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Abstract This paper provides a single matrix-second-order nonlinear differential equation
to simulate the dynamics of tensegrity systems with rigid bars and massive strings. The pa-
per allows one to distribute the string mass into any specified number of point masses along
the string while preserving the exact rigid bar dynamics. This formulation also allows mod-
eling of skins and surfaces as a finite set of strings in the tensegrity dynamics. To reduce
the complexity of the model, non-minimal coordinates (6 degrees of freedom for each bar
instead of 5) were chosen. This is the key to give more accurate results in computer sim-
ulations since the mathematical structure of the model is simplified and exploited during
numerical computations. A bar length correction algorithm is also provided for both class-1
and class-k tensegrity systems to correct the erroneous change in bar length because of com-
putational errors during numerical integration. We characterize the control variable as the
force density in each string. This allows control laws to be developed independently of the
material chosen for the structural elements. A nonlinear transformation back to the physical
control variables involves the material properties.

Keywords Tensegrity systems · Multibody dynamics · Flexible structures ·
Prestressable structures

1 Introduction

The field of multi-body dynamics includes rigid and elastic bodies connected in arbitrary
ways. Most approaches use a minimal coordinate representation, eliminating redundant vari-
ables as the body connections are exploited one at a time until all the bodies are included into
the system. One disadvantage of such methods is topology constraints, such as limiting the
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configuration of the rigid body connections to a topological tree. (See the TREETOPS soft-
ware developed by company DYNACS [1].) Another computational disadvantage of these
approaches is the reliance on transcendental functions to describe the positions of elements.
Tensegrity systems [2] dynamics is a subset of the class of multibody dynamics which does
not treat (thus far) rigid bodies of arbitrary shape and inertia, but they allow any stabiliz-
able topology of members. Tensegrity is a name coined by Buckminister Fuller [3] for the
artform created by Ioganson (1921) and Snelson (1948) [4]. Tensegrity is a network of com-
pressive and tensile members, where the compressive members are connected together by
tension members (strings, cables, tendons) forming a stable system. We describe “Class-1”
tensegrity when no compressive members touch each other, and a “Class-k” when k com-
pressive members join at a node [2]. As all the strings are connected to the node center of
the bars, there would be no torque along the axis of the bar and therefore no rotation along
the bar axis. Moreover, bars are connected by frictionless ball joints, or their mathematical
equivalents, to constraint all members to be “axially loaded” only.

The topology of bar/string networks provides a minimal mass solution to at least five fun-
damental problems in engineering mechanics. What is the minimal mass material topology
to take? (i) Compressive loads? (ii) Torsional loads? (iii) Simply supported bending loads?
(iv) Cantilevered bending loads? (v) Tension loads? Tensegrity structures provide the answer
to these five questions [2]. These elementary results guide the way toward the choice of ele-
mentary building blocks to build more complex structures [2, 5]. The Michell truss is proven
to provide the minimum mass solution for cantilevered bending loads [2]. Tensegrity T-bar
provides the minimum mass solution to compressive structure assuming no global buck-
ling and D-bar provides minimum mass considering global buckling [2]. Recently, D-bar
structure was studied for its use as a sensor or actuator [6]. D-bar shows significant poten-
tial in robotics because of its minimum mass and easy deployability [7]. The “tensegrity
ball” has been extensively studied for its use as a lander [8, 9], and various impact struc-
tures [10]. Easy deployability and less mass are the main motivations for its use in robotics
applications [11–13], deployable bridges [14, 15], and space applications like deployable
masts [16] and artificial gravity space habitats [17, 18]. Various tensegrity architectures also
appear in many biological systems, ranging from bone and muscle networks to fibrous struc-
tural components in living cells [19] and to the molecular structure of spider fiber [5]. See
also tensegrity models for the bio-mechanics of the human skeleton [20, 21].

The dynamics of the tensegrity structures has been explored in the past by various re-
searchers. Murakami [22] developed the equations of motion for tensegrity structures using
the Eulerian and Lagrangian approach which basically represent spatial and material formu-
lations. These equations were then linearized about a reference configuration to perform the
modal analysis. In part two of [23] quasi-static analyses were performed which concluded
that prestress and infinitesimal mechanism modes characterize the dynamics and statics of
tensegrity structures. The linearized dynamics models for the different class of tensegrity
structures were developed by Sultan et al. [24] and these models were further used by Masic
and Skelton [25] to select the prestress for optimal dynamic/control performance. Ali and
Smith [26] also wrote a linearized dynamic model around an equilibrium configuration to
study the dynamic behavior of an active tensegrity structure. These linearized models are
approximations and do not capture the correct dynamics of the structure. Tan and Pellegrino
[27] studied the nonlinear vibration of cable-stiffened pantographic deployable structures
and showed that cable prestress is correlated with the natural frequencies of the system.
Skelton and Nagase [28, 29] developed the nonlinear tensegrity dynamics in vector form
for a network of rods and strings neglecting the masses in the strings. Recently, Joono and
Skelton [30] developed a second order matrix differential equation to describe the nonlin-
ear dynamics of any tensegrity structure. They used non-minimal coordinates and assumed
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the compressive elements to have no inertia about the longitudinal axis. The masses in the
tension elements (strings) were also neglected in the formulation. In the present study, each
compressive member can be a bar of certain radius i.e. can have some inertia about its lon-
gitudinal axis and masses in the strings is also incorporated.

