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Abstract This paper presents a disturbance rejection control strategy for hybrid dynamic
systems exposed to model uncertainties and external disturbances. The focus of this work is
the gait control of dynamic bipedal robots. The proposed control strategy integrates contin-
uous and discrete control actions. The continuous control action uses a novel model-based
active disturbance rejection control (ADRC) approach to track gait trajectory references.
The discrete control action resets the gait trajectory references after the impact produced
by the robot’s support-leg exchange to maintain a zero tracking error. A Poincaré return
map is used to search asymptotic stable periodic orbits in an extended hybrid zero dynamics
(EHZD). The EHZD reflects a lower-dimensional representation of the full hybrid dynamics
with uncertainties and disturbances. A physical bipedal robot testbed, referred to as Saurian,
is fabricated for validation purposes. Numerical simulation and physical experiments show
the robustness of the proposed control strategy against external disturbances and model un-
certainties that affect both the swing motion phase and the support-leg exchange.
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1 Introduction

The gait stability of a bipedal robot is largely determined by its ability to reject the effects of
model uncertainties and unknown external disturbances. The rejection of model uncertain-
ties has been extensively studied and addressed through approaches that include exhaustive
gait pattern generation [7, 8, 12, 13], adaptive control L1 [34], sliding mode control [11,
35], robust stabilization of periodic orbits [20, 21], and robust boundedness based on param-
eter uncertainties [28, 29]. Benefits in robustness have also been explored with the use of
a motorized reaction wheel [3, 4]. Overall, these control techniques have achieved success-
ful walking over controlled environments. However, they isolate the problem of dynamic
uncertainties from the problem of external disturbances attenuation; thus, the external dis-
turbances are not explicitly considered and their rejection is not guaranteed. Rejection of
external disturbances (unknown forces and torques) has received less attention and fewer
reports are found in the literature. Available methods make use of gait pattern generators
based on heuristics [30, 36] and robust optimization [18, 27]. Conditions to achieve ape-
riodic gait patterns in the presence of persistent disturbances have been proposed in [40].
A recent development reported in [33] makes use of a robust nonlinear H∞-controller that
ensures internal asymptotic stability. Despite the effectiveness and conservative nature of
this controller, their approach does not allow one to bound the control signals and the result-
ing peak torques may be unattainable in a physical implementation. Alternative approaches
to addressing both model uncertainties and external disturbances have not been sufficiently
explored.

This work introduces a hybrid disturbance rejection control strategy to reject both model
uncertainties and external disturbances incorporating two key control elements: (i) a contin-
uous model-based active disturbance rejection control (ADRC) and (ii) a discrete adaptive
controller. The continuous model-based ADRC allows disturbance estimation and active
rejection in the continuous domain of the robot dynamics. This proposed strategy extends
the traditional (non-model-based) ADRC approach that uses a simplified model to estimate
and reject a unified disturbance signal [9]. This traditional control method has been eval-
uated in variety of applications such as bipedal robots [1], gait exoskeletons [31], among
other mechatronic systems [2, 5, 37]. Although the traditional ADRC approach has shown a
robust, closed-loop behavior, it has also shown limitations in its closed-loop performance
caused by the limited use of the available model information [16, 17, 42]. In contrast,
the proposed model-based ADRC approach allows one to estimate and reject the effects
of model uncertainties and external disturbances using all available model information.

The discrete adaptive controller in the proposed hybrid disturbance rejection control strat-
egy resets the gait trajectories after each support-leg exchange. The trajectories are reset with
a control law based on a nonlinear state observer, which estimates the states of the robot after
the support-leg exchange. In this way, the design of the hybrid disturbance rejection control
strategy considers external disturbances and model uncertainties in both continuous and dis-
crete dynamics. The stability of the gait can be evaluated using a reduced-order dynamics,
i.e., an extended hybrid zero dynamics (EHZD).

This paper is organized as follows: Sect. 2 describes the features of a dynamic bipedal
robot and its mathematical model. Section 3 presents the proposed model-based ADRC
for trajectory tracking. Section 4 proposes a discrete adaptive trajectory generation strategy
based on virtual constraints; here, a technique to guaranty the zero dynamics invariance for
walking under uncertainties is developed. Section 5.1 develops the EHZD, which includes
the uncertainties and disturbances in the zero dynamics. Section 5.2 presents the EHZD-
based stability test; here, the Poincaré return map is used to analyze the asymptotic orbital
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Fig. 1 Robot developed at the Control Laboratory in the National University of Colombia, Bogotá

periodic stability of the walking under uncertainties. Section 6 contains the numerical evalu-
ation of the proposed strategies. Section 7 presents the description of the Saurian testbed and
shows the result of stable walking experiments. Section 8 summarizes the accomplishments
of this work and draws recommendations for future developments.

2 Hybrid model

The gait of dynamic bipedal robots is mathematically described with a hybrid dynamic
model. This model integrates continuous dynamics and discrete dynamics. The continu-
ous dynamics takes place in the swing gait phase with a single support-leg. The discrete
dynamics takes place in a double support phase during the support-leg exchange. The dou-
ble support phase is considered instantaneous and the support leg-end has unilateral con-
straints [41]. These constraints allow one to study the contact between the support leg-end
and the ground as a passive pivot. They also imply that the normal reaction force in the
support leg-end is repulsive and that the tangential reaction does not produce slipping.

The bipedal robot developed in this work is designed with a torso and two identical legs
(Fig. 1(a)). The robot has five rigid links that form a planar mechanism (Fig. 1(b)). Each leg
has two links connected by a revolute (pin) joint that forms the knee. The leg-ends have a
point-feet without an ankle.

