo=[5/3m 0 —10m] . (88)

The numerical results for the time step size At = 0.01 s are displayed in Fig. 22, in which the
coordinates, control inputs, Lagrange multipliers, and tension forces in ropes are presented.
The simulated motion of the crane generated by using the redundant coordinates formulation
is presented in Fig. 23 with some snapshots at consecutive points in time.
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Fig. 23 Three-dimensional US 27
Navy crane with neglected pulley
mass: Snapshots of the load and
the pulley at specific points in
time. In addition, the trajectory of
the pulley and the prescribed
trajectory of the load are shown

6.2 Three-dimensional US Navy crane with nonzero pulley mass

Eventually, we deal with the more general case of the three-dimensional US Navy crane in
which the mass of the main pulley is nonzero, i.e., m > 0 (Fig. 24). This case can be viewed
as direct extension of the planar version of the crane (Sect. 5.2) to the three-dimensional
regime. An extended set of n = 12 redundant coordinates is used to describe the 3D version
of the crane. Specifically,

p=[Li Ly Ly Lo xo Yo X3 Y3]T (39)
and
x=[x y z z]. (90)

Similar to the planar version, the coordinate z, of the main pulley is taken to be the fourth
(flat) output. In analogy to the previous example, the coordinates xs, y3 associated with
the third motor winch (point P) hoisting the load are employed as additional variables to
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(z2, Y2, 22)

<

A

(x3, y3, 23)

Fig. 24 Three-dimensional US Navy crane with nonzero pulley mass (m(q > 0) in terms of n = 12 redundant
coordinates

account for the rotational motion of the crane about the Z-axis. To locate the position of the
first motor winch (point A) on the crane boom, the parameter 8, = % is introduced, so that
x1 = Bi1x3, y1 = f1y3 and z; = B;z3. Similarly, concerning the second motor winch (point §)
on the crane boom, we have x, = B,x3, y» = B,y3 and z, = B,z3, with B, = % Proceeding
along the lines of the previous sections, it is now a straightforward procedure to formulate

the total kinetic energy along with the constraints. In particular, we have

1 1
T=§I'7'M1i7+§5€'szf, 9n

where the inertia matrices are given by

L0 0 0 0 0 0 0

"

0 2 00 0 0 0 0

)
0 0 2 0 0 0 0 o0 m 0 0 0
3
M=o 0o 00 0 0 0 o], Mzzgrgig 92)

0 0 0 0 m O 0 0 00 0 m
0 0 00 0 m 0 O 0
0 0 00 0 0 M 0

L0 0 0 0 0 0 0 M|
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We obtain m = 5 holonomic constraints g (p, x) = 0, with associated constraint function
' Hd 433 =) ‘
%((Xo — Bix3)* + (yo — B1y3)* + (zo — Biz3)* — LY)
g(p.x)=| 3((xo — Box3)* + (Yo — Boy3)> + (20 — B2z3)* — L3) (93)
1((xo = x3)2 + (o — ¥3)* + (20 — 23)> — L3)
| 3G —=x0)2 4+ (v — y0)* + (2 — 20)* — (L3 — Lo)?) |
Further quantities needed in Egs. (1a)—(1c) and (3) are given by
rl = o
o 0 0 0 0
0 - 0 0 0
0 0 &+ 0 0 0 uy
) 0 0 u
pr—|0 0 0 0 ’ _ , _ u=|"
"o 0o 0 o0 =1 F2= | g us
0 0 0 O 0 —mog us
0O 0 O —f—; 0
[0 0 0 % | 0]
%94)
The constraint Jacobian is given by
[0 —L, 0 0 0 ]
0 0 —-L, 0 0
0 0 0 0 Lo— Ly
0 0 0 —Ly Lz— Lo
Gl = 95
: 0 Xo — Bix3 Xo— Baxs  Xo—X3 Xo—X ©5)
0 Yo — B1y3 Yo — Bay3 Yo—Y3 Yo—Y
X3 Bi(Bixs —x0)  Pa(Baxs —xo) x3—Xo 0
L v3 Bi(Biys—yo) Ba(Boays—Yo) ¥3—Do 0 |
and
0 0 0 0 X — Xo
r_ |0 0 0 0 Y=o
Gy = 0 0 0 0 Z—20 96)
0 zo—Pi1zs z0—Pazs 20—23 20—2

In summary, the three-dimensional US Navy crane with the nonzero pulley mass has f =7
degrees of freedom and a = 4 control inputs.

6.2.1 Inverse dynamics simulation

In the subsequent numerical simulation we use the following parameters: m; = 100 kg,
mo=20kg, M =64kg, Jy=J),=J3=01kgm’, ry=r,=r;=01m, a=7%, and
s =1 =k =5 m. The prescribed trajectory can be generated by the same functions as in the
last example. The initial load position is given by

543 m
0
—10m
2.5m

Yo= at1 =0 97)
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and the final load position is described by
yi=| M| atr=20s. (98)

The initial configuration of the crane system is specified by

Po=[3v3m 66144m 15m 25m 5/3m 0 5/3m 0]  (99)

at fp = 0, and the initial load coordinates are given by

xo=[5/3m 0 —10m 25m] . (100)

The numerical results for the time step size At = 0.1 s are displayed in Fig. 25, in which the
coordinates, control inputs, Lagrange multipliers, and tension forces in ropes are presented.
The simulated motion of the crane generated by the redundant coordinates formulation is
presented in Fig. 26 with some snapshots at consecutive points in time.

