
Multibody Syst Dyn (2019) 47:43–64
https://doi.org/10.1007/s11044-019-09677-1

Dynamic computation for rigid–flexible multibody
systems with hybrid uncertainty of randomness
and interval

Jinglai Wu1 · Liang Luo1 · Bo Zhu1 · Nong Zhang1,2 ·
Maoqing Xie3

Received: 30 May 2018 / Accepted: 11 March 2019 / Published online: 25 March 2019
© Springer Nature B.V. 2019

Abstract Considering the unavoidable uncertainty of material properties, geometry, and
external loads existing in rigid–flexible multibody systems, a new hybrid uncertain com-
putational method is proposed. Two evaluation indexes, namely interval mean and interval
error bar, are presented to quantify the system response. The dynamic model of a rigid–
flexible multibody system is built by using the absolute node coordinate formula (ANCF).
The geometry size and external loads of rigid components are considered as interval vari-
ables, while the Young’s modulus and Poisson’s ratio of flexible components are expressed
by a random field. The continuous random field is discretized to Gaussian random variables
by using the expansion optimal linear estimation (EOLE) method. This paper proposes an
orthogonal series expansion method, termed as improved Polynomial-Chaos-Chebyshev-
Interval (PCCI) method, which solves the random and interval uncertainty under one integral
framework. The improved PCCI method has some sampling points located on the bounds
of interval variables, which lead to a higher accuracy in estimating the bounds of multibody
systems’ response compared to the PCCI method. A rigid–flexible slider–crank mechanism
is used as a numerical example, which demonstrates that the improved PCCI method has a
higher accuracy than the PCCI method.

Keywords Hybrid uncertainty · Random field · Interval uncertainty · Multibody systems ·
ANCF

1 Introduction

The multibody system is one of the most important subsystems in mechanical engineer-
ing, which has an irreplaceable contribution to modern industrial civilization, especially in
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the production of machines, automobiles, robots, aerospace industry, and so on. The dy-
namic computation of traditional rigid multibody systems has been well investigated. In re-
cent decades, to consider the large deformation of components in multibody systems, there
have been more and more studies focusing on the flexible and rigid–flexible multibody sys-
tems.

The large rotation and deformation usually happen in flexible components of multibody
systems, but traditional finite element methods are based on the assumption of small defor-
mation and rotation, so these methods may produce improper dynamic results [20]. Sha-
bana [18] proposed the Absolute Nodal Coordinate Formulation (ANCF) to model the ele-
ments of flexible components, which leads to the constant mass matrix and no centrifugal
and Coriolis forces in the system equations [19, 21]. The ANCF has been considered as
a benchmark approach in the research of flexible multibody dynamics in recent decades.
García-Vallejo et al. [8] combined ANCF with the Natural Coordinate Formulation (NCF)
to build the dynamic model of the rigid–flexible multibody systems, and then the ANCF–
NCF method was used by Tian [26] to compute the dynamic response of a large scale rigid–
flexible multibody system. Shabana [22] used the ANCF reference nodes (ANCF-RNs) and
ANCF elements to describe the rigid and flexible bodies, respectively, so the complicated
rigid–flexible multibody systems could be modeled by using the integral framework of the
ANCF-based method. More applications about the ANCF-based method on the flexible and
rigid–flexible multibody systems can be found in [8, 9, 25, 27, 41].

The aforementioned methods only consider the deterministic conditions. However, there
are many uncertain factors in practical applications of multibody systems, and they have an
influence on the dynamic performance. For instance, the geometric size of a component in
the mechanism has a tolerance to facilitate manufacturing process; the inhomogeneous dis-
tribution of the material may lead to the variation of material properties, e.g., Young’s mod-
ulus and Poisson’s ratio. To improve the accuracy of the dynamic analysis of rigid–flexible
multibody systems, the influence of these unavoidable uncertain factors has to be inves-
tigated. The uncertain parameters can be classified into probabilistic and non-probabilistic
uncertainty. The probabilistic uncertainty is described by random variables or random fields,
while the non-probabilistic uncertain analysis methods include the interval method, convex
model method, and so on [2, 14, 42].

The Young’s modulus and Poisson’s ratio of the flexible components in rigid–flexible
multibody systems may change continuously depending on the space location, so they are
characterized by the random field. The random field theory has been used in structural anal-
ysis [3, 4, 11], but there are few applications in the multibody systems. Since the random
field is defined as a continuous uncountable indexed set of random variables, it should be
discretized by a set of countably many random variables. The series expansion methods
are widely used to discretize random fields, including the Karhunen–Loeve (K–L) expan-
sion [11], orthogonal series expansion (OSE) [40], and expansion optimal linear estimation
(EOLE) method [15]. The EOLE method has a good balance between the accuracy and ap-
plication range [23], so it has been used in the discretization of material properties of flexible
components in multibody systems [33, 36].

After the random field is discretized to countably many random variables, two types of
probabilistic methods can be used to solve the propagation of probabilistic uncertainty, i.e.,
the statistical and non-statistical methods. The statistical methods [12] collect a lot of sam-
ples of system output according to their probability distribution of random variables and
then estimate the mean, variance, and even the probability density function of the output
directly. The Monte Carlo method [6] is the most important statistical method, but its ac-
curacy depends on the sampling size, in accordance with the weak law of large numbers.
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Therefore, it is extremely expensive for the dynamic computation of rigid–flexible multi-
body systems. To save the sampling cost, the Latin Hypercube sampling (LHS) can be used
to improve the convergence ratio of a statistical method [36]. To improve the efficiency even
further, the non-statistical methods can be used, e.g., the perturbation method, Neumann
expansion method, and Polynomial Chaos (PC) expansion method [38]. The PC expansion
method approximates the response of a system by a truncated orthogonal series and then
uses the characteristics of orthogonal polynomials to estimate the first and second moment
of the random response. The PC expansion methods have been used in various engineering
problems, such as in fluid mechanics [39], vehicle dynamics [16], and structure analysis
[17]. Wu et al. [36] compared the PC expansion method and the LHS method in solving
rigid–flexible multibody systems with random parameters, which demonstrated that the PC
expansion method had a higher accuracy for the smooth problems while the LHS method
showed a better performance in non-smooth problems.

The probability information for some uncertain parameters is hard to be acquired, so they
can be expressed by interval variables, which only need the bounds’ information to describe
the uncertain parameters. The interval methods have been used in the structural analysis, in
which the nonlinearity of system response with respect to uncertain variables is not high.
For the multibody systems, the dynamic response of systems has an obviously nonlinear
characteristic, so they tend to be more difficult to solve than structural problems. The ge-
ometric size of components or external loads in multibody systems can be well described
by interval variables due to their design tolerance, so the interval method is suitable for
the dynamic analysis of multibody systems including geometry and load uncertainty. Wu
et al. proposed a Chebyshev interval method to solve the rigid multibody dynamic systems
containing interval parameters [30]. One priority of the Chebyshev interval method is that
it is a non-intrusive method, which means that it can be used in many complicated engi-
neering models and even in black-box models. As a result, Wang et al. [28] could combine
the Chebyshev interval method with the ANCF-based method to solve the rigid–flexible
multibody systems containing interval variables.