At a fundamental level, the dynamics of these structures is straightforward since it relies
simply on the dynamics of rigid bars and elastic models for strings. However, a rigorous and
scalable approach to describing these structures is highly desirable. The nonlinear dynamic
model developed here captures both the translational motion of the mass center of each bar
and each cable, and the rotational dynamics of each bar, using Newton’s second law. There-
fore, the model allows for the simulation of any tensegrity network with elastic massive
string members and rigid bars. Certainly, there are many applications such as cable-stayed
bridges in which the mass of the cables is as important as the mass of the bars. Furthermore,
applications exist in which a membrane covering the surface of the structure is required.
This dynamic model assumed the bars to be rigid and the length constraints are incorpo-
rated at the second derivative level in the formulation. This can lead to violations in length
constraint during the numerical integration procedure. In the appendix of this paper, we pro-
vide an algorithm to correct the bar and time derivative of the bar vector to satisfy the length
constraints (Appendix C). The author believes that the other benefits of this formulation out-
weigh this shortcoming of the paper. Finally, this paper makes the following contributions
to the theory and mathematical modeling of tensegrity systems: (i) It adds mass to tensile el-
ements. (ii) It adds string-to-string nodes. (iii) It maintains a matrix-second-order nonlinear
differential equation without any transcendental functions. (iv) It provides a novel algorithm
to correct the violations in bar length due to computational errors. Moreover, the absence
of trigonometric functions leads to improved efficiency and accuracy of the dynamics simu-
lation and control design. These equations are suitable for the design of control algorithms
to control shape or other requirements of the system as the control variables (force den-
sity in each string) are linear in the dynamics formulation. These force densities can easily
be converted into a physical quantity (tensions or rest-lengths of tensile elements) using a
nonlinear transformation.

2 Notation

2.1 Vector notation

We distinguish a three-dimensional object that has magnitude and direction by bold let-
ters. These are called Gibbs vectors in honor of the inventor of vector concepts in three-
dimensional space [31]. In linear algebra, an n× 1 matrix is called an n-dimensional vector,
and obviously a 3 × 1 matrix would be called a 3-dimensional vector. But these are not
Gibbs vectors and will not be bold here. For example, a vector v can be expressed in any
specified frame of reference. Let the components of vector v in a specified set of coordinates
be described by the 3 × 1 matrix v. The components of the Gibbs vector v can be written
simply as v, without bold. Scalars are also not bold, so the distinction between scalars and
3 × 1 matrices are made clear by the context.

Define a right-handed dextral set of unit vectors by these dot and cross product proper-
ties:

(a) ei · ej = δij

(b) ei × ej = ek if (i, j, k) = (1,2,3) or (3,1,2) or (2,3,1)



206 R. Goyal, R.E. Skelton

Then define a vectrix E [32] by

(c) E = [ e1 e2 e3 ], ET =
[

e1
e2
e3

]

(d) ET · E = I (due to (a) and (c))

Hence for two vectors expressed in the same frame (b = EbE and a = EaE ), it follows that:

(e) a · b = (EaE)T · (EbE) = aET
(ET · E)bE = aET

bE

(f) a × b = (EaE) × (EbE) = E ãEbE , ãE =
[

0 −aE3 aE2
aE3 0 −aE1

−aE2 aE1 0

]

where ãE is a skew-symmetric matrix composed of the 3 elements of aE , the vector a =
(EaE).

2.2 Kinematics

Consider a vector v described in two different reference frames. Let the vectrix E = [ e1 e2 e3 ]
denote the dextral set of unit vectors ei that are inertially fixed. Let the vectrix B = [ b1 b2 b3 ]
be the body-fixed dextral set of bi fixed in the coordinates of the rigid body. Then, the unitary
coordinate transformation B = EΘ and ΘTΘ = I leads to

B = EΘ, ΘTΘ = I → ΘTΘ̇ = ω̃B = skew-symmetric, (1)

v = EvE , (2)

= BvB, vE = ΘvB, (3)

where Θ represents the Direction Cosine Matrix (always unitary) and vE , vB represent the
components of the vector v as viewed, respectively, in coordinate frame E and B. Then v

and v̇ are simply:

v = BvB, (4)

v̇ = ḂvB +Bv̇B =B
[
ω̃BvB + v̇B], (5)

where from Eq. (1)

Ḃ = EΘ̇ = BΘTΘ̇ =Bω̃B, (6)

and the angular velocity of frame B relative to frame E is

ω = EωE =BωB, ωB =
⎡
⎢⎣

ωB
1

ωB
2

ωB
3

⎤
⎥⎦ . (7)

3 Dynamics of a single bar

3.1 Rotational dynamics

Consider a vector r locating the center of mass of the bar of length l = ‖b‖, where b is the
vector along the bar. Let the vectrix E denote the dextral set of unit vectors ei which are
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inertially fixed. Let the vectrix B be the body-fixed dextral set of unit vectors bi fixed in the
body of the bar, with b3 pointing along the bar.

The bar vector b of length l, described in body coordinates B is:

b =BbB, bB = [
0 0 l

]T
(8)

and the time rate of change of the vector b is

ḃ = ḂbB +BḃB = ḂbB =Bω̃BbB. (9)

It is useful to compute b × ḃ as

b × ḃ = (
BbB)× (

ḂbB)= (
BbB)× (

Bω̃BbB) (10)

= Bb̃Bω̃BbB = −Bb̃Bb̃BωB = −B
(
b̃B)2

ωB. (11)

Now, using the identity

(
b̃B)2 = −(bBT

bBI − bBbBT)
, (12)

Eq. (11) becomes

b × ḃ =B
(∥∥bB∥∥2

I − bBbBT)
ωB. (13)

For our case, bB = [ 0 0 l ]T. Therefore

b × ḃ =B

⎛
⎝l2I −

⎡
⎣0 0 0

0 0 0
0 0 l2

⎤
⎦
⎞
⎠ωB (14)

=B
[
I2 0
0 0

]
l2ωB = Bl2

⎡
⎢⎣

ωB
1

ωB
2

0

⎤
⎥⎦= l2ωb. (15)

Hence, the relationship between ωb , the angular velocity of bar b, and vectors b and ḃ

(shown also in [29]) is

ωb = b × ḃ

‖b‖2
. (16)

Using Eq. (16), the angular momentum of bar b about its mass center is:

hb = Ibωb (17)