Each of the robot’s legs is an open linkage of two rigid bodies: thigh and shin. Figure 2
shows the linkage corresponding to the left leg, which is identical to the one of the right leg.
The location of the (left) hip and knee joints are represented by hl and kl , respectively. In this
figure, τhl and τkl represent the torques from the actuators on the hip and knee mechanisms,
respectively. Here, the subindex l is used for the left side and the subindex r will be used for
the right side. The hip and knee mechanisms have two four-bar mechanisms, each connected
through a bi-directional spring arrangement with an equivalent torsional spring constant E.
The springs provides compliance to the robot’s dynamics, which allows (i) to isolate the



284 J. Arcos-Legarda et al.

Fig. 2 Torque transmission
mechanism

actuator from the effect of the impacts produced during the support-leg exchange and (ii) to
store the impact energy to be used in the propulsion of the next step. In total, the robot has
11 degrees of freedom (DOFs) distributed as follows:

kl Left knee joint
kr Right knee joint
hl Left hip joint
hr Right hip joint
qT Torso absolute angle
ph

1 Horizontal position of the support leg-end
pv

1 Vertical position of the support leg-end
k′

l Flexible left knee joint
k′

r Flexible right knee joint
h′

l Flexible left hip joint
h′

r Flexible right hip joint

The Lagrange differential equation can be used to derive the mathematical model of
the swing phase of a planar dynamic bipedal robot with rigid bodies and serial compliant
actuation [39]. This model considers the springs effect as part of the input generalized forces;
thus, the swing phase dynamics is defined by the Euler–Lagrange equation

Ds(qs)q̈s + Cs(qs, q̇s)q̇s + Gs(qs) = Γs, (1)

where Γs is the vector of generalized forces and torques, qs := [hl hr kl kr qT ]T
is the gen-

eralized coordinates vector shown in Fig. 1(b), Ds(qs) is the inertia matrix, Cs(qs, q̇s)q̇s is
the vector of centripetal and Coriolis effects, and Gs(qs) is the vector of torques associated
to the gravity.

In our model, the vector of generalized forces and torques Γs is defined as

Γs = Bs(qs)u + K
(
qb − q ′

b

) + δ(qs, q̇s) + ζ(t), (2)
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where u is the vector of torque control inputs, the input matrix Bs(qs) defines how the control
inputs u affect the controlled joints, the position vector qb := [hl hr kl kr ]T

contains the

controlled joints, q ′
b := [h′

l h′
r k′

l k′
r ]T

are the relative angles of the compliant transmission,
ζ(t) is the vector of the unknown external disturbances. In order to simplify the model, the
compliance is modeled as an external force, instead of including it as part of the potential
energy [39]. Thus, the interacting forces in the compliant transmission are considered in
K(qb − q ′

b), where K is the matrix with the spring stiffness values E, and δ(qs, q̇s) is a
vector that models mismatching and parameter uncertainties. In this case, δ(qs, q̇s) includes
the unmodeled dynamics of the flexible joints.

The spring torques, model uncertainties, and external disturbances are lumped into a
vector of total disturbance signals γ (x, t). In this way, the perturbed model can be expressed
by rewriting (1) and (2) in the general input affine form

ẋ = f (x) + g(x)u + γ (x, t), (3)

where x := [
qs

T q̇T
s

]T
is the state space vector in R

n,

f (x) :=
[

q̇s

Ds(qs)
−1[−Cs(qs, q̇s)q̇s − Gs(qs)]

]
, (4)

g(x) :=
[

0
Ds(qs)

−1Bs

]
, (5)

and

γ (x, t) :=
[

0
Ds(qs)

−1[K(qb − q ′
b) + δ(qs, q̇s) + ζ(t)]

]
. (6)

The support-leg exchange is assumed to be an inelastic impact that takes place during
an instantaneous double-leg support event [24]. In our model, this impact produces sudden
changes in the angular velocities of the joints and triggers the reset function

x+ := �
(
x−) + γ�, (7)

where x− and x+ are the state variables just before and after the support-leg exchange,
respectively, γ� models the uncertainties in the reset function, and

�
(
x−) :=

[
�q(q

−
s )

�q̇(q
−
s )q̇−

s

]
, (8)

where �q(q
−
s ) represents a rearrangement of the position vector qs and �q̇(q

−
s )q̇−

s repre-
sents the angular velocity changes.

The hybrid model considers the continuous model (3) and the discrete reset function (7)
as

Σ :
{

ẋ = f (x) + g(x)u + γ (x, t), x− /∈ S,

x+ = �(x−) + γ�, x− ∈ S,
(9)

where the switching set is defined as

S :=
{[

qs
T q̇T

s

]T ∈ R
n |pv

2(qs) = d, ṗv
2(qs, q̇s) < 0

}
, (10)

where pv
2(qs) is the vertical Cartesian position of the swing leg-end, and d is the terrain

height, which under nominal conditions is d = 0.



286 J. Arcos-Legarda et al.

3 Model-based active disturbance rejection control (ADRC)
for trajectory tracking

In order to provide robustness to the control of continuous dynamics against unknown model
uncertainties and external disturbances, active disturbance rejection control (ADRC)-based
tracking has been successfully utilized [10, 23]. The ADRC-based tracking collects both
endogenous (state-dependent) disturbances and exogenous (external force-dependent) dis-
turbances into a lumped signal referred to as the total disturbance. The total disturbance is
treated as an unknown bounded signal with m continuous and bounded derivatives [37]. The
core component of the ADRC-based tracking is the design of an extended state observer
(ESO) that estimates the total disturbance, which is, then, actively rejected through feed-
back control [23]. With this approach, the nonlinearities of the system are represented in a
simplified model, affine in the control input, with a chain of integrators and the total dis-
turbance. This has shown to handle differences between the dynamics of the physical robot
and its mathematical model, driving the tracking errors to small, acceptable values [17]. Un-
fortunately, neglecting the system nonlinearities drastically reduces the performance of the
closed-loop system.

In this work, the trajectory tracking incorporates a model-based ADRC for hybrid dy-
namical systems that considers all the known system nonlinearities. In this approach, a non-
linear ESO estimates the total disturbance as well as the state variables. The design of the
proposed model-based ADRC is divided into three stages. First, a local coordinate trans-
formation is performed to express the robot model into a normal form. Second, a nonlinear
extended state observer (NESO) is designed to estimate the total disturbances in the robot.
Finally, a feedback control law is proposed to perform an active cancellation of the distur-
bances.