In practical cases, the rigid–flexible multibody systems contain both the random and
interval uncertainty simultaneously, so it is necessary to investigate the hybrid uncertain
computational method which can solve both types of uncertainty in one integral frame-
work. Most of the hybrid uncertain analysis methods are proposed to solve the reliability-
based design optimization (RBDO) in structural problems, e.g., the random interval moment
method [7], random interval perturbation method [37], nested Monte Carlo and scanning
method [5], and unified interval stochastic sampling (UISS) method [32]. A more detailed
review about the hybrid uncertain analysis methods in RBDO can be found in [13]. These
hybrid uncertain analysis methods are computationally expensive, so they are not fit for solv-
ing the rigid–flexible multibody systems. Wang et al. [29] combined the perturbation-based
method and Chebyshev collocation method to solve the flexible multibody systems with hy-
brid uncertain parameters. However, the perturbation-based method requires the variation
of uncertain parameters to be small, so it may bring the deviation when the uncertain range
increases. Wu et al. [31] proposed a non-intrusive PCCI method, which integrated the PC
expansion method and Chebyshev interval method in one integral framework to solve the
hybrid uncertain problems, and it has been used in the problems of structural optimization
[35] and topology optimization [34]. The PCCI method can handle the large uncertain ex-
tent problems, as well as nonlinear problems, so it is suitable for solving the rigid–flexible
multibody systems.

This paper will propose an improved PCCI method to solve the rigid–flexible multi-
body systems with hybrid uncertainty, where the geometric size and external loads of rigid
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components are expressed by interval variables while the Young’s modulus and Poisson’s
ratio of flexible components are considered to be a random field. The ANCF-based method
is employed to build the dynamic model of rigid–flexible multibody systems. The random
field will be discretized to countably many random variables by using EOLE method, and
then the improved PCCI method can be used to solve the dynamic problems with random
and interval variables. The main difference between the improved PCCI method and PCCI
method is that the sampling points of the former can be located on the bounds of interval
variables, which produces a higher accuracy in estimating the bounds of a response. The
numerical example involving a slider and crank shows the high accuracy and efficiency of
the improved PCCI method.

2 Description of hybrid uncertain problems

2.1 Evaluation index for hybrid uncertain problems

If a model f only contains some random input, its output (response) is expressed as f (ξ),
where ξ ∈ Rn is an n-dimensional random input variable. Since the probabilistic informa-
tion of the random variable ξ is known, including its mean, variance, probability density
function, the probabilistic information of the output can also be obtained. The most widely
used evaluation index for the response is the mean and standard deviation (or variance), de-
noted by μf and σf , respectively. In engineering, to intuitively show the uncertain extent of
response, the error bar is also usually employed. The minimum and maximum values of the
error bar are expressed as

ebl = μf − σf , ebu = μf + σf (1)

where ebl is the minimum value of error bar, and ebu is the maximum value of error bar.
If model f only contains interval input, its output is expressed as f ([η]), where [η] ∈

IRm is an m-dimensional interval variable. The output of the model is also an interval which
is expressed by its lower and upper bounds, i.e.,

[f ] =
[
min

η
f (η),max

η
f (η)

]
. (2)

Considering that model f contains both random and interval variables, its output is expressed
as f (ξ , [η]). In this case, the mean and standard deviation of the response will not be a
deterministic value but a function with respect to the interval variables, i.e., μf ([η]) and
σf ([η]). As a result, the mean will be transformed to the interval mean, defined as

[μf ] =
[
min

η
μf (η),max

η
μf (η)

]
. (3)

The minimum and maximum values of the error bar are also transformed to the interval
numbers, i.e.,

[ebl] =
[
min

η

(
μf (η) − σf (η)

)
,max

η

(
μf (η) − σf (η)

)]
,

[ebu] =
[
min

η
μf

(
(η) + σf (η)

)
,max

η

(
μf (η) + σf (η)

)]
.

(4)
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It should be noted that the lower bound of [ebl] is always smaller than the lower bound
of [ebu], while the upper bound of [ebu] is always larger than the upper bound of [ebl].
Therefore, we can introduce an interval error bar to express the hybrid uncertain extent,
defined as

[eb] =
[
min

η

(
μf (η) − σf (η)

)
,max

η

(
μf (η) + σf (η)

)]
. (5)

2.2 Reference method for solving hybrid uncertain problems

When only the random variables are considered, the Monte Carlo method is usually used as
the reference method to solve the probabilistic uncertain problems. Use the random sampling
method to produce a large number of sampling points of the random variables, and then
compute the output of model f by fixing the random variables at these sampling points.
Unbiased estimates of the mean and variance of the response can be obtained by

μf = 1

N

N∑
i=1

f
(
ξ (i)

)
, σ 2

f = 1

N − 1

N∑
i=1

(
f

(
ξ (i)

) − μf

)2
, (6)

where N is the number of sampling points, and ξ (i) are the sampling points of random
variables. Based on the law of large numbers, the convergence rate of the Monte Carlo
method is proportional to 1/

√
N , so it requires a large number of sampling points to get

an acceptable accuracy. The computational cost for each sampling point is quite high in the
dynamic analysis of rigid–flexible multibody systems, so we cannot use too many sampling
points to get the reference solution. To improve the efficiency of the Monte Carlo method, an
approach is to use a more efficient sampling method to select the sampling points. The LHS
method shows quite good performance in statistics, so it will be employed to produce the
sampling points. After the sampling points are produced, we can repeat the same procedure
of the Monte Carlo method, and then the mean and variance of the response can be obtained,
termed as LHS-based statistical method. Wu and coauthors [36] show that the convergence
rate of LHS-based statistical method is much higher than that of the Monte Carlo method.