=
(

mbl
2

12
+ mbr

2
b

4

)(
b × ḃ

l2

)
, (18)

h = hb =
(

mb

12
+ mbr

2
b

4l2

)
b × ḃ = Jb × ḃ, (19)

where rb is the radius of the bar and J = mb

12 + mbr2
b

4l2
. The derivative with respect to time

of the angular momentum of a bar member can then be formulated in terms of b and ḃ as
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Fig. 1 Tensegrity bar member
vector nomenclature

follows:

ḣ = J ḃ × ḃ + Jb × b̈ (20)

= Jb × b̈. (21)

The time rate of change of the angular momentum vector h is equal to the sum of torques
τ acting on the bar member about its center of mass. The forces acting on the two opposite
ends of the bar member are f 1 and f 2 as illustrated in Fig. 1. The resulting torques are
described here in terms of b as

ḣ = τ (22)

= 1

2
b × (f 2 − f 1). (23)

Equations (21) and (23) yield

Jb × b̈ = 1

2
b × (f 2 − f 1). (24)

Equation (24) can be written in any coordinates, but we choose inertial coordinates for
simpler forms of final equations. This development to represent the rotational dynamics of
truss elements is well known and can be checked in any standard dynamics book [33, 34].
To simplify notation hereafter we define b = bE where b = BbB = EbE . Writing Eq. (24) in
inertial coordinates yields

J b̃b̈ = 1

2
b̃(f2 − f1). (25)

An additional constraint must be added here to ensure that the bar vector b remains
constant with length l. This constraint is described as follows:

bTb = l2. (26)

Differentiating the constant length constraint of Eq. (26), a length constraint in terms of b̈ is
obtained:

ḃTb + bTḃ = 0 = 2bTḃ, (27)

ḃTḃ + bTb̈ = 0, (28)

bTb̈ = −ḃTḃ. (29)
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The length constraint (Eq. (29)) and rotational dynamics (Eq. (25)), both in terms of b̈

can be re-expressed in matrix form as

[
b̃

bT

]
b̈ =

[
1

2J
b̃(f2 − f1)

−ḃTḃ

]
. (30)

This is a simple linear algebra equality that can be solved for b̈. One can easily verify the
existence condition for the solution and the full column rank of the matrix multiplying b̈.
Therefore, denoting a matrix pseudoinverse by the superscript “+”, the unique solution for
b̈ is

b̈ =
[

b̃

bT

]+ [ 1
2J

b̃(f2 − f1)

−ḃTḃ

]
, (31)

= 1

l2

[−b̃ b
][ 1

2J
b̃(f2 − f1)

−ḃTḃ

]
, (32)

= 1

l2

[
− 1

2J
b̃b̃(f2 − f1) − bḃTḃ

]
, (33)

= − 1

2J l2

(−l2I + bbT
)
(f2 − f1) − 1

l2
bḃTḃ. (34)

We have b̃b̃ = −l2I + bbT. Rearranging Eq. (34) gives the final form of the vector equa-
tions for rotational dynamics:

J b̈ = 1

2
(f2 − f1) − 1

2l2
bbT(f2 − f1) − J

l2
bḃTḃ. (35)

The final equation represents the bar rotational dynamics including influences from the
length constraint. Now we must address the translational dynamics.

3.2 Translational dynamics

For a single bar in a tensegrity structure such as that illustrated in the free-body diagram of
Fig. 1, the inertial position of the bar center of mass is described by r , the vector along the
bar member is described by the vector b, and the sum of the internal forces from the strings
and the external forces, acting on the two ends of the bar, is described by f1 and f2, where
r = ErE , f i = Ef E

i . For simplification, we write r = rE and fi = f E
i . We have

mb r̈ = f 1 + f 2, (36)

which can be written in inertial coordinates as

mbr̈ = f1 + f2. (37)

4 Matrix formulation of tensegrity dynamics

Equations (35) and (37) can be used to describe the dynamics of any given bar member
in a tensegrity structure. Describing a full tensegrity structure would consequently yield 2β
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Fig. 2 Tensegrity bar member
numbering convention

vector equations for a system containing β bar members. The classical approach to formulate
the dynamics of a multibody system is to arrange all these vectors in a single vector form
[33]. However, we will assemble these equations in a matrix form to simplify the structure
of the final equations.

Connectivity matrices are now introduced to relate the matrix of nodes, N , to the matrix
of string vectors, S, and the matrix of bar vectors B . The ith column of matrices N , S, and
B are, respectively the inertial components of the vectors, ni , si , and bi . We write these as
ni , si , and bi . Define the string connectivity matrix by CT

s , and the bar connectivity matrix
by CT

b . Then, by inspection of the network, labeled with bar and string vectors, one can
immediately write matrices (with entries of 0, 1, −1) to satisfy the definitions S = NCT

s and
B = NCT

b .
By convention, we choose to name the nodes at the base of bar vectors as N1 =

[ n1 n2 ··· nβ ] and we choose to name the terminal ends of the bar vectors as N2 =
[ n1+β n2+β ··· n2β ]. Defining each bar end point as a node, a tensegrity consisting of n = 2β

nodes leads to a 3 × n node matrix, N = [ N1 N2 ], in which each column is the inertial
position of a node. Also, for a network of β bars, define the 3 × β matrix B = [ b1 b2 ··· bβ ].

The convention mentioned above yields Cb = [ −Iβ Iβ ]. In general, Cb is a β × n matrix
in which each row describes the node connectivity of a bar member. That is, the row of Cb

for a bar member connecting ni to nj will consist of a “+1” at the j th column, a “−1” at
the ith column, and zeros elsewhere. Now, vectors locating the mass centers of the bars is
defined as (ri is the ith column of matrix R):

R = N1 + 1

2
B, (38)

= N1 + 1

2
(N2 − N1), (39)

= N
1

2

[
Iβ

Iβ

]
= NCT

r . (40)

For any n-dimensional column vector, we define the “hat” operator over a vector to form
a diagonal matrix from the elements of the vector. Then, the dynamic equations of the ith
bar bi from Eq. (35) are placed in the ith column of the matrix B̈Ĵ :

B̈Ĵ = [
b̈1 b̈2 · · · b̈β

]
⎡
⎢⎢⎢⎣

J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...