7 Conclusions

In this paper we further extended the applicability of index reduction by minimal extension
[2, 8] to particularly complicated crane systems, which can be modeled by a general crane
formulation based on redundant coordinates. Servo-constraint problems of such complicated
cranes have not been amenable to numerical solution before. Due to the high degree of re-
dundancy of the underlying crane description, the alternative projection technique does not
seem to be applicable to the inverse dynamics problems treated herein. In contrast to that, the
present approach proved to be perfectly suited for the numerical solution of the considered,
comparatively complex servo-constraint problems. In this connection, the use of redundant
coordinates provides the most versatile framework for the description of complex inverse
dynamics problems such as the 3D US Navy crane dealt with in Sect. 6. If minimal coordi-
nates are available for the description of the system, index reduction by minimal extension
can as well be successfully applied. This has been shown for the planar version of the US
Navy crane in Sect. 5.

The present approach allows for a high level of redundancy of the coordinates. Accord-
ingly, truly rotationless formulations of multibody systems with natural coordinates are en-
compassed by the present method. The corresponding rotationless formulation is character-
ized by constant inertia parameters and holonomic constraints that are at most quadratic in
the coordinates. In this way the use of rotational parameters like angles is circumvented in
the problem formulation. The specific rotationless formulation of cranes dealt with in the
present work typically yields singular inertia matrices which are a peculiar feature of the
uniform modeling approach originally developed in [15].

Index reduction by minimal extension can be applied to the broad diversity of underactu-
ated mechanical systems as well. For example, in some applications, the underlying DAEs
of servo-constraint problems may have index greater than five, in others the system might be
non-flat and exhibit internal dynamics (see [10, 12, 20]). The application to servo-constraint
problems with internal dynamics could be the subject of future research work.
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Fig. 25 Three-dimensional US Navy crane with nonzero pulley mass: Numerical results obtained with
At=0.1s
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Appendix A: Analytical solution of the planar US Navy crane with
neglected pulley mass

The planar US Navy crane with neglected pulley mass can be classified as a differentially
flat system [13]. It means that all system variables can be expressed as functions of the load
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Fig. 26 Three-dimensional US 27
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coordinates x (flat outputs) and a finite number of their time derivatives. We proceed along
the lines of Lévine et al. [18] and will obtain the analytical reference solution based on
differential flatness. Applying Newton’s law to the load at point C (see Fig. 27) leads to the
following equations of motion:

mxX =—N,sinf, (101a)
m[z':NchSG—m,g. (101]3)
Then we get the relation
i
tanf = —; . (102)
z+g

So the angle 6 can be calculated from Eq. (102). We present some trigonometric computa-
tions for the triangles depicted in Fig. 28. In the triangle PAB we have

L, l
— = (103)
sinf  siny
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Fig. 27 Planar US Navy crane
with neglected pulley mass: The
forces about points B and C

Fig. 28 Planar US Navy crane
with neglected pulley mass: The
geometry relations about point B

where the trigonometric relation sin(wr — y) = sin y has been used. In the triangle DAB the
relation is given by

L l—d
= (104)
sin( +6) siny
From Egs. (103) and (104) we can calculate the angle § with
. dy .
sin 8 = (1 - 7) sin(a + 6). (105)

As the mass of the main pulley m is equal to zero, at point B (see Fig. 27) we get the force
balance

No = N>,

(106)
Ny =2N;cosy.
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So at point B we have the invariance property that AB is the bisector of the angle PBC.
More details about the proof are given in [18]. Then we can calculate the angle y from the
triangle PDB with the relation

1
y:i(n-f-ﬁ—(a—f-G)). (107)

Straightforward computations yield the following expressions of redundant coordinates

_Isinp
" siny
Ly= lsin(.y -8B
siny
xo = — Ly sin(a — B), (108)

Z0 = —Ljcos(a — B),

L=y(x—x0)?+ (z—20)?,
Ly=Lo+L.

The tension force N, is calculated from Eqgs. (101a), (101b) such that

Ny =m/3? + (Z + ). (109)

From the torque balance equations at the winches we can calculate the control torques u:

I
uy = r_Ll — Npry,
! (110)
I
uy =—>~Ly,— Nora,
rn

where iz = io + L. After the differentiations of L, and L, with respect to time, the con-
trol torques can be expressed as functions of flat outputs and their finite number of time
derivatives

u=f,(x,x, % x% x¥). (111)

The redundant coordinates can be expressed by functions
q=f,(x, %% (112)

as well. It implies that the mechanical system under consideration is differentially flat. Note
that the fourth derivative of x appears in the expression, and thus the index of the original
DAEsis4+41=5.