3.1 Local coordinate transformation

A local coordinate transformation is proposed to express the model of the robot into a normal
form. To this end, the controlled output vector h(x) (tracking error) is expressed as a function
of the control-input vector u (torque). This transformation formulates an explicit expression
for the underactuated dynamics and decomposes the model into a reachable part and an
unreachable part. The transformation also reveals important properties of the model such
as its relative degree. In this way, the output vector, which is a function of the generalized
coordinates qs , is defined as

y := h(x) = qd(qs) − qb, (11)

where qb is the vector of controlled joints and qd(qs) is the vector of target trajectories. In
order to express the output vector as a function of the control-input vector, successive time
differentiations of (11) are performed until the control-input terms are explicit. This is,

dy

dt
= ∂h

∂x
ẋ (12)

=
[

∂h
∂qs

∂h
∂q̇s

] [
f (x) + g(x)u + γ (x, t)

]
(13)

= ∇hf (x) + ∇hg(x)u + ∇hγ (x, t) (14)

= Lf h + Lghu + Lγ h, (15)
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where h is the short expression for h(x) and Lf h, Lgh, Lγ h, are the Lie derivatives of h

along the vector fields f , g, and γ , respectively. Given that h is independent of q̇s , then

∂h

∂q̇s

= 0, (16)

therefore,

∇h =
[

∂h
∂qs

0
]
. (17)

Based on the structure of (5), (6) and (17), the Lie derivatives of h along g and γ are

Lgh = 0, and Lγ h = 0.

Then the time derivative of the output can be expressed as

dy

dt
= Lf h. (18)

Given that (18) is independent of u, an additional time derivative of the output is applied,

d2y

dt2
=

[
∂

∂qs
( ∂h

∂qs
q̇s)

∂h
∂qs

] [
f (x) + g(x)u + γ (x, t)

]
, (19)

= L2
f h + LgLf hu + Lγ Lf h, (20)

where L2
f h := Lf (Lf h), LgLf h = ∂h

∂qs
Ds(qs)

−1Bs is a known decoupling matrix that is
locally invertible [41], and Lγ Lf h is a vector with the lumped total disturbance signals.
The input-state interaction found in (20) implies that the robot has a relative degree equal to
the sum of the relative degrees associated to each output, which are defined by the number
of time derivatives required to make the control output a function of the control signal.
That is, r = r1 + · · · + rk , where k is the number of controlled joints. The relative degree
for the bipedal robot considered in this work, which has one degree of underactuation, is
r = 2k = n − 2, where n is the number of state variables in the swing phase. After the
definition of the relative degree r , it is possible to define a mapping

Φ(x) := [
φ1,1(x), · · · , φ1,k(x), φ2,1(x), · · · , φ2,k(x), φr+1(x), · · · , φn(x)

]T
, (21)

such that the Jacobian matrix of Φ(x) at the equilibrium point x◦ is nonsingular. Then Φ(x)

is a local coordinate transformation of (3), that is, it is locally invertible in the neighborhood
of x◦ [26, Sect. 4.1].

Let us define the first r coordinate transformation functions as

ξ =

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

ξ1,1
...

ξ1,k

ξ2,1
...

ξ2,k

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

:=

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

φ1,1(x)
...

φ1,k(x)

φ2,1(x)
...

φ2,k(x)

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

:=

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

h1(x)
...

hk(x)

Lf h1(x)
...

Lf hk(x)

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

, (22)

where ξ is the vector of the first r state variable of the transformation.
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Since n− r = 2, it is possible to define two control-input independent functions, φr+1(x)

and φr+2(x), to complete the transformation, such that

Lgφr+1(x) = 0, and Lgφr+2(x) = 0.

Following [41], these two functions can be defined as,

η =
[

η1

η2

]
:=

[
φr+1(x)

φr+2(x)

]
:=

[
Θ(qs)

Dn(qs)q̇s

]
, (23)

where η is the vector of the last n− r state variable of the transformation, Θ(qs) is the angle
between the ground and the virtual link that connects the support leg-end with the hip (see
Fig. 1(b)).

The transformation defined by (22) and (23) is invertible. This is

x =
[

qs

q̇s

]
= Φ−1(ξ, η). (24)

For the specific case of our robot,

qs =

⎡

⎢⎢
⎢⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−1 0 − 1
2 0 1

⎤

⎥⎥
⎥⎥
⎦

⎡

⎢⎢
⎢⎢
⎣

qd,1 − ξ1,1

qd,2 − ξ1,2

qd,3 − ξ1,3

qd,4 − ξ1,4

η1

⎤

⎥⎥
⎥⎥
⎦

+

⎡

⎢⎢
⎢⎢
⎣

0
0
0
0
π
2

⎤

⎥⎥
⎥⎥
⎦

(25)

and

q̇s =
[

dh
dqs

Dn(qs)

]−1

⎡

⎢⎢
⎢⎢
⎣

ξ2,1

ξ2,2

ξ2,3

ξ2,4

η2

⎤

⎥⎥
⎥⎥
⎦

. (26)

The definition of the robot model considers disturbances that cannot be decoupled from
the system dynamics; therefore, the Lie derivatives of Lf h, and φr+2(x) along γ are different
from zero,

Lγ Lf h �= 0, and Lγ φr+2(x) �= 0.

Notably, since φr+1(x) is a function of the generalized coordinates only, then Lγ φr+1(x) is
equal to zero.