When only interval variables are considered, the bounds of the response shown in Eq. (2)
may be computed by using optimization algorithms. However, most of optimization algo-
rithms are easily trapped in the local optimum points. To seek the global minimum and
maximum points, the scanning method is considered to be a reference method, in which
the interval variables are sampled by using a dense uniform grid. When the grid is dense
enough, the global minimum and maximum points can be captured in the neighborhood of
the grid. If the number of sampling points for each dimensional interval variable is p, the
total number of sampling points for the m-dimensional interval variables will be M = pm.
Considering Eq. (2), the bounds of response can be computed by the following equation:

[f ] =
[
min

j
f

(
η(j)

)
,max

j
f

(
η(j)

)]
, j = 1, . . . ,M, (7)

where η(j) denote the sampling points of interval variables.
When both the interval and random variables are contained in the model, we need to

use Eqs. (3) and (5) to compute the evaluation indexes, i.e., interval mean and interval error
bar. Combining the N sampling points of the random variables and M sampling points of
interval variables, the set of sampling points will be the tensor product of the two sets of
sampling points, i.e., (ξ (i),η(j)) where i = 1, . . . ,N , and j = 1, . . . , pm, so the total number
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of sampling points will be N × pm. Substituting Eqs. (6) and (7) into Eqs. (3) and (5), the
interval mean and interval error bar can be computed by the following equations:

[μf ] =
[

min
j

1

N

N∑
i=1

f
(
ξ (i),η(j)

)
,max

j

1

N

N∑
i=1

f
(
ξ (i),η(j)

)]
, (8)

[eb] =
[

min
j

1

N

N∑
i=1

f
(
ξ (i),η(j)

) − σ
(j)

f ,max
j

1

N

N∑
i=1

f
(
ξ (i),η(j)

) + σ
(j)

f

]
, (9)

where

σ
(j)

f =
√√√√ 1

N − 1

N∑
i=1

(
f

(
ξ (i),η(j)

) − 1

N

N∑
i=1

f
(
ξ (i),η(j)

))2

, j = 1, . . . ,M. (10)

Since the sampling points are produced by the LHS and scanning methods, the reference
method is termed as LHS–Scanning method. It should be noted that the LHS–Scanning
method is still expensive in terms of the computational cost, e.g., in the case of N = 100,
q = 10, and m = 2, the total number of sampling points will be 100 × 102 = 10000, which
takes a long time for the dynamic computation of rigid–flexible multibody systems.

3 Improved hybrid uncertain analysis method

3.1 PCCI method for hybrid uncertain analysis

The PCCI method is an orthogonal series expansion method, which integrates the PC ex-
pansion method and Chebyshev interval method into one framework to solve the hybrid
uncertain problems. When both the Gaussian random variables and interval variables are
contained in a continuous function f (ξ , [η]), where the random and interval variables are
defined as ξ ∼ N(0,1)n, [η] = [−1,1]m, this function can be expanded by using the Hermite
series of order k and Chebyshev series of order q sequentially, termed as PCCI method [31]

f
(
ξ , [η]) ≈

N∑
j=1

(
M∑
i=1

βi,j�i

([η])
)

�j(ξ). (11)

Here N = (k + 1)n and M = (q + 1)m are the numbers of terms of Hermite and Chebyshev
series, respectively, �i denotes the ith term of Chebyshev series, �j denotes the j th term
of Hermite series, and β is the coefficient matrix, which can be computed by using the least
squares method twice, shown as follows:

β = (
�(η̃)T�(η̃)

)−1
�(η̃)TF̃(ξ̃ , η̃)T�(ξ̃)

(
�(ξ̃)�(ξ̃)T

)−1
(12)

where the size of the coefficient matrix β is M × N , ξ̃ and η̃ denote the sampling points
of random and interval variables. The sampling points of random variables are the tensor
product of the roots of univariate Hermite polynomials of order k + 1 in the n-dimensional
space, that is,

ξ̃ = ξ 1 ⊗ · · · ⊗ ξn, ξ i = [
ξ (1), . . . ξ (k+1)

]T
, i = 1,2, . . . , n, (13)
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where ξ (j), j = 1, . . . , k + 1 are the roots of univariate Hermite polynomials of order k + 1,
and they can be computed by numerical methods in advance. Similarly, the sampling points
of interval variables are the tensor product of the zeros of univariate Chebyshev polynomials
of order q + 1 in the m-dimensional space, i.e.,

η̃ = η1 ⊗ · · · ⊗ ηm, ηi = cos

([
π

2(q + 1)
,

3π

2(q + 1)
, . . . ,

(2q + 1)π

2(q + 1)

]T)
, (14)

where ηi are the zeros of univariate Chebyshev polynomial of order q + 1. Therefore, the
total number of sampling points will be N × M . Also �(ξ̃) and �(η̃) are the transform
matrices of random and interval variables [31].

After the coefficient matrix β is obtained, considering the orthogonality of Hermite poly-
nomials [38], the mean and variance of f (ξ , [η]) can be expressed as

μf ≈
M∑
i=1

βi,1�i(η), σ 2
f ≈

N∑
j=2

(
M∑
i=1

βi,j�i(η)

)2

γj . (15)

Substituting Eq. (15) into Eqs. (3) and (5), using the scanning method to compute the interval
mean and interval error bar, we obtain

[μf ] ≈
[

min
l

M∑
i=1

βi,1�i

(
η(l)

)
,max

l

M∑
i=1

βi,1�i

(
η(l)

)]
, (16)

[eb] ≈
[

min
l

M∑
i=1

βi,1�i

(
η(l)

) − σf

(
η(l)

)
,max

l

M∑
i=1

βi,1�i

(
η(l)

) + σf

(
η(l)

)]
, (17)

where

σf

(
η(l)

) =

√√√√√
N∑

j=2

(
M∑
i=1

βi,j�i

(
η(l)

))2

γj . (18)

Here η(l) denotes the sampling points used in the scanning method. It is worth noting that
the main computational cost of the PCCI method is to obtain the value matrix F̃, because
each call of function f is time-costly. The total number of calls of the original function is
determined by the size of matrix F̃, expressed by N × M = (k + 1)n × (q + 1)m, which
depends on the order of polynomial expansion and the dimension of random and interval
variables.

3.2 Improved PCCI method

The Chebyshev interval method actually first constructs a surrogate model of the original
function on a given design space, then uses the scanning method to compute the bounds
based on the surrogate model. Each dimensional interval variable has been transformed
into the standard design space, i.e., [−1,1]. The sampling points of the Chebyshev interval
method are the zeros of Chebyshev polynomials, which are located in the interior of the
interval variables range rather than on the bounds of the interval variables. From Eq. (14), it
can be found that for the Chebyshev polynomial of order q + 1, the most outside sampling
points are cos( (2q+1)π

2q+2 ) and cos( π
2q+2 ). With the order of Chebyshev polynomials increasing,
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Fig. 1 (a) Plots of Chebyshev series; (b) error of Chebyshev series

the two sampling points approach the bounds −1 and 1 gradually, but they can never achieve
the two bounds. When all the sampling points are located in the inner domain of the design
space, the surrogate model becomes an extrapolation model in computing the output at the
local design space of bounds. The accuracy of the extrapolation model is usually lower than
that of the interpolation model, so the Chebyshev interval method produces lower accuracy
in computing the response at the bounds of input. The key of the interval method is to
compute the bounds of output, and the bounds of output happen at the bounds of input
in many cases, especially for the multibody dynamic systems. Therefore, improving the
accuracy of the Chebyshev interval method at the bounds of input is necessary.