0 0 · · · Jβ

⎤
⎥⎥⎥⎦= [

J1b̈1 J2b̈2 · · · Jβb̈β

]
. (41)

This process can be performed for the remaining three terms in Eq. (35), as summarized
below. Forces acting on the endpoints of each bar are described with the force matrix F ,
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whose ith column is the total force vector acting on the ith node ni from both internal (string
and bar forces) and external sources. Hence, for the ith bar, the first and second terms give

1

2
(f2i

− f1i
) = 1

2

[
FCT

b

]
i
, (42)

− 1

2l2
bib

T
i (f2i

− f1i
) = −1

2

[
Bl̂−2

⌊
BTFCT

b

⌋]
i
, (43)

where we introduce the �◦� operator, which sets every off-diagonal element of the square
matrix operand to zero. Now, the last term can be written as

−Ji

l2
i

bi ḃi
T
ḃi = −[BĴ l̂−2

⌊
ḂTḂ

⌋]
i
. (44)

Combining the four matrix expressions for the four original terms in Eq. (35) gives a full
matrix expression for B̈ . This describes the rotational motion of every bar member in the
system while including a constant length constraint.

B̈Ĵ = 1

2
FCT

b − 1

2
Bl̂−2

⌊
BTFCT

b

⌋− BĴ l̂−2
⌊
ḂTḂ

⌋
(45)

This expression can be simplified with the following definition of λ̂:

λ̂ = −Ĵ l̂−2
⌊
ḂTḂ

⌋− 1

2
l̂−2

⌊
BTFCT

b

⌋
, (46)

B̈Ĵ = 1

2
FCT

b + Bλ̂. (47)

Following the same process as that of the rotational dynamics, the translational dynamics
must similarly be converted into a matrix expression. In this case, R is a 3 × β matrix in
which the ith column describes the inertial position of center of mass of the ith bar member.
Using Eq. (40):

mbi
r̈i = f1i

+ f2i
= [R̈m̂b]i = 2

[
FCT

r

]
i
, (48)

R̈m̂b = 2FCT
r . (49)

The matrix expressions for the rotational and translational dynamics of the full tensegrity
system can be re-expressed as follows:

[
B̈ R̈

][Ĵ 0
0 m̂b

]
+ [

B R
][−λ̂ 0

0 0

]
= F

[
1
2 CT

b 2CT
r

]
. (50)

Recognizing that
[

1
2 CT

b
2CT

r

]−1 = [
CT

b
CT

r

]T
[30], Eq. (50) is rewritten as follows:

[
B̈ R̈

][Ĵ 0
0 m̂b

][
Cb

Cr

]
+ [

B R
][−λ̂ 0

0 0

][
Cb

Cr

]
= F, (51)

[
B̈ R̈

][ ĴCb

m̂bCr

]
+ [

B R
][−λ̂Cb

0

]
= F. (52)
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The definitions of the bar and center of mass connectivity matrices, B = NCT
b , and R =

NCT
r , can be re-expressed in matrix form and substituted into Eq. (52):

[
B R

]= N
[
CT

b CT
r

]
, (53)

N̈
[
CT

b CT
r

][ ĴCb

m̂bCr

]
+ N

[
CT

b CT
r

][−λ̂Cb

0

]
= F. (54)

Expanding this gives

N̈
(
CT

b ĴCb + CT
r m̂bCr

)− N
(
CT

b λ̂Cb

)= F. (55)

The force matrix F has been described as containing the sum of forces acting on each
node in the system. This can be subdivided into two elements: external forces and internal
forces. Let wi be the ith column of the matrix W , where wi is the external force acting on
the node ni . Internal forces, caused by tension in the string members, require knowledge of
string member connectivity. The string connectivity matrix Cs is defined as S = NCT

s , where
S is the string member matrix. For a tensegrity system consisting of α string members, S is
of dimension 3 ×α, and Cs is of dimension α ×n. The internal node forces caused by string
tensions T can be described with T Cs .

In this work, string tension is described in terms of a “force density” γ . The tension
vector in a string can be found as ti = siγi where si is the string vector or the ith column
of matrix S (modeling of elastic string is given in Appendix A). Then, the matrix of string
tensions T equals Sγ̂ , which equals NCT

s γ̂ . Based on this, the internal forces acting on
nodes caused by string tensions is NCT

s γ̂ Cs . The full force matrix expression can then be
written and substituted into Eq. (55):

F = W − NCT
s γ̂ Cs (56)

N̈
(
CT

b ĴCb + CT
r m̂bCr

)+ N
(
CT

s γ̂ Cs − CT
b λ̂Cb

)= W (57)

By defining matrices M , K , and W , a compact matrix form for the full nonlinear trans-
lational and rotational dynamics of a full tensegrity system can be written as

N̈M + NK = W, (58)

M = CT
b ĴCb + CT

r m̂Cr , (59)

K = CT
s γ̂ Cs − CT

b λ̂Cb. (60)