In order to model the disturbances, let us assume that each term of the vector Lγ Lf h

can be locally approximated by a self-updated time-polynomial m− 1 degree. Then the mth
time derivative of (Lγ Lf h)j vanishes,

(
dm

dtm

(
Lγ Lf h

(
Φ−1(ξ, η)

)))

j

≈ 0. (27)

In the same way, let us assume that Lγ φr+2(x) can be locally approximated by a constant,
then

d

dt

(
Lγ φr+2(x)

) ≈ 0. (28)
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The aforementioned assumptions are valid in the signal processing framework; thus,
(Lγ Lf h)j and Lγ φr+2(x) can be locally estimated in a small time-window around the cur-
rent time. Based on the above assumptions (27) and (28), one can define Lγ Lf h, its corre-
sponding m − 1 time derivatives, and Lγ φr+2(x) as extended state variables of the model,

zj =

⎡

⎢
⎢⎢
⎣

z1,j

z2,j

...

zm,j

⎤

⎥
⎥⎥
⎦

:=

⎡

⎢
⎢⎢
⎣

(Lγ Lf h)j

( d
dt

(Lγ Lf h))j

...

( dm−1

dtm−1 (Lγ Lf h))j

⎤

⎥
⎥⎥
⎦

, (29)

ρ := Lγ φr+2(x), (30)

for all j ∈ {1, . . . , k}.
In an extended normal form, the continuous dynamics (3) can be expressed as a function

of the state variables ξ , η, zj , and ρ as

ξ̇1,j = ξ2,j

ξ̇2,j = ϕj (ξ, η) + z1,j

ż1,j = z2,j

ż2,j = z3,j

...

żm,j = ( dm

dtm
(Lγ Lf h(Φ−1(ξ, η))))j

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

∀j, (31)

⎡

⎣
η̇1

η̇2

ρ̇

⎤

⎦ =
⎡

⎣
Lf φr+1(Φ

−1(ξ, η))

Lf φr+2(Φ
−1(ξ, η)) + ρ(t)

d
dt

ρ(t)

⎤

⎦ , (32)

y = h
(
Φ−1(ξ, η)

)
, (33)

where

ϕj (ξ, η) = (
L2

f h
(
Φ−1(ξ, η)

))
j
+ (

LgLf h
(
Φ−1(ξ, η)

)
u
)
j
.

In Sect. 3.2, the extended model described by (31), (32), and (33) is used to derive a
nonlinear extended state observer that estimates the state variables and the total disturbances.

3.2 Nonlinear extended state observer

An estimation of the state variables ξ , η, zj , and ρ can be found with the use of a nonlinear
extended state observer (NESO). The NESO design is based on the extended state model
proposed in the local coordinate transformation (31), (32), and (33). Then, let us define the
NESO as

˙̂
ξ1,j = ξ̂2,j + lm+1,j (ξ1,j − ξ̂1,j ),˙̂
ξ2,j = ϕj (ξ̂ , η̂) + ẑ1,j + lm,j (ξ1,j − ξ̂1,j ),˙̂z1,j = ẑ2,j + lm−1,j (ξ1,j − ξ̂1,j ),˙̂z2,j = ẑ3,j + lm−2,j (ξ1,j − ξ̂1,j ),

...
˙̂zm,j = l0,j (ξ1,j − ξ̂1,j ),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀j, (34)
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⎡

⎣
˙̂η1˙̂η2˙̂ρ

⎤

⎦ =
⎡

⎣
Lf φr+1(Φ

−1(ξ̂ , η̂)) + α2(η1 − η̂1)

Lf φr+2(Φ
−1(ξ̂ , η̂)) + ρ̂ + α1(η1 − η̂1)

α0(η1 − η̂1)

⎤

⎦ , (35)

where l and α are the observer gains and the ξ̂ is the estimate of ξ (same for z, η, and ρ).
Let us define the estimation error vectors as follows:

êj =

⎡

⎢⎢
⎢⎢⎢
⎣

ξ1,j − ξ̂1,j

ξ2,j − ξ̂2,j

z1,j − ẑ1,j

...

zm,j − ẑm,j

⎤

⎥⎥
⎥⎥⎥
⎦

∀j, (36)

�̂ =
⎡

⎣
η1 − η̂1

η2 − η̂2

ρ − ρ̂

⎤

⎦ . (37)

Now, subtracting the observer equations (34) and (35) from the extended model equations
(31) and (32), it is possible to write the error estimation dynamics as

˙̂ej = Âj êj + B̂

(
dm(Lγ Lf h(Φ−1(ξ, η)))

dtm

)

j

+ F̂ , ∀j, (38)

˙̂� = Ã�̂ + B̃
dρ

dt
+ F̃ , (39)

where

Âj =

⎡

⎢⎢
⎢⎢
⎢
⎣

−lm+1,j 1 0 · · · 0
−lm,j 0 1 · · · 0

...
...

...
. . .

...

−l1,j 0 0 · · · 1
−l0,j 0 0 · · · 0

⎤

⎥⎥
⎥⎥
⎥
⎦

, B̂ =

⎡

⎢⎢
⎢⎢
⎢
⎣

0
0
...

0
1

⎤

⎥⎥
⎥⎥
⎥
⎦

, F̂ =

⎡

⎢⎢
⎢⎢
⎢
⎣

0
1
0
...

0

⎤

⎥⎥
⎥⎥
⎥
⎦

(
ϕj (ξ, η) − ϕj (ξ̂ , η̂)

)
,

Ã =
⎡

⎣
−α2 1 0
−α1 0 1
−α0 0 0

⎤

⎦ , B̃ =
⎡

⎣
0
0
1

⎤

⎦ ,

F̃ =
⎡

⎣
Lf φr+1(Φ

−1(ξ, η)) − Lf φr+1(Φ
−1(ξ̂ , η̂))

Lf φr+2(Φ
−1(ξ, η)) − Lf φr+2(Φ

−1(ξ̂ , η̂))

0

⎤

⎦ .