To change the extrapolation model to an interpolation model, the most outside sampling
points should be mapped to the bounds of the interval variable. Using a linear transforma-
tion, all the sampling points are scaled by a factor which relocates the most outside sampling
points to the bounds of an interval variable, i.e.,

η̃′ = η′
1 ⊗ · · · ⊗ η′

m,

η′
i = cos

([
π

2(q + 1)
,

3π

2(q + 1)
, · · · ,

(2q + 1)π

2(q + 1)

]T)/
cos

(
π

2(q + 1)

)
(19)

where η̃′ denotes the new sampling points. Except for the sampling points which are scaled,
the rest of the computation process is the same as for the Chebyshev interval method, so this
method is termed as an improved Chebyshev interval method.

To show the difference between the Chebyshev interval method and improved Chebyshev
interval method, we consider a mathematical example. Using the 2nd order Chebyshev in-
terval method and improved Chebyshev interval method to compute the bounds of function
y = cos(π[η]) with [η] = [−1,1], the plots of the 2nd order Chebyshev series are shown in
Fig. 1(a). The error of the Chebyshev series is shown in Fig. 1(b). It can be found that the
maximum error of the improved Chebyshev interval method is even larger than that of the
Chebyshev interval method, but its error at the bounds of the interval variable is zero.

In this example, the lower bound of output happens at the bounds of interval variable, so
using the improved Chebyshev interval method, we can get the exact bounds of output, while
the Chebyshev interval method produces large deviation for computing the lower bound of
output. Based on the obtained Chebyshev series, the interval results of the output can be
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Fig. 2 Sampling points of PCCI
and improved PCCI methods

computed by the scanning method, resulting in

[y] = [−1,1], [ỹ] = [−1.5503,1], [
ỹ ′] = [−1,1] (20)

where [y] is the exact interval, [ỹ] is the interval obtained by Chebyshev interval method,
and [ỹ ′] denotes the interval obtained by the improved Chebyshev interval method. It can be
found that the improved Chebyshev method provides the same result as the exact interval,
while the Chebyshev method produces a large deviation for the lower bound.

Substituting Eq. (19) into Eq. (12), the coefficient matrix β can be obtained by

β = (
�

(
η̃′)T

�
(
η̃′))−1

�
(
η̃′)T

F̃
(
ξ̃ , η̃′)T

�(ξ̃)
(
�(ξ̃)�(ξ̃)T

)−1
. (21)

Substituting the obtained coefficients into Eqs. (16)–(18), the interval mean and interval
error bar can be computed. Since the sampling points of the interval variables are from
the improved Chebyshev interval method, this method will be termed as improved PCCI
method.

To show the difference of the sampling points between the PCCI method and improved
PCCI method, the sampling points for the case of n = 1, m = 1, k = 3, q = 3 are shown in
Fig. 2. It can be found that the sampling points for the random variable are the same for the
two methods, but for the interval variable the sampling points of the improved PCCI method
have been scaled to the bounds −1 and 1, while that of the PCCI method are located inside
of [−1,1].

4 ANCF-based method for solving multibody systems

4.1 Dynamic modeling for rigid–flexible multibody systems

The modeling of ANCF elements can be found in [8, 10, 21], while the two-dimensional
ANCF beam elements will be briefly reviewed in this section. The planar shear deformable
beam element is shown in Fig. 3, in which the X–Y expresses the global coordinate system.
In the global coordinate system, the displacement field of the element is defined as

r = [
r1 r2

]T = Se, e = [
eT
i eT

j

]T = [
rT
i rT

i,x rT
i,y rT

j rT
j,x rT

j,y

]T
, (22)
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Fig. 3 Two-dimensional ANCF
beam element

Fig. 4 Two-dimensional
ANCF-RNs

where r denotes the nodal coordinates in the global coordinate system, S is the shape func-
tion of the element, e denotes the absolute nodal coordinate vector of node i and j , rq

(q = i, j ) marks the position coordinates in the global coordinate system, rq,x and rq,y are
the derivatives of rq with respect to local coordinates x and y.

The rigid bodies are expressed by using the ANCF-RNs [22], shown in Fig. 4, where
Xi–Y i is the local coordinate system. The absolute coordinate vector of node i in ANCF-
RNs is defined as

ei = [
rT
i rT

i,x rT
i,y

]T
, (23)

where ri denotes the position coordinates of node i in the global coordinate system, ri,x

and ri,y are two vectors parallel to the local coordinate axes Xk and Y k , respectively. The
following three constraint equations are added to describe a planar rigid body by ANCF-
RNs:

‖ri,x‖ = 1, ‖ri,y‖ = 1, ri,x · ri,y = 0. (24)

From Fig. 4, it can be found that any point j on the rigid body can be expressed by

rj = ri + eir = ri + [
ri,x ri,y

] [
x y

]T = [
I2 xI2 yI2

] [
rT
i rT

i,x rT
i,y

]T = Srei ,

(25)
where eir is the local position coordinate vector of point j , x and y are the local coordinates,
I2 is the 2 × 2 unit matrix, and Sr denotes the shape function of the rigid body.

4.2 Dynamic equations of rigid–flexible multibody systems

Transforming the nodal coordinates e into the generalized coordinates q, the equations of
motion for a constrained rigid–flexible multibody system can be expressed by the following
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differential algebraic equations (DAEs) [5]:

{
Mq̈ + �T

qλ + F(q) = Q(q),

�(q, t) = 0
(26)

where M is the system mass matrix, �(q, t) is the vector that contains the system constraint
equations corresponding to the ideal joints, t represents the time, �q is the derivative ma-
trix of constraint equations with respect to the generalized coordinates q, λ contains the
Lagrangian multipliers associated with the constraints, Q(q) is the system external gener-
alized forces, and F(q) is the system elastic force vector which depends on the generalized
coordinates and the material Young’s modulus and Poisson’s ratio. A more detailed expres-
sion of the mass matrix and elastic force can be found in [36].

Several numerical methods can be used to solve the DAEs shown in Eq. (26), which
can be found in the literature [24]. The generalized-α method [1] will be used in this paper,
since it has a good trade-off between the numerical accuracy at low-frequency and numerical
damping at high-frequency. In the algorithm, Eq. (26) is first discretized to the following
algebraic equations at each time step, and then the Newton iteration is employed to solve
the following algebraic equations:

G (qi+1,λi+1) =
[

Mq̈i+1 + �T
qλi+1 + F(qi+1) − Q(qi+1)

�(qi+1, ti+1)

]
= 0. (27)

A more detailed iteration procedure of the generalized-α algorithm can be found in [1].