5 String-to-string point mass nodes

The model derived in Sect. 4 assumes massless strings. It is important to develop a method
that includes string masses. This is achieved by dividing the string into several small strings
and connecting them with point masses. The added point mass node will connect only to
strings and no bars (string-to-string nodes). Using this approach, a string member is modeled
by subdividing the original string into n connected string members with n − 1 connection
point masses. The positions of the point masses along the string can be chosen based on
the respective length of the connected strings which in turn can be chosen to match the
extensional stiffness of the original string.
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We describe the process of modeling string masses by denoting two types of nodes: bar
nodes, which are the endpoints of bars, and string nodes, which are the locations of string-
to-string connections that have a point mass associated with them. The full node matrix can
consequently be split as N = [ Nb Ns ]. Here, Nb is a 3 × 2β matrix in which each column is
the position of a bar node nb , and Ns is a 3 × σ matrix in which each column is the position
of a string node ns . Variables β and σ represent the number of bars and number of string
nodes, respectively. Note that the bar and string nodes can be extracted from the node matrix
N with the definition of two new connectivity matrices, Cnb and Cns :

Nb = N

[
I2β

0

]
= NCT

nb, (61)

Ns = N

[
0
Iσ

]
= NCT

ns, (62)

where I2β and Iσ are identity matrices of size 2β and σ , respectively. The matrix represent-
ing the positions of center of mass, R, can similarly be broken into two components: Rb ,
which describes the center of mass locations for each bar member, and Rs , which describes
the location of each string point mass:

Rb = NbC
T
r = NCT

nbC
T
r , (63)

Rs = Ns = NCT
ns . (64)

Similarly, the expression for the bar member matrix B can be rewritten as

B = NbC
T
b = NCT

nbC
T
b . (65)

Note that the bar connectivity matrix remains unchanged from its original definition pre-
ceding Eq. (42). The original string connectivity matrix Cs must be redefined as new string
members are being added to the model. Here, Cs is divided into two parts: the first, Csb ,
describing bar-to-string joints and the second, Css , describing string-to-string joints:

S = NCT
s = [

Nb Ns

][CT
sb

CT
ss

]
. (66)

The force matrix F is augmented to include both the sum of forces acting on bar nodes,
Fb , as well as string nodes, Fs :

F = [
Fb Fs

]= W − NCT
s γ̂ Cs. (67)

Now, we need to write the translational dynamics of the newly defined string nodes which
are modeled as point masses. We define msi as the mass of the ith string node, rsi as the po-
sition of that node and fsi as the total force acting on that node. Their translational dynamics
in both vector and matrix form can simply be written as

msi r̈si = fsi = [R̈sm̂s]i = Fsi , (68)

R̈sm̂s = Fs. (69)

The dynamics of the bar members (Eqs. (46), (47) and (49)) must be slightly modified to
incorporate the subdivision of the force matrix F as F = [ Fb Fs ].

λ̂ = −Ĵ l̂−2
⌊
ḂTḂ

⌋− 1

2
l̂−2

⌊
BTFbC

T
b

⌋
, (70)
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B̈Ĵ = 1

2
FbC

T
b + Bλ̂, (71)

R̈bm̂b = 2FbC
T
r . (72)

Equations (69), (71), and (72) can be written in matrix form as follows:

[
B̈ R̈b R̈s

]⎡⎣Ĵ 0 0
0 m̂b 0
0 0 m̂s

⎤
⎦+ [

B Rb Rs

]⎡⎣−λ̂ 0 0
0 0 0
0 0 0

⎤
⎦= [

1
2 FbC

T
b 2FbC

T
r Fs

]
.

(73)

Because the force matrix F has been defined as F = [ Fb Fs ], the force term is rewritten
in terms of F as

[
B̈ R̈b R̈s

]
⎡
⎣Ĵ 0 0

0 m̂b 0
0 0 m̂s

⎤
⎦+ [

B Rb Rs

]
⎡
⎣−λ̂ 0 0

0 0 0
0 0 0

⎤
⎦= F

[
1
2 CT

b 2CT
r 0

0 0 I

]
.

(74)

Using
[

1
2 CT

b
2CT

r

]−1 = [
CT

b
CT

r

]T
, it can also be shown that:

[
1
2CT

b 2CT
r 0

0 0 I

]−1

=
⎡
⎣Cb 0

Cr 0
0 I

⎤
⎦ . (75)

The previous expression allows us to rewrite Eq. (74) as follows:

[
B̈ R̈b R̈s

]
⎡
⎣Ĵ 0 0

0 m̂b 0
0 0 m̂s

⎤
⎦
⎡
⎣Cb 0

Cr 0
0 I

⎤
⎦+ [

B Rb Rs

]
⎡
⎣−λ̂ 0 0

0 0 0
0 0 0

⎤
⎦
⎡
⎣Cb 0

Cr 0
0 I

⎤
⎦= F.

(76)

Having previously defined B , Rb, and Rs in terms of N and connectivity matrices, the
following expression can be substituted into the matrix expression for the full system dy-
namics:

[
B Rb Rs

]= N
[
CT

nbC
T
b CT

nbC
T
r CT

ns

]
, (77)

N̈
[
CT

nbC
T
b CT

nbC
T
r CT

ns

]
⎡
⎣Ĵ 0 0

0 m̂b 0
0 0 m̂s

⎤
⎦
⎡
⎣Cb 0

Cr 0
0 I

⎤
⎦

+ N
[
CT

nbC
T
b CT

nbC
T
r CT

ns

]
⎡
⎣−λ̂ 0 0

0 0 0
0 0 0

⎤
⎦
⎡
⎣Cb 0

Cr 0
0 I

⎤
⎦= F. (78)

Multiplying this out, substituting Eq. (67) for F , and rearranging yields the following
expression for the full system dynamics:

N̈
[
CT

nbC
T
b ĴCb + CT

nbC
T
r m̂bCr CT

nsm̂s

]+ N
[
CT

s γ̂ Csb − CT
nbC

T
b λ̂Cb CT

s γ̂ Css

]= W.

(79)
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Following the example set in Eq. (58), a compact matrix form for the full system dynam-
ics including string masses can be obtained with the following definitions of Ms and Ks .