Note that the difference between ϕj (ξ, η) and ϕj (ξ̂ , η̂) are treated as disturbances in the
estimation dynamics; thus, their effects are attenuated by the right selection of the observer
gains. Similar effects can be accomplished with the differences

Lf φr+1

(
Φ−1(ε, η)

) − Lf φr+1

(
Φ−1(ξ̂ , η̂)

)

and

Lf φr+2
(
Φ−1(ξ, η)

) − Lf φr+2
(
Φ−1(ξ̂ , η̂)

)
.
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The observer constants l and α must be appropriately selected in order to make the ma-
trices Âj ,∀j , and Ã Hurwitz and to achieve asymptotic estimation of the states and the
disturbances. In order to guarantee a small estimation error before the support leg exchange,
the convergence rate must be selected such that the estimation error converges to a small
value close to zero before the next support-leg exchange. To achieve this task, it is conve-
nient to take into account that the convergence rate of the NESO is defined by the observer
gains l and α, and that the average time period of the swing phase can be estimated using
the target forward speed and the target step length.

3.3 Feedback control law

Let us use a feedback linearization strategy to design the control law for the model de-
scribed in (20). This strategy is observer-based and includes a state feedback as well as the
disturbance estimation. This is

u = u∗ + v, (40)

u∗ = −[LgLf h]−1
[
L2

f h
]
, (41)

v = −[LgLf h]−1[KDξ̂low + KP h + ẑlow], (42)

where

ξ̂low = [
ξ̂2,1 ξ̂2,2 · · · ξ̂2,k

]T
,

ẑlow = [
ẑ1,1 ẑ1,2 · · · ẑ1,k

]T
,

and KD,KP are diagonal positive definite matrices that tune the gains of the feedback con-
trol.

Substituting (40) into (20), the closed-loop system takes the form

d2h

dt2
+ KDξ̂low + KP h = Lγ Lf h − ẑlow. (43)

Considering accurate estimations of ξ̂low and ẑlow, the estimation errors asymptotically con-
verge to zero. Then the closed-loop system dynamics is dominated by the differential equa-
tion

d2h

dt2
+ KD

dh

dt
+ KP h ≈ 0. (44)

Finally, the control gain matrices KD and KP can be arbitrarily selected such that (44) is
stable and satisfies a desired convergence rate.

4 Discrete adaptive controller for trajectory generation

In order to provide robustness to the walking in the discrete dynamics, a reset control law is
proposed to generate an adaptive trajectory that ensures zero tracking error after the support-
leg exchange. The proposed trajectory generator uses a reset control law to restart the gait
trajectories, driving the tracking error to zero even when walking over unknown terrain.
While an event-based controller can be implemented to update the reference, such approach
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requires a repository of gait patterns [14, 19]. Instead, this work proposes a smooth transition
function from the post-impact states to a nominal trajectory. This smooth transition benefits
the state variables estimation because jumps in the controlled joints are avoided and the state
estimation remains in an invariant set [38, p. 68]. The trajectories design is divided into two
parts. The first part is the design of a nominal reference trajectory through the use of hybrid
zero dynamics. The second part is the design of a reset control law to perform the smooth
transition from the post-impact state to the reference nominal trajectory.

4.1 Design of the nominal reference trajectory

To achieve a stable gait, the controlled joints follow a set of nominal reference trajectories,
which are synchronized with the underactuated degree of freedom through a feedback con-
trol loop. The reference trajectories designed are known as the virtual holonomic constraints
(VHC) [41]. To synchronize the controlled joints with the underactuated degree of freedom
qT , the nominal reference trajectories are designed as functions of the angle Θ(qs) between
the ground and the virtual link that connects the support leg-end with the hip. Since Θ(qs) is
a function of qT , synchronizing the references with Θ(qs) also synchronizes the references
with qT .

In order to obtain a smooth motion of the controlled joints, the nominal reference trajec-
tories are determined through the Bézier polynomials

q̄d,j

(
Θ(qs)

) =
M∑

i=0

β
j

i

M!
i!(M − i)! s

i(1 − s)M−i , ∀j, (45)

where

s := Θ(qs) − Θ+

Θ− − Θ+ , (46)

Θ+ and Θ− are the Θ angles at the beginning and ending of the swing phase. The values
of Θ+ and Θ− are functions of the nominal configuration of the robot at the support-leg
exchange. The coefficients β

j

i in (45) are numerically selected to satisfy a set of constraints
that guarantee a stable gait in nominal conditions. To this end, let us define the nominal
values of the states just before and after the support-leg exchange as

x̄− :=
[

q̄−
s

˙̄q−
s

]
and x̄+ =

[
�q(q̄

−
s )

�q̇(q̄
−
s ) ˙̄q−

s

]
, (47)

respectively. Then the constraints in the trajectories at the beginning of the swing phase can
be defined as

h
(
�

(
x̄−)) = 0 and Lf h

(
�

(
x̄−)) = 0. (48)

An additional constraint is defined with the solution ϕf (t) of the continuous dynamics of
the robot (3) at the beginning, t0, and at the end of the swing phase, tf . This is,

x̄+ := ϕf (t0), and x̄− := ϕf (tf ). (49)
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4.2 Smooth transition from the post-impact state to the nominal reference
trajectory

Under uncertain discrete dynamics is not possible to ensure that the robot’s states before
the support-leg exchange are in their nominal values x̄−. In that way, let us define the pre-
switching states as

x− = x̄− + ε−, (50)

where ε− is the offset from the nominal pre-switching states. Then the post-switching states
are defined by an extension of the reset map in (7) as

x+ = �
(
x−) + γ�, (51)

(
x̄+ + ε+) = �

(
x̄− + ε−)

. (52)

Following the above result, it is possible to conclude that even if the reference trajectories
are designed to satisfy the conditions (48), it is uncertain whether these conditions will be
satisfied on uncertain terrain.