5 Hybrid uncertain analysis for rigid–flexible multibody systems

5.1 Uncertain factors in rigid–flexible multibody systems

The geometric size and external load are the main uncertainty sources of the rigid bodies.
The tolerance of a component will make the geometric size of a rigid body uncertain, so
the geometric size of each component manufactured by the same process is still different.
The external load may change with environment conditions or some unknown factors. How-
ever, they are subject to change in a range (tolerance), so the interval variables are used to
describe the uncertainty of rigid components. Symbol [η] denotes the uncertain geometric
size and external load existing in the rigid components, system matrix, as well as system
generalized external force, and some constraints depend on these interval variables, so they
will be expressed as

M = M
([η]), Q(q) = Q

(
q, [η]), �(q, t) = �

(
q, [η], t). (28)

For the flexible components, besides their geometric size, the material properties are also
the main uncertain factors, such as the Young’s modulus and Poisson’s ratio. The material
properties of a flexible body may change in the space domain, so they need to be described
by a random field. The uncertain geometric size of flexible components can be handled in
the same way as for rigid components, so the uncertain material properties will be mainly
considered in the flexible components. The Young’s modulus and Poisson’s ratio are ex-
pressed by the random fields, expressed by G(x, θ) and κ(x, θ), respectively. Based on the
definition, the continuous random field is defined as an uncountable indexed set of random
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variables, which are not convenient to implement in the numerical computation, so the field
needs to be discretized to countably many random variables. Using the EOLE method [15]
to discretize the random field, the continuous random fields can be approximately expressed
by

G(x, θ) ≈ μG + σG

n∑
i=1

ξi(θ)√
χi

ρ̃T
xXφi, κ(x, θ) ≈ μκ + σκ

n∑
i=1

ξi(θ)√
χi

ρ̃T
xXφi, (29)

where μG and μκ are the mean of random fields for Young’s modulus and Poisson’s ratio,
σG and σκ denote the standard deviation of random fields for Young’s modulus and Poisson’s
ratio, {ξi(θ)} (i = 1, . . . , n) denotes a set of independent standard Gaussian random variables
(i.e., ξi(θ) ∼ N(0,1)), χi are the n largest eigenvalues of the covariance matrix CXX at
the given nodes, with entries CXX(k, l) = C(xk,xl ), φi are the corresponding eigenvectors,
and ρxX is the correlation function vector at given nodes x1, . . . ,xp (p > n), i.e., ρ̃xX =
[ρ̃(x,x1), . . . , ρ̃(x,xp)]T. The typical square exponential correlation function is given as the
following equation, and more correlation functions can be found in [23]:

ρ̃
(
x,x′) = exp

(−∥∥x − x′∥∥2
/a2

)
, (30)

where a is the correlation length, which has a large influence on the discretization of the
random field.

The variance of the error for Eq. (29) is given as

Var = σ 2 −
n∑

i=1

1

χi

(
ρ̃T

xXφi

)2
. (31)

The value of n can be determined by make the relative variance error lower than a small
constant, e.g., 5% used in this study. Using Eq. (29), the random fields of Young’s modulus
and Poisson’s ratio can be approximated by a series governed by the independent standard
Gaussian random variables ξ = {ξi}, i = 1, . . . , n.

The elastic force depends on the Young’s modulus and Poisson’s ratio, so the elastic force
will be expressed by a function of the random variables ξ , i.e.,

F(q) = F(q, ξ). (32)

5.2 Numerical implementation process

Substituting Eqs. (28) and Eq. (32) into Eq. (26), the dynamic equations of the rigid–flexible
multibody systems with interval and random parameters will be finally expressed by

{
M

([η])q̈ + �T
qλ + F(q, ξ) = Q

(
q, [η]),

�
(
q, [η], t) = 0.

(33)

Similar to Eq. (27), Eq. (33) can be discretized to algebraic equations at each time step as
follows:

G
(
qi+1,λi+1, ξ , [η]) =

[
M

([η])q̈i+1 + �T
qλi+1 + F(qi+1, ξ) − Q

(
qi+1, [η])

�
(
qi+1, [η], ti+1

)
]

= 0. (34)
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Fig. 5 Flowchart of the numerical implementation process

The aim for solving the above equation is to compute qi+1 and λi+1 solution, we have the
following expression:

f =
{[

qi+1

λi+1

]∣∣∣∣G
(
qi+1,λi+1, ξ , [η]) = 0

}
. (35)

As a result, the solution can be thought as a function with respect the random variables ξ and
interval variables [η], denoted by f(ξ , [η]). It should be noted that the analytical expression
of this function is not known, so the function value can only be obtained by using numerical
methods, i.e., solving Eq. (34) by fixing the random variables and interval variables at given
values, which is actually the sampling process for solving the uncertain problems. Therefore,
by combining the improved PCCI method proposed in Sect. 3, the rigid–flexible multibody
systems with hybrid uncertain problems can be solved.

The flowchart to implement the numerical process is given in Fig. 5. The proposed nu-
merical method effectively integrates the multibody dynamic modeling method (ANCF-
based method), random field discretization method (EOLE method), and hybrid uncertain
analysis method (improved PCCI method) to solve the rigid–flexible multibody systems
with hybrid uncertainty. The numerical implementation process mainly contains 5 steps,
which are: (1) identifying the uncertain parameters, including the interval parameters for
rigid components and random field for flexible components, as well as the discretization
of random field; (2) producing the sampling points of random variables and interval vari-
ables by using improved PCCI method; (3) building the dynamic equations of rigid–flexible
multibody systems using ANCF-based method; (4) solving the dynamic equations at given
sampling points to obtain the sampling information of output; (5) computing the coefficients
matrix by using improved PCCI method and then computing the final results of interval
mean and interval error bar.
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Fig. 6 Schematic of planar rigid–flexible slider–crank mechanism

Table 1 The parameters of the slider–crank mechanism

Component ρ (kg/m3) Length/L (m) Cross-section (m × m) G (GPa) κ K (N/m)

Crank 7800 0.2 0.01 × 0.01 – – –

Link 2700 0.45 0.01 × 0.01 69 0.34 –

Slider 7800 0.08 0.08 × 0.2 – – 1000

5.3 Numerical example for a slider–crank mechanism

A planar slider–crank mechanism is shown in Fig. 6, where only the link is considered
to be a flexible body, and it is made of aluminum. The rotation velocity of the crank is
ω = 4π rad/s, and the deformation of the spring is zero when the rotational angle of the
crank is zero.