N̈Ms + NKs = W, (80)

Ms = [
CT

nb(C
T
b ĴCb + CT

r m̂bCr) CT
nsm̂s

]
, (81)

Ks = [
CT

s γ̂ Csb − CT
nbC

T
b λ̂Cb CT

s γ̂ Css

]
, (82)

where substituting the value of Fb in Eq. (70) gives λ̂ as

λ̂ = −Ĵ l̂−2
⌊
ḂTḂ

⌋− 1

2
l̂−2

⌊
BT(W − Sγ̂Cs)C

T
nbC

T
b

⌋
. (83)

6 Class-k tensegrity systems

A simple modification of the derived dynamics allows for handling of Class-k tensegrity
structures (k bars connected to a node through a ball joint). Here, “Class” denotes the max-
imum number of bar members present at a given node in the definition of the structure
topology. If there are no bar-to-bar joints, the structure is said to be of Class 1. If there is at
least one node in which two bars are connected, it is said to be of Class 2, and so on.

In this model, Class-k structures (where k > 1) are handled by converting each Class-k
joint into k Class-1 nodes constrained to coincide at all times with a constraint matrix and
Lagrange multipliers.

The linear constraint equation is written as

NP = D, (84)

where P is a n×c and D is a 3×c matrix specified such that constrained nodes are set equal
to one another where c is the number of constraints required. For example, if nodes 1 and 2
must coincide at all times, a column of P and D would be specified such that NP = D gives
n1 − n2 = 0. Adding this linear constraint will introduce some constraint forces written as
ΩP T and will lead to the new dynamics:

N̈Ms + NKs = W + ΩP T (85)

where

Ks = [
CT

s γ̂ Csb − CT
nbC

T
b λ̂Cb CT

s γ̂ Css

]
, (86)

λ̂ = −Ĵ l̂−2
⌊
ḂTḂ

⌋− 1

2
l̂−2

⌊
BT
(
W + ΩP T − Sγ̂Cs

)
CT

nbC
T
b

⌋
, (87)

and Ω is the 3 × c matrix of Lagrange multipliers satisfying the dynamics and constraints
at all time-steps. The Lagrange multipliers required to maintain these constraints can be
thought of as contact forces at the Class-k nodes [30].

6.1 Reduced-order dynamics

Adding the linear constraints into the dynamics will restrict the motion in certain dimen-
sions, thus reducing the order of the dynamics to a span a smaller space. The dynamics
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equation (85) can be reduced into a smaller dimensional equation by augmenting it with the
constraint equation (84). To this end, we use the singular value decomposition (SVD) of the
matrix P as

P = UΣV T = [
U1 U2

][Σ1

0

][
V T
]

(88)

where U ∈ R
n×n and V ∈ R

c×c are both unitary matrices, U1 ∈ R
n×c and U2 ∈ R

n×(n−c)

are submatrices of U , and Σ1 ∈ R
c×c is a diagonal matrix of positive singular values. By

defining

η = [η1 η2] � NU = [NU1 NU2], (89)

the constraint equation (84) can be modified as

NP = NUΣV T = [η1 η2]
[
Σ1

0

][
V T
]= D, (90)

which implies

η1 = DV Σ−1
1 , η̇1 = 0, η̈1 = 0. (91)

Here, η1 represents the no-motion space in transformed coordinates. Moreover, η2 will
evolve according to the constrained dynamics in new coordinate system. Using Eqs. (88)–
(91), the dynamics equation (85) can be rewritten as

N̈UUTMs + NUUTKs = W + ΩV ΣTUT (92)

⇒ η̈2U
T
2 Ms + η1U

T
1 Ks + η2U

T
2 Ks = W + ΩV ΣT

1 UT
1 . (93)

Post-multiplying the above equation by a non-singular matrix [ U2 M−1
s U1 ] will yield two

parts, where first part gives the second order differential equation for the reduced dynamics:

η̈2U
T
2 MsU2 + η2U

T
2 KsU2 = WU2 − η1U

T
1 KsU2 (94)

⇒ η̈2M2 + η2K2 = W̃ , (95)

with M2 = UT
2 MsU2 and K2 = UT

2 KsU2, and the second part gives an algebraic equation
that is used to solve for the Lagrange multiplier:

η̈2U
T
2 MsM

−1
s U1 + η1U

T
1 KsM

−1
s U1 + η2U

T
2 KsM

−1
s U1 = WM−1

s U1 + ΩV ΣT
1 UT

1 M−1
s U1

(96)

⇒ NKsM
−1
s U1 − ΩP TM−1

s U1 = WM−1
s U1. (97)

Notice that Ks is also a function of Ω from Eqs. (86)–(87), making it a linear algebra prob-
lem. The analytical expression to solve the Lagrange multiplier (Ω) is given in Appendix B.

7 Examples of the implemented model

All the dynamic simulations are performed using a Matlab-based software developed using
this formulation. The numerical integration package used in this software is of fourth-order
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Fig. 3 Simulation time-lapse of prism structure using string-to-string connections to model string mass.
(Bars are shown in blue and strings are shown in red) (Color figure online)

Runge–Kutta type. Bar length correction was used only for class-k structure simulation.
There was no significant violation (around machine precision 10−16) in bar length constraint
during simulations of other examples. Therefore, the bar length correction algorithm was
not used for those examples. It is also advisable to use the bar length correction algorithm
only if necessary (Appendix C).

7.1 Example 1: influence of string subdivision on tensegrity prism dynamics

First, the dynamic simulation of a Class-1 triangular tensegrity prism with massive strings
is shown in Fig. 3. To demonstrate the modeling of flexible string members with mass,
each string member in the prism is subdivided into 5 members by inserting 4 string-to-
string nodes (point masses) along the original string member. Initial conditions are specified
to simulate the dynamics. In the absence of external forces, tensegrity prism has a known
equilibrium solution of γv = √

3γt = √
3γb , where γv , γt and γb represent the force density

in vertical, top and bottom string, respectively [2].
For demonstration purposes, bar masses are specified as mb = 1 kg, and point masses

are specified as ms = 0.01 kg. Bar lengths, based on specified initial node positions, are
lb = 1.4142 m long and all string members are given stiffness values of k = 100 N/m. Initial
force density values are deliberately specified as γt = γb = γv = 30 N/m to induce motion.