In order to avoid the sudden changes that could be produced by the uncertain terrain in
the controlled output h(x) and its Lie derivative Lf h(x), the post-impact angles q+

b and the
estimation of the angular velocities ˆ̇q−

s are used to perform a smooth transition from the
post-impact states to the nominal reference trajectories. To this end, let us define a passive
trend function that will act as passive reference just after the support-leg exchange. This is,

ϑj = (
�q̇

(
q−

s

) ˆ̇q−
s

)
j
τ + q+

b,j , ∀j, (53)

where τ is a time variable, which is reset to zero after each support-leg exchange. The values
of ϑ in (53) are used as the main passive reference just after the support-leg exchange. Then
a transition from ϑ to the nominal trajectory, q̄d (Θ(qs)), is performed with the use of the
equation

qd,j = q̄d,j

(
Θ(qs)

) + (
ϑj − q̄d,j

(
Θ(qs)

))
Bz(taux), ∀j, (54)

where Bz(taux) is a smooth function that changes from one to zero in a given period of time.
The function Bz(taux) is defined by a Bézier polynomial as

Bz(taux) =
3∑

i=0

bi

3!
i!(3 − i)! t

i
aux(1 − taux)

3−i , 0 ≤ taux ≤ 1, (55)

satisfying the boundary conditions

Bz(0) = b0 = 1, Bz(1) = b3 = 0,

(
∂Bz(taux)

∂taux

)∣
∣∣
∣
taux=0

= 3(b1 − b0) = 0,

and
(

∂Bz(taux)

∂taux

)∣∣∣
∣
taux=1

= 3(b3 − b2) = 0.
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The auxiliary time variable taux is defined such as (55) converges to zero in a fraction of the
time of a nominal swing phase. Thus,

taux = kτ τ, (56)

where kτ is a constant that sets the transition period of the reference to 1/kτ .

5 Stability analysis

5.1 Extended hybrid zero dynamics (EHZD)

The maximal internal dynamics of the system when the output is identical to zero is called
zero dynamics [26, p. 162]. Typically, the dimension of the zero dynamics is determined
by the difference between the order of the system and its relative degree, n − r ; however,
this dimension does not consider unmodeled dynamics, model mismatching, or parameter
uncertainties, which affects the stability of the system.

This paper proposes the use of an extended state variable ρ(t) that locally models the
effects of the uncertainties and disturbances in the zero dynamics. The extended state ρ(t)

and the states η1 and η2 in (32), with the state vector ξ being identically zero, produce the
extended zero dynamics

⎡

⎣
η̇1

η̇2

ρ̇

⎤

⎦ =
⎡

⎣
a(η)

b(η) + ρ(t)
d
dt

ρ(t)

⎤

⎦ , (57)

where

a(η) = Lf φr+1

(
Φ−1(ξ, η)

)∣∣
ξ=0

,

b(η) = Lf φr+2
(
Φ−1(ξ, η)

)∣∣
ξ=0

.

The dimension of the extended zero dynamics is considerable less than the dimension of the
system. Thus, the gait stability is encoded into a lower-dimensional system defined by the
extended zero dynamics.

Since the impact produced at the support-leg exchange affects the system dynamics with
a discrete event, the state variables of the extended zero dynamics are also affected. These
state variables are reset after each support-leg exchange with the discrete reset function

[
η+
ρ+

]
=

[
�η(η

−)

�ρ(ρ
−)

]
, (58)

where (η−, ρ−) and (η+, ρ+) are state variable of the extended zero dynamics state just be-
fore and after the support-leg exchange, respectively. �ρ(ρ

−) produces a unknown bounded
value and �η can be computed directly from (7) and (23). This is

η+ =
[

η+
1

η+
2

]
=

[
Θ(q+

s )

Dn(q
+
s )q̇s

+

]
=

[
Θ(�q(q

−
s ))

Dn(�q(q
−
s ))�q̇(q

−
s )q̇−

s

]
= �η

(
η−)

. (59)

An extended hybrid zero dynamics (EHZD) is defined by (57) and (58). In a compact
form, the EHZD can be written as

Ση :
{

żη = fη(zη), z−
η /∈ S ∩Z,

z+
η = �z(z

−
η ), z−

η ∈ S ∩Z,
(60)
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where

Z :=
{[

qs
T q̇T

s

]T ∈ R
n |y = h(qs) = 0, ẏ = ∂h(qs)

∂qs

q̇s = 0

}
, (61)

zη =
⎡

⎣
η1

η2

ρ

⎤

⎦ , fη(zη) =
⎡

⎣
a(η)

b(η) + ρ(t)
d
dt

ρ(t)

⎤

⎦ , and �z

(
z−
η

) =
[

�η(η
−)

�ρ(ρ
−)

]
.

The next section defines a stability test for the EHZD using the estimations of the extended
state observer developed in Sect. 3.2.

5.2 Asymptotic periodic orbits in EHZD

Under the assumption that the states h and Lf h converge asymptotically to zero and remain
zero after the support-leg exchange, there is an invariant set determined by the EHZD, which
has the gait stability encoded. In this way, the gait stability can be defined by the presence
of asymptotic periodic orbits in the evolution of the state variables of the EHZD. The use of
the Poincaré return map transforms the problem of finding periodic orbits into a problem of
finding fixed points of a particular discrete-time, nonlinear system [41, Chap. 4].

This paper uses a stability test of the EHZD with the inclusion of an extended state that
models the zero dynamics uncertainties. The use of an extended state in the computation of
the Poincaré return map allows one to determine whether the uncertainties in the hybrid zero
dynamics are periodic. If the uncertainties in the hybrid zero dynamics are periodic, then the
uncertainties are bounded and do not cause instability.

In this work, the uncertainties (and disturbances) can be classified as persistent and non-
persistent. Persistent uncertainties are inherent to the model and include unmodeled dy-
namics, model mismatching, and parameter uncertainties. Non-persistent uncertainties are
sporadic external events and include rough terrain and external disturbances. In this way, the
extended state variable ρ can be expressed as

ρ = ρp + ρp̄, (62)

where ρp and ρp̄ represent the effect of the persistent and non-persistent uncertainties and
disturbances in the zero dynamics, respectively. A periodic dynamic behavior is only ob-
served under undisturbed conditions of operation, e.g., walking on flat terrain, constant me-
chanical properties, and no external disturbances. In this case, ρp̄ = 0. Thus, the stability
can be determined based on the periodicity of the EHZD with persistent uncertainties and
disturbances.