The parameter values under deterministic conditions are shown in Table 1. Two inter-
val parameters are considered in the mechanism, which are the length of the crank and the
spring stiffness of external load. Assuming the uncertainty extent is 3%, the interval param-
eters will be L = 0.2 + 0.006[η1] m, K = 1000 + 30[η2] N/m, where [η1] = [−1,1] and
[η2] = [−1,1]. Both the Young’s modulus and Poisson’s ratio of the link are considered to
be random fields, the standard deviation is 1% of its mean, so the mean and standard devi-
ation are set as μG = 69 GPa, μκ = 0.34, σG = 0.69 GPa, and σκ = 0.0034. The length of
correlation length for the random field is a = 2 m.

We use the EOLE method to discretize the random fields, truncated by 1 term, which
means the random field is discretized to one Gaussian random variable. The error of variance
after the discretization is shown in Fig. 7, which indicates that the maximum error is about
0.025 satisfying the requirement of this study. Therefore, either the Young’s modulus or
Poisson’s ratio can be expressed by one Gaussian random variable ξ ∼ N(0,1). As a result,
there are two random variables and two interval variables in this system, i.e., [η] = [−1,1]2,
ξ ∼ N(0,1)2.

To compute the dynamic response of the slider is 1% crank mechanism, the link is dis-
cretized by three ANCF elements, so each element length is 0.15 m. The ANCF-based
method shown in Sect. 4.1 is used to build the dynamic equations, which are solved by
the generalized-α method shown in Sect. 4.2. Setting the initial position as θ = 0, under
deterministic conditions, the reaction forces at joint A are given in Fig. 8, in which FX and
FY denote the reaction force in the X and Y direction, respectively.

Using the PCCI method and improved PCCI method to solve the system, the orders of PC
expansion and Chebyshev series are set as k = 1 and q = 1, so the number of sampling points
is (k + 1)2(q + 1)2 = 16. To obtain the reference results, the LHS is 1% Scanning method is
used, by setting N = 100 and p = 10, so the number of sampling points is Np2 = 10000.
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Fig. 7 The discretization error
of random field

Fig. 8 (a) Reaction force in the X direction; (b) reaction force in the Y direction

Fig. 9 (a) Interval mean of FX (k = 1, q = 1); (b) interval error bar of FX (k = 1, q = 1)

The interval mean and interval error bar of the reaction forces at joint A under the hy-
brid uncertainty are shown in Figs. 9 and 10, where the “UB” and “LB” denote the “upper
bound” and “lower bound”, respectively. The interval mean and interval error bar reflect the
uncertain extent of the reaction forces changing with time. The interval is quite narrow in
the initial stage, but it becomes wider and wider with the increase of time, especially after
the time of 0.4 s. The interval error bar is wider than the interval mean since it includes the
information of both the mean and standard deviation. Both the PCCI method and improved
PCCI method have high accuracy before the time of 0.2 s, while their deviations from the
reference results obtained by the LHS–Scanning method become obvious after 0.4 s. The
PCCI method gives a wider interval mean and interval error bar compared to the reference
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Fig. 10 (a) Interval mean of FY (k = 1, q = 1); (b) interval error bar of FY (k = 1, q = 1)

Fig. 11 (a) Error of interval mean for FX ; (b) error of interval error bar for FX

results, while the improved PCCI method produces more narrow results related to the refer-
ence results, which is affected by the different sampling points of interval variables.

To compare the accuracy of the PCCI method and improved PCCI method more intu-
itively, the relative error can be computed by integrating their deviation from the reference
results in the whole time domain. Increasing the order of PC expansion and Chebyshev
series, the accuracy of PCCI method and improved PCCI method becomes higher. The rel-
ative error of the PCCI method and improved PCCI method changing with the number of
sampling points is provided in Figs. 11 and 12.

The sample sizes in the figures are 16, 36, 81, and 256, which correspond to the order of
PC expansion and Chebyshev series with (k, q) = (1,1), (1,2), (2,2), and (3,3), respec-
tively. It can be found that the error convergence rate of the improved PCCI method is much
higher than that of the PCCI method. For all the evaluation indexes, the relative error of the
improved PCCI method using 81 sampling points is lower by 5%, which is even lower than
the relative error of the PCCI method using 256 sampling points, so the improved PCCI
method has both higher accuracy and efficiency compared to PCCI method.

The interval mean and interval error bar when k = 3 and q = 3 are shown in Figs. 13
and 14, which indicate that the results of improved PCCI method are highly in line with
those of the LHS–Scanning method during the whole simulation period, while the PCCI
method shows some deviation during the final 0.2 s simulation period.

It is worth noting that the improved PCCI method only needs 256 sampling points to
get similar accuracy of the LHS–Scanning method that uses 10000 sampling points. Each
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Fig. 12 (a) Error of interval mean for FY ; (b) error of interval error bar for FY

Fig. 13 (a) Interval mean of FX (k = 3, q = 3); (b) interval error bar of FX (k = 3, q = 3)

Fig. 14 (a) Interval mean of FY (k = 3, q = 3); (b) interval error bar of FY (k = 3, q = 3)

sampling point requires solving the dynamic equation of the rigid–flexible multibody sys-
tem, which takes about 40 s. As a result, the total computational time for the LHS–Scanning
method is about 111 hours, while the improved PCCI method only takes about 2.8 hours,
which is much shorter than for the LHS–Scanning method.

To show the performance of the proposed method under the low stiffness, we change
the mean of Young’s modulus to be 6.9 GPa and keep the standard deviation as 1% of
its mean, i.e., σG = 0.069 GPa. Due to the low stiffness of the link, it is discretized by 5
ANCF elements, so each element length is 0.09 m. Using the PCCI method and improved
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Fig. 15 Displacement of link midpoint in the X direction (k = 1, q = 1)

Fig. 16 Displacement of link midpoint in the Y direction (k = 1, q = 1)

PCCI method to solve the system, the orders of the PC expansion and Chebyshev series
are set as k = 1 and q = 1. The displacements of the midpoint of the link in the X and
Y directions are shown in Figs. 15 and 16, respectively. For the displacement in the X

direction, both the PCCI method and improved PCCI method have high accuracy. After 0.5
s, the difference between the results of proposed methods and the LHS–Scanning method
appears. Due to the small standard deviation of Young’s modulus, the standard deviation of
response is quite small compared to it mean value. As a result, the interval error bar is quite
close to the interval mean. The displacement in the Y direction has lower accuracy than in
the X direction, especially after 0.45 s. It can be found that the improved PCCI method is
closer to reference results than the PCCI method for both displacements in the X and Y

directions.
The relative error of the PCCI method and improved PCCI method changing with the

sample size is provided in Figs. 17 and 18. The sample sizes in the figures are 16, 81,
and 256, which correspond to the orders of the PC expansion and Chebyshev series with
(k, q) = (1,1), (2,2), and (3,3), respectively. It can be found that the trend of the relative
error in displacement is the same as for the reaction forces shown in Figs. 11 and 12, but the
error of displacement is much smaller than for the reaction forces. The error convergence
rate of the improved PCCI method is much higher than that of the PCCI method. For the
displacement in the X direction, the relative error of the improved PCCI method using 81
sampling points is lower by 0.1%, which is close to the relative error of the PCCI method
using 256 sampling points. For the displacement in the Y direction, the relative error of
the improved PCCI method using 81 sampling points is lower by 0.2%, which is close to
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Fig. 17 Error of interval mean (left) and interval error bar (right) in the X direction