Second, we demonstrate that when modeling the string mass, the systems dynamics con-
verge as the number of segments used in modeling the string members increases. In this
case, the string members of the prism structure are modeled with 1 to 10 string segments.
Figure 4 shows the prism structure string segments modeled with 1, 5, and 10 “child” string
segments.

The case in which each string member is modeled with a single string segment represents
the case in which string mass is neglected. For the remaining cases, the stiffness values of
the original 9 “parent” string members are converted into equivalent stiffness values for
their “children” string segments. Similarly, a specified parent string mass is specified and
distributed across the generated child point mass nodes. The same initial condition is ap-
plied to each case to allow direct comparison of the resulting dynamical response. Figure 5
shows the node 1 y-coordinate time histories for a number of these simulation cases. It is
evident here that, as the number of string segments used increases, the dynamical response
converges.

To get better insight, one can compare all cases with the final simulation case, which
uses 10 string segments as per the original string member. Computing the spatial distance
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Fig. 4 Prism structure string members modeled with varying number of string segments (Color figure online)

Fig. 5 Node coordinate dynamical response convergence (Color figure online)

between node 1 in each case vs. node 1 in the final case at each time step gives a time
history representing the discrepancy between the given and final cases. The square sum of
this spatial discrepancy over the simulation time-span i.e. the L2 norm of the spatial distance
between the node 1 position with respect to the node 1 position in the final case, can then
be used to quantify the total error between the given and final cases. The difference in the
dynamic response decreases rapidly as the number of string segments is increased. For this
example, the error was found to be less than 0.5% for the last 9th to 10th division.

7.2 Example 2: dynamics of a D-bar structure with one node inertially fixed

This example will demonstrate the dynamics of a Class-k structure. The structure we sim-
ulate here is a D-bar structure. A complexity-1 D-bar structure consists of 4 compressive
members connected in a diamond shape with 2 tensile members along the diagonal [2]. As
the maximum number of bars connected at any node is 2, it is a “Class 2” structure.

Here, we simulate the dynamics of the structure with one node (shown in black) fixed to
the ground i.e. inertial position of the node remains constant. For demonstration purposes,
each bar is lb = 1 m long and has a mass of mb = 1 kg. Both string members are given
a stiffness value of k = 100 N/m and different prestress (force density) to induce motion.
Figure 6 shows three time-lapse images of the simulation. Simulation results show that both,
fixed position constraint and pin joint constraints (bar to bar connection) are satisfied all the
time (up to machine precision) as shown in Fig. 7b. Figure 7a shows that the length of all the
bars also remains constant throughout the simulation verifying the efficacy of the results.
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Fig. 6 Simulation time-lapse of a D-bar structure

Fig. 7 Results for constraint D-bar structure

Fig. 8 DHT structure without
bars (R = 20 m and L = 40 m).
(End caps are not shown but
included in the maths)

7.3 Example 3: dynamics of a flexible membrane having only tensile members

In this example, we demonstrate the dynamics of a “Class 0” structure consisting solely
of string members—a cylindrical string mesh membrane. The configuration of the strings in
this membrane has been chosen to be derived from a double helix tensegrity (DHT) structure
with all the bars removed. Figure 8a shows the typical structure of this configuration. We
define the complexity of the structure by p and q where p is defined as the number of nodes
on the circular ring and q is the number of circular rings in longitudinal direction [35]. It
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Fig. 9 Time history of motion of the center nodes (shown as blue dots) (R = 20 m and L = 40 m) (Color
figure online)

can be better approximated to a continuous membrane by increasing the complexity of the
structure as shown in Fig. 8b.

To demonstrate the dynamics of this membrane, we start from the equilibrium position
of the structure with 1 atm pressure difference from inside to the outside of the cylinder.
The stiffness in the string was calculated such that the length ratio (unstretched string length
to current string length) is 0.975 at the equilibrium position. The mass of individual string
has been used from the minimum mass calculation, required to take 1 atmospheric pressure.
The material properties used for this simulation are of UHMWPE (spectra). Damping is
also added in the strings to get the η (damping coefficient) value of 0.1. Appendix A shows
the formulation to add damping in the strings. Figures 9a and 9b show the radial motion of
the center nodes (shown as blue dots) of two membranes (low and high complexity) in the
presence of 5% instantaneous change in pressure. Notice the attenuation in the vibration re-
sponse along the radial direction, depicting the effect of damping included in the dynamics.
No motion in the vertical direction was observed as the membrane will elongate equally in
the upward and downward direction with respect to the center node.

7.4 Example 4: dynamic simulation of a six bars tensegrity ball as planetary
lander

The example demonstrates the capability of the formulation to perform the dynamic simula-
tion with inputs from the external environment. A dynamic simulation result was shown
when a tensegrity lander [8] with 6 bars and 24 strings was dropped from a height of
3.5 m. For this simulation, the ground was modeled as a spring–damper system of stiff-
ness kg = 104 N/m and damping cg = 10 N-s/m. An initial prestress value of γ = 1000 N/m
was used for all the strings which result in self-equilibrium for the structure. The mass of
each bar was assumed to be mb = 1 kg and string mass was assumed to be ms = 0.1 kg. The
stiffness value of each string was assumed to be k = 5000 N/m with a damping coefficient
value c = 10 N-s/m.