In order to numerically compute the Poincaré return map, values of η1, η2, and ρ̂ are
sampled just before the support-leg exchange. Sampled values are collected in the vector
z̃η(k) := [

η−
1 η−

2 ρ̂− ]T
, where k is a discrete-time variable that represents the kth support-

leg exchange. Then the Poincaré return map can be expressed as

z̃η(k + 1) = P̃
(
z̃η(k)

)
, (63)

where P̃ (z̃η(k)) maps the state variables of the extended zero dynamics just before the
support-leg exchange of the current step z̃η(k) to the states of the next support-leg exchange
z̃η(k + 1). In order to test the stability of (63), a linear approximation of P̃ (z̃η(k)) around a
fixed point z̃∗

η(k) is performed. The linear approximation is given by

z̃η(k + 1) ≈ Φ̃z̃η(k), (64)
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Table 1 Physical parameters of
the robot Model parameter Unit Link Value

Mass kg Torso 2.5

Tight 1.0

Shin 0.4

Length m Torso 0.291

Tight 0.185

Shin 0.185

Inertia kg m2 Torso 0.014

Tight 0.010

Shin 0.002

Mass center m Torso 0.062

Tight 0.086

Shin 0.055

where Φ̃ is the Jacobian of P̃ (z̃η(k)) around z̃∗
η(k).

The eigenvalues of Φ̃ are used to indicate whether the gait is stable or not. In such a way,
if the magnitude of the eigenvalues λ(Φ̃) satisfy

∣∣λ(Φ̃)
∣∣ < 1, (65)

then (64) is asymptotically stable. In this way, the EHZD and, consequently, the full hybrid
model have asymptotic periodic orbits; therefore, the gait is stable.

6 Numerical simulation

A numerical simulation is performed to evaluate the proposed hybrid disturbance rejection
control strategy. The physical parameters of the robot are summarized Table 1. The number
of extended state variables in each controlled joint is m = 1. The observer constants l and α

are selected such that Âj in (38) and Ã in (39) are Hurwitz. Then the 12 selected eigenvalues
of Âj are λ(Âj ) = −1300,−1200, . . . ,−200, and the three selected eigenvalues of Ã are
λ(Ã) = −990,−5 ± 8.7i. The constant kτ = 3.3 is used in (56).

6.1 Nominal conditions

The evaluation of the walking on a flat terrain is performed during 50 steps under nominal
conditions (i.e., without external disturbances). The tracking trajectory and control torques
of the first two seconds of the simulation are shown in Fig. 3(a). An effective tracking of
the reference is achieved with torques bounded in the range ±5 N m. The reaction forces
in the support-leg are shown in Fig. 3(b). As expected, the normal reaction force FN is
non-negative. Also, the absolute value of the ratio between the tangential and normal re-
action forces is less than the friction coefficient, μ = 0.6. This confirms that the unilateral
constraints in the support-leg end are satisfied.
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Fig. 3 (a) Tracking trajectories and control signals. (b) Reaction forces in the support leg-end (Color figure
online)

Fig. 4 Stick diagram of the
walking simulation over uneven
terrain

6.2 Model uncertainties

In order to test the robustness against model uncertainties, an evaluation of the gait over
uneven terrain is shown in Fig. 4. In this simulation, the terrain has random height variation
in the range of ±5 mm. The simulation shows that, in the presence of random conditions at
the support-leg exchange, the hybrid control has a robust performance.

6.3 External disturbances

In order to test the robustness against external disturbances, a gait test over flat terrain is
performed during 20 steps. At the 10th step, the robot is perturbed with external torques.
The value of the external torques is 2 N m, which corresponds to 40% the nominal torque
of the actuators. The external torques are applied simultaneously to all the controlled joints
during the simulation. The evolution of the state variables of the EHZD is shown in Fig. 5.
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Fig. 5 Orbital behavior of the
states variables in the extended
hybrid zero dynamics. Red:
Nominal orbit. Blue: Perturbed
behavior (Color figure online)

Fig. 6 External disturbances
rejection. Brown: Model-based
ADRC. Blue: Classical HZD
with a NPD controller (Color
figure online)

Even in the presence of external disturbances, the EHZD state variables convergence to a
nominal periodic orbit.

In order to compare the features of the model-based ADRC with a classical HZD con-
trol strategy, an observer-based feedback control is designed based on [15]. This control is
referred to as nonlinear proportional-derivative (NPD). NPD and model-based ADRC, are
tested in simulation under equal operation conditions. The simulation tests are performed
with gaits over flat terrain during 25 steps. In the middle of the 20th step, external torques
of 1 N m are applied during 0.02 s in the actuated and underactuated joints of the robot.
Figure 6 shows the behavior of Θ and Θ̇ during the 25 steps. Both controllers keep the
robot walking; however, the model-based ADRC control has a better disturbance rejection
than the NPD. These simulations confirm the practical convenience of using the proposed
model-based ADRC over a classical HZD with a NPD control strategy.
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7 Design of the testbed (Saurian) and physical experiments

In order to analyze, design, and test the proposed disturbance rejection control strategies for
hybrid dynamic systems, a bipedal robot is designed and fabricated. This robot, referred to
as Saurian, combines the continuous dynamics of the swing walking phase with the discrete
dynamics of the support-leg exchange. An overview of the design and fabrication of Saurian
is presented below.

7.1 Design of mechanisms

Saurian is conceived to move along its sagittal plane. Its lateral movements are constrained
by a radial bar attached to a central column through a universal joint. The length of the
radial bar is large enough, so that the robot’s gait can be considered straight for all practical
purposes.

The mechanical configuration of Saurian is inspired by the French robot RABBIT [6],
which is an active bipedal robot developed to perform the natural and dynamic movements
of a passive dynamic walker but in a horizontal terrain [32]. As RABBIT, Saurian is designed
with five rigid links: two shins, two tights, and one torso. It takes advantage of the passive
dynamics to achieve a power efficient walking through point-feet leg-ends without ankles.
The leg-ends are built with fixed rubber wheels, which provide a pivot contact with the
ground and a high friction coefficient.