Fig. 18 Error of interval mean (left) and interval error bar (right) in the Y direction

Fig. 19 Displacement of the link midpoint in the X direction (left) and Y direction (right) (k = 3, q = 3)

the relative error of the PCCI method using 256 sampling points. Therefore, the improved
PCCI method has a higher accuracy than the PCCI method for the displacement of the link
midpoint.

The interval mean when k = 3 and q = 3 is shown in Fig. 19, which demonstrates that
the results of the PCCI method and improved PCCI method are highly in line with the LHS–
Scanning method during the whole simulation period.
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6 Conclusions

This paper proposes a new dynamic computational method, which systematically integrates
the ANCF-based dynamic modeling method, random field discretization method, and hybrid
uncertain analysis method to solve the rigid–flexible multibody systems with hybrid uncer-
tain factors. Two evaluation indexes, which are the interval mean and interval error bar, are
proposed to demonstrate the hybrid uncertain extent of system response. The rigid–flexible
multibody systems are modeled by using ANCF-based method. The geometric size and ex-
ternal load of rigid components are considered to be interval variables, while the material
properties (Young’s modulus and Poisson’s ratio) of flexible components are considered
to be random fields. The random fields are discretized to independent Gaussian random
variables by using the EOLE method. An improved PCCI method is proposed to handle
both random and interval variables simultaneously. It effectively combines the PC expan-
sion method solving the probabilistic uncertain problems and improved Chebyshev interval
method. Compared to the original PCCI method, the sampling points of interval variables for
improved PCCI method are scaled to the bounds of interval variables, which improves the
accuracy of estimating the interval bounds of output. A numerical example of rigid–flexible
slider–crank mechanism demonstrates that the improved PCCI method has much higher ac-
curacy and efficiency compared to the PCCI method and only takes 1/40 computational time
of the reference method (LHS–Scanning method) to achieve similar accuracy.

Acknowledgements This research is supported by Natural-Science-Foundation of China (11502083) and
Fundamental Research Funds for the Central Universities.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Arnold, M., Bruls, O.: Convergence of the generalized-α scheme for constrained mechanical systems.
Multibody Syst. Dyn. 18(2), 185–202 (2007)

2. Beer, M., Ferson, S., Kreinovich, V.: Imprecise probabilities in engineering analyses. Mech. Syst. Signal
Process. 37(1–2), 4–29 (2013). https://doi.org/10.1016/j.ymssp.2013.01.024

3. Betz, W., Papaioannou, I., Straub, D.: Numerical methods for the discretization of random fields by
means of the Karhunen–Loève expansion. Comput. Methods Appl. Mech. Eng. 271, 109–129 (2014).
https://doi.org/10.1016/j.cma.2013.12.010

4. Do, D.M., Gao, W., Song, C.: Stochastic finite element analysis of structures in the presence of mul-
tiple imprecise random field parameters. Comput. Methods Appl. Mech. Eng. 300, 657–688 (2016).
https://doi.org/10.1016/j.cma.2015.11.032

5. Du, X., Venigella, P.K., Liu, D.: Robust mechanism synthesis with random and interval variables. Mech.
Mach. Theory 44(7), 1321–1337 (2009). https://doi.org/10.1016/j.mechmachtheory.2008.10.003

6. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1996)
7. Gao, W., Song, C., Tin-Loi, F.: Probabilistic interval analysis for structures with uncertainty. Struct. Saf.

32(3), 191–199 (2010)
8. García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Three-dimensional formulation of rigid-

flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20(1), 1–28 (2008).
https://doi.org/10.1007/s11044-008-9103-9

9. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal coordinate
formulation. Nonlinear Dyn. 45(1–2), 109–130 (2006)

10. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the
absolute nodal coordinate formulation. Multibody Syst. Dyn. 20(4), 359–384 (2008)

11. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: a Spectral Approach. Springer, New York
(1991)

https://doi.org/10.1016/j.ymssp.2013.01.024
https://doi.org/10.1016/j.cma.2013.12.010
https://doi.org/10.1016/j.cma.2015.11.032
https://doi.org/10.1016/j.mechmachtheory.2008.10.003
https://doi.org/10.1007/s11044-008-9103-9


Dynamic computation for rigid–flexible multibody systems with hybrid 63

12. Isukapalli, S.S.: Uncertainty Analysis of Transport-Transformation Models. State University of New
Jersey, New Brunswick (1999)

13. Jiang, C., Zheng, J., Han, X.: Probability-interval hybrid uncertainty analysis for structures with
both aleatory and epistemic uncertainties: a review. Struct. Multidiscip. Optim. (2017). https://doi.org/
10.1007/s00158-017-1864-4

14. Kang, Z., Luo, Y.: Non-probabilistic reliability-based topology optimization of geometrically nonlinear
structures using convex models. Comput. Methods Appl. Mech. Eng. 198(41–44), 3228–3238 (2009)

15. Li, C.C., Der Kiureghian, A.: Optimal discretization of random field. J. Eng. Mech. 119, 1136–1154
(1993)

16. Sandu, C., Sandu, A., Blanchard, E.D.: Polynomial chaos-based parameter estimation methods applied to
a vehicle system. J. Multi-Body Dyn. 224(1), 59–81 (2010). https://doi.org/10.1243/14644193jmbd204

17. Sarkar, A., Ghanem, R.: Mid-frequency structural dynamics with parameter uncertainty. Comput. Meth-
ods Appl. Mech. Eng. 191, 5499–5513 (2002)

18. Shabana, A.A.: An Absolute Nodal Coordinates Formulation for the Large Rotation and Deformation
Analysis of Flexible Bodies. University of Illinois, Chicago (1997)

19. Shabana, A.A.: Definition of the slopes and absolute nodal coordinate formulation. Multibody Syst. Dyn.
1, 339–348 (1997)

20. Shabana, A.A.: Flexible multi-body dynamics review of past and recent developments. Multibody Syst.
Dyn. 1, 189–222 (1997)

21. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, New York (2005)
22. Shabana, A.A.: ANCF reference node for multibody system analysis. J. Multi-Body Dyn. 229(1), 109–