Appendix B: Analytical solution of the planar US Navy crane with
nonzero pulley mass

The planar US Navy crane with nonzero pulley mass has f =n —m = 4 degrees of freedom

and a = 3 control inputs. As mentioned before, the system can be classified as a differen-
tially flat system as well. All system variables can be expressed as functions of flat outputs
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Fig. 29 Planar US Navy crane
with nonzero pulley mass: The
forces about points B and C

x and their time derivatives up to a certain order. The derivation of the analytical solution,
which is applied to the previous case (my = 0), can also be done to provide the reference
solution for the case (m( > 0). Similarly, we apply Newton’s law to the load at point C (see
Fig. 29) and obtain the following equations of motion:

m X = —N;3sinf, (113a)
m;Z = N3cosf —mg. (113b)

The angle 6 is calculated similarly through Eq. (102). Equation (113a) is multiplied by
(—sin#) and Eq. (113b) is multiplied by cos 8. The sum of both equations yields the tension
force

N3 =m;((Z + g)cos — X sinf). (114)
The coordinates of the load m; are given by
X =xp+ Lsinb, (115a)

z=2z29— Lcos#, (115b)

where L = L3 — L. From Eqgs. (115a), (115b) and (113a), (113b), we get the relations

mL
X0:X+TBX, (1163)
mL .
z0=z+—(Z+g). (116b)
N
From Eq. (116b) we obtain the rope length
Na(zo —
L= M (117)
m(Z+g)
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From Eq. (116a) we obtain the pulley coordinate x,. From the holonomic constraints we can
calculate the other rope lengths:

Ly=/x}+ 72, (118a)

Lo=+/(xo + ssina)? + (zo + s cosa)?, (118b)

L=/ (xo+ (5 + D sina)’ + (20 + (s + D cosa)’. (118¢c)

Then we can calculate the angle 8 in the triangle APB (see Fig. 29) with

P+L3—L?
= 119
cos B 3Lol (119)
In the triangle ASB (see Fig. 29) we also have
l 2 L2 _ L2
cosp= ST+ - L (120)
2Ly (s+1)
The angle y can be calculated by
Dsi
an(@ + y) = - 0T @ T Dsina (121)

20+ (s +1)cosa’

Note that in this case at point B the invariance property that AB is the bisector of the angle
P BC is not valid any more. But the flatness property is still conserved. For the US Navy

crane with nonzero pulley mass, the dynamic equations of the pulley m at point B are given
by:

N() = N3, (122a)

Ny sin(a — ) — Ny sin( + y) = moxXy — N3 sinf — Ny sin(a — ), (122b)

Ny cos(a — ) + Nycos(@ + y) =mo(Zo + g) + N3cosO — Ny cos(a — B), (122¢)

in which N, denotes the tension force in the rope L, and N; denotes the tension force in

the rope L3. Accordingly, the tension forces N; and N, can be calculated from the above
equations. Then the control torques can be calculated by:

Ji ..

uyp=="L,—Nir, (123a)
r
I .

uy= 2Ly — Nors, (123b)
r
Jr ..

Uy = 2Ly — Nors, (123¢)
r3

where L3 = Lo+ L. All state variables and control inputs are now expressed as functions of
flat outputs x and their time derivatives up to the fourth order.
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Here we also give a direct way to deduce the flatness-based solution. In this connection,
the equations of motion for the crane system at hand are given by:

Ji
DEi=hLi+ 2, (124a)
I"l I8
Jr o
Zfy=dals+ =2, (124b)
ry I
Jz - us
—Li=—X(Lo—L3)+—, (124¢)
1’3 rs

0=22Lo — A4(L3 — Lo), (1244d)
moXo = —A1(xo 4+ (I +s)sina) — Ay (xo + s sina) — Azxo — As(xo — x), (124e)

moZo = —x1(z0 + (I +5) cosa) — Ay (2o + 5 oS @) — A3z0 — ha(z0 — 2) —mog, (124f)

mi = —ha(x — xo), (124g)
miz = —ky(z — 20) —mg, (124h)
0= %((x0 +(+s)sina)’ + (z0+ ( +5) cosa)” — L), (124i)
0= %((xo + 5 sina)” + (z0 + 5 cosa)® — L), (124))
O:%(x§+z§—L§), (124k)
1

0=2(( —x0)” + (2 = 20)° = (L3 = Lo)°), (1241)

X =y (1), (124m)
2=m), (124n)
20 =y3(1). (1240)

As a result of differential flatness, the analytical reference solution can be derived through
purely algebraic manipulations from the above equations. At first, A4 and x, can be obtained
from Eqs. (124h) and (124g) as a function of x and ¥. Then Eqs. (124i), (124j), (124k),
(1241), and (124d) are used to express the variables L, Lo, L, L3, and A, as functions of x
and X¥. Next | and A3 can be expressed as functions of x and ¥ from Eqgs. (124e) and (124f).
At last, Egs. (124a), (124b), and (124c) are used to express u1, us, and u3 as functions of
x, x, ¥, x¥, and x®. The fourth-order time derivative of flat outputs x appears in the
expression of the flatness-based solution. Thus we conclude that the differential index of the
DAEs (124a)—(1240) is five.
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