A significant difference from RABBIT is that Saurian incorporates flexible actuated
joints as compliant mechanisms that isolate the motor’s shafts from impacts produced during
the support-leg exchange. The compliant mechanisms in Saurian also increase the power ef-
ficiency of the walking due to the spring effect in storing impact kinetic energy and releasing
it during the propulsion of the body in next swing phase [22, 25, 39].

7.2 Sensors, actuators, and control hardware

Saurian is equipped with four DC brushed motors coupled to high efficiency titanium gear-
boxes that transmit the torque to the controlled joints with a high power-to-weight ratio. A
torque feedback control in the DC motors is designed and implemented using four current
sensors. Each joint has an incremental encoder (nine in total): one encoder measures the
absolute angle of the torso with respect to the central column, four encoders measure the
relative angles of the actuated joints, and four encoders measure the relative angles of the
flexible joints. Four linear potentiometers are also installed in the actuated joints to define a
fix reference frame for the corresponding angular positions. Two axial load cells are part of
the shins to detect the reaction forces in the legs. Saurian’s testbed is shown in Fig. 7.

Saurian uses a real-time computing system to perform the feedback control and store
data for off-line analysis. The real-time computing system is developed on the xPC-Target
toolbox from MATLAB&SIMULINK® with a data acquisition DAQ environment to acquire
data from sensors and transmit control outputs to the actuators, all at a rate of 1.0 kHz.
Figure 8 shows the flow diagram with the connection of the testbed and the interaction
between the controller hardware, sensors, and the robot.

7.3 Walking experiments

Saurian is used to experimentally validate the proposed hybrid disturbance rejection con-
trol strategy. For this experiment, the robot is set up to walk over a flat terrain (a wooden
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Fig. 7 Saurian’s testbed
composed of a Host-PC acting as
the human–machine interface,
and an XPC-Target dedicated
computer in charge of computing
the control signals

Fig. 8 Flow diagram containing six modules: Host-PC, XPC-Target, Signal Conditioning, Power Drive,
Power Supply, and Saurian

table). The video snapshots of the experiment are shown in Fig. 9. The evolution of the
controlled angles (hl, hr , kl, kr ), the flexible joints (h′

l , h
′
r , k

′
l , k

′
r ), the trajectory references

(hl,d , hr,d , kl,d , kr,d ), and the control torques (τhl, τhr , τkl, τkr ) are shown in Fig. 10. The evo-
lution of the controlled joints closely track the trajectory references. The control torques are
bounded by the operation range of the gear motors.
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Fig. 9 Snapshots sampled with a period of 1.0 s. See video in https://youtu.be/sNaXcFzXQFc

The evolution of the state variables is presented in the form of phase portraits in Fig. 11.
The average trends are identified in these plots and are shown to be periodic. The evolution
of the pair (Θ(qs), Θ̇(qs)) from the simulation and physical experimentation is shown in
Fig. 12. Bounded deviations around the simulation results can be observed. Such deviations
are caused by model uncertainties and external disturbances.

The sources of the model uncertainties include model mismatching and manufacturing
imperfections. Model mismatching is caused by factors such as joint compliance and robot
asymmetry. The joint compliance is a product of the flexible coupling between the actuators
and the joints, which causes deviations in the controlled angles that are considered in the

https://youtu.be/sNaXcFzXQFc
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Fig. 10 Behavior of the states variables during the physical experiment with Saurian in flat terrain (Color
figure online)

robot’s model as unmodeled dynamics. The robot asymmetry is caused in large part by the
difference in the radii of the circular paths of the internal and the external (right and left)
legs of the robot. Manufacturing imperfections, which are ever-present in the fabrication and
assembly of a physical prototype, cause aleatory uncertainties that produce asymmetries and
joint backlash. Finally, since the double support phase of the walking is not instantaneous,
as assumed in the mathematical model, the robot suffers external unexpected perturbing
forces in the swing leg-end. Notably, despite the multiple sources of uncertainty, the time
evolution of all state variables shows a periodic trend demonstrating that the proposed hybrid
disturbance rejection control strategy is able to maintain Saurian’s periodic and stable gait.

8 Conclusions and remarks

A hybrid disturbance rejection control strategy for dynamic bipedal robots is developed in
this work. The control strategy is robust against model uncertainties and external distur-
bances in both continuous and discrete dynamics. In order to reject the total disturbance in
the continuous dynamics, the disturbances and state variables are estimated using a nonlin-
ear extended state observer. Such estimation is used on a model-based active disturbance
rejection controller (ADRC). In conjunction with the model-based ADRC, a discrete adap-
tive trajectory generator is developed. The trajectory generator uses a discrete reset control
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Fig. 11 Periodic behavior in the
state variables of Saurian.
Experimental data

Fig. 12 phase portrait of Θ(qs)

vs. Θ̇(qs ). Experimental data vs.
Simulation

law that maintains zero tracking error after the support-leg exchange even under model un-
certainties.

This work extends the methods to evaluate periodic stability from hybrid zero dynamics
to hybrid dynamic systems with model uncertainties. The proposed extended hybrid zero
dynamics (EHZD) incorporates an extended state that models the uncertainties of the zero
dynamics. The Poincaré method is used to search for periodic orbits on the EHZD to assess
the robot’s periodic stability.
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The proposed control strategy is validated using numerical simulation and physical ex-
perimentation. Numerical simulations demonstrate robust gait stability in the presence of
model mismatching and external disturbances. Experimental validation was carry out on
a bipedal robot testbed, referred to as Saurian. The testbed was built to evaluate the pro-
posed hybrid disturbance rejection control strategy. The performance in laboratory condi-
tions shows the effectiveness of the proposed control. The results of the simulation and
experimentation elucidate the possibility to reject disturbances in the robot’s underactuated
dynamics. In order to continuously update optimal gait patterns, ongoing work focuses on
the sensitivity analysis of gait parameters such as step length, speed, cadence, and squat
performance.
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