112 (2014). https://doi.org/10.1177/1464419314546342
23. Sudret, B., Der Kiureghian, A.: Stochastic Finite Element Methods and Reliability a State-of-the-Art

Report. University of Calnifornia, Berkeley (2000)
24. Tian, Q., Chen, L.P., Zhang, Y.Q., Yang, J.: An efficient hybrid method for multibody dynamics simu-

lation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4(2), 021009 (2009).
https://doi.org/10.1115/1.3079783

25. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical
joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2010).
https://doi.org/10.1007/s11071-010-9843-y

26. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical
joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011).
https://doi.org/10.1007/s11071-010-9843-y

27. Tian, Q., Xiao, Q., Sun, Y., Hu, H., Liu, H., Flores, P.: Coupling dynamics of a geared multibody system
supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33(3), 259–284
(2014). https://doi.org/10.1007/s11044-014-9420-0

28. Wang, Z., Tian, Q., Hu, H.: Dynamics of spatial rigid–flexible multibody systems with uncertain interval
parameters. Nonlinear Dyn. 84(2), 527–548 (2016). https://doi.org/10.1007/s11071-015-2504-4

29. Wang, Z., Tian, Q., Hu, H.: Dynamics of flexible multibody systems with hybrid uncertain parameters.
Mech. Mach. Theory 121, 128–147 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.09.024

30. Wu, J., Luo, Z., Zhang, Y., Zhang, N., Chen, L.: Interval uncertain method for multibody mechani-
cal systems using Chebyshev inclusion functions. Int. J. Numer. Methods Eng. 95(7), 608–630 (2013).
https://doi.org/10.1002/nme.4525

31. Wu, J., Luo, Z., Zhang, N., Zhang, Y.: A new uncertain analysis method and its application
in vehicle dynamics. Mech. Syst. Signal Process. 50–51, 659–675 (2015). https://doi.org/10.1016/
j.ymssp.2014.05.036

32. Wu, D., Gao, W., Song, C., Tangaramvong, S.: Probabilistic interval stability assessment for structures
with mixed uncertainty. Struct. Saf. 58, 105–118 (2016). https://doi.org/10.1016/j.strusafe.2015.09.003

33. Wu, J., Luo, Z., Zhang, N., Zhang, Y.: Dynamic computation of flexible multibody system with
uncertain material properties. Nonlinear Dyn. 85(2), 1231–1254 (2016). https://doi.org/10.1007/
s11071-016-2757-6

34. Wu, J., Luo, Z., Li, H., Zhang, N.: Level-set topology optimization for mechanical metamaterials under
hybrid uncertainties. Comput. Methods Appl. Mech. Eng. 319, 414–441 (2017). https://doi.org/10.1016/
j.cma.2017.03.002

35. Wu, J., Luo, Z., Li, H., Zhang, N.: A new hybrid uncertainty optimization method for structures
using orthogonal series expansion. Appl. Math. Model. 45, 474–490 (2017). https://doi.org/10.1016/
j.apm.2017.01.006

36. Wu, J., Luo, Z., Zhang, N., Zhang, Y., Walker, P.D.: Uncertain dynamic analysis for rigid-flexible mech-
anisms with random geometry and material properties. Mech. Syst. Signal Process. 85, 487–511 (2017).
https://doi.org/10.1016/j.ymssp.2016.08.040

https://doi.org/10.1007/s00158-017-1864-4
https://doi.org/10.1007/s00158-017-1864-4
https://doi.org/10.1243/14644193jmbd204
https://doi.org/10.1177/1464419314546342
https://doi.org/10.1115/1.3079783
https://doi.org/10.1007/s11071-010-9843-y
https://doi.org/10.1007/s11071-010-9843-y
https://doi.org/10.1007/s11044-014-9420-0
https://doi.org/10.1007/s11071-015-2504-4
https://doi.org/10.1016/j.mechmachtheory.2017.09.024
https://doi.org/10.1002/nme.4525
https://doi.org/10.1016/j.ymssp.2014.05.036
https://doi.org/10.1016/j.ymssp.2014.05.036
https://doi.org/10.1016/j.strusafe.2015.09.003
https://doi.org/10.1007/s11071-016-2757-6
https://doi.org/10.1007/s11071-016-2757-6
https://doi.org/10.1016/j.cma.2017.03.002
https://doi.org/10.1016/j.cma.2017.03.002
https://doi.org/10.1016/j.apm.2017.01.006
https://doi.org/10.1016/j.apm.2017.01.006
https://doi.org/10.1016/j.ymssp.2016.08.040


64 J. Wu et al.

37. Xia, B., Yu, D., Liu, J.: Change-of-variable interval stochastic perturbation method for hybrid uncertain
structural-acoustic systems with random and interval variables. J. Fluids Struct. 50, 461–478 (2014)

38. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in steady state diffusion problems via generalized
polynomial chaos. Comput. Methods Appl. Mech. Eng. 191, 4927–4948 (2002)

39. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos.
J. Comput. Phys. 187(1), 137–167 (2003). https://doi.org/10.1016/s0021-9991(03)00092-5

40. Zhang, J., Ellingwood, B.: Orthogonal series expansion of random fields in reliability analysis. J. Eng.
Mech. 120, 2660–2677 (1994)

41. Zhang, Y., Tian, Q., Chen, L., Yang, J.: Simulation of a viscoelastic flexible multibody system using ab-
solute nodal coordinate and fractional derivative methods. Multibody Syst. Dyn. 21(3), 281–303 (2008).
https://doi.org/10.1007/s11044-008-9139-x

42. Zhou, B., Zi, B., Qian, S.: Dynamics-based nonsingular interval model and luffing angular response field
analysis of the DACS with narrowly bounded uncertainty. Nonlinear Dyn. 90, 2599–2626 (2017)

https://doi.org/10.1016/s0021-9991(03)00092-5
https://doi.org/10.1007/s11044-008-9139-x

	Dynamic computation for rigid-ﬂexible multibody systems with hybrid uncertainty of randomness and interval
	Abstract
	Introduction
	Description of hybrid uncertain problems
	Evaluation index for hybrid uncertain problems
	Reference method for solving hybrid uncertain problems

	Improved hybrid uncertain analysis method
	PCCI method for hybrid uncertain analysis
	Improved PCCI method

	ANCF-based method for solving multibody systems
	Dynamic modeling for rigid-ﬂexible multibody systems
	Dynamic equations of rigid-ﬂexible multibody systems

	Hybrid uncertain analysis for rigid-ﬂexible multibody systems
	Uncertain factors in rigid-ﬂexible multibody systems
	Numerical implementation process
	Numerical example for a slider-crank mechanism

	Conclusions
	Acknowledgements
	References