Figure 10 shows the time-lapse images of the lander as it hits the ground. Figure 11a
shows the vertical distance of the center of mass of the lander from the ground. Notice
that, as we model both ground and strings with some damping, the vertical distance keeps
decreasing. Figure 11b shows the error in the bar length of one of the bars during the simu-
lation.
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Fig. 10 Simulation time-lapse of a tensegrity lander

Fig. 11 Results for tensegrity lander

8 Conclusions

This paper develops the nonlinear dynamic models of any multibody system composed of a
network of bars in compression and cables in tension. This is accomplished by having any
connection between bars or strings that behave mathematically as frictionless ball joints.
The capability to have string-to-string connections allow the approximations of membranes
or nets. Such surfaces allow a mathematical treatment to integrate advantages of tenseg-
rity and origami structures. The capability to have bar-to-bar connections removes previous
criticism of tensegrity as “only soft structures”. The approach to Class-k tensegrity (bar-
to-bar connections) is to add Lagrange multipliers to accommodate the constraint forces
due to bar-to-bar connections, and then reduce the dynamic model by using the constraint
equation. The Lagrange multipliers appear linearly and are computed from a linear algebra
problem. Writing the dynamics in non-minimal coordinates avoids the use of transcendental
functions, providing a very simple second order matrix differential equation. The nonlinear
dynamics is linear in control variables (force densities in the strings), which allows con-
trol laws to be written independently of the material properties of the strings. A bar length
correction algorithm is also provided to satisfy the bar length constraints at both zero and
first-order derivative. The algorithm should be used only if necessary.
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Appendix A: Stiffness and damping in strings

Tension in the strings is produced by stretching them beyond their rest length. Let the rest
length of the ith string be denoted by ρi , extensional stiffness by ki , damping constant by ci ,
and string vector by si . Assuming that strings follow Hooke’s law and the viscous friction
damping model, the tension in a string is written as

‖ti‖ = ki

(‖si‖ − ρi

)+ ci

sT
i ṡi

‖si‖ , (98)

γi = ‖ti‖
‖si‖ = ki

(
1 − ρi

‖si‖
)

+ ci

sT
i ṡi

‖si‖2
. (99)

Note that if ρi > ‖si‖, although above equation gives a negative value, tension in the string
should be substituted to zero as a string can never push along its length. Similarly, the final
value of the tension ti or force density γi can also never be negative for any string. Now, we
write these equations in matrix form as

γ̂ = (
I − ⌊

STS
⌋− 1

2 ρ̂
)
k̂ + ⌊

STṠ
⌋⌊

STS
⌋−1

ĉ, (100)

T = Sγ̂ = S
(
I − ⌊

STS
⌋− 1

2 ρ̂
)
k̂ + S

⌊
STṠ

⌋⌊
STS

⌋−1
ĉ, (101)

where ith column in matrix T represents the vector of string tension in the ith string. This
equation can again be written as

T = Sγ̂ = (S − S0)k̂ + S
⌊
STṠ

⌋⌊
STS

⌋−1
ĉ (102)

where S0 = S�STS�− 1
2 ρ̂ represents the matrix containing the rest length vectors. Therefore,

Eqs. (99)–(101) provide the required tension model for elastic strings used in the dynamic
simulation of tensegrity systems.

Appendix B: Analytical solution for Lagrange multiplier

The aim here is to write an analytical solution for the Lagrange multiplier Ω . Notice that
Ω appears linearly in two terms in Eq. (97). We solve this by substituting Ks and λ̂ to write
the equation in terms of Ω and known variables only. Then we combine all the coefficients
of Ω to the left-hand side and all the known variables on the right-hand side to write it in a
simple linear algebra problem.

Lemma 1 The Lagrange multiplier that satisfies Eq. (97) can be computed as

⎡
⎢⎢⎢⎣

ω1

ω2
...

ωc

⎤
⎥⎥⎥⎦=

⎛
⎜⎝

β∑
i=1

1

2l2
i

CT
:,i ⊗ (

bi ⊗ (biDi,:)T
)−

⎡
⎢⎣
E ⊗ eT

1

E ⊗ eT
2

E ⊗ eT
3

⎤
⎥⎦
⎞
⎟⎠

−1⎡
⎢⎣
AT

1,:
AT

2,:
AT

3,:

⎤
⎥⎦ , (103)

where ωi is the ith column of Ω , C = P TCT
nbC

T
b , D = CbCnbM

−1
s U1, E = P TM−1

s U1,
and A = −Sγ̂CsM

−1
s U1 + B� 1

2 l̂−2BT(Sγ̂ Cs − W)CT
nbC

T
b − l̂−2Ĵ ḂTḂ�CbCnbM

−1
s U1 +

WM−1
s U1 ∈ R

3×c.
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Proof Let us start by substituting for Ks from Eq. (86) in Eq. (97):

N
[
CT

s γ̂ Csb − CT
nbC

T
b λ̂Cb CT

s γ̂ Css

]
M−1

s U1 − ΩP TM−1
s U1 = WM−1

s U1 (104)

N
(
CT

s γ̂
[
Csb Css

]− CT
nbC

T
b λ̂Cb

[
I 0

])
M−1

s U1 − ΩP TM−1
s U1 = WM−1

s U1 (105)

Now, we substitute for Cnb = [I 0] and Cs = [Csb Css] from Eq. (61) and Eq. (66), respec-
tively:

Sγ̂CsM
−1
s U1 − Bλ̂CbCnbM

−1
s U1 − ΩP TM−1

s U1 = WM−1
s U1. (106)

Further substituting λ̂ from Eq. (87) here gives

1

2
B
⌊
l̂−2BTΩP TCT

nbC
T
b

⌋
CbCnbM

−1
s U1 − ΩP TM−1

s U1

= −Sγ̂CsM
−1
s U1 + B

⌊
1

2
l̂−2BT(Sγ̂ Cs − W)CT

nbC
T
b − l̂−2Ĵ ḂTḂ

⌋
CbCnbM

−1
s U1

+ WM−1
s U1 = A (107)

1

2
B
⌊
l̂−2BTΩC

⌋
D − ΩE = A (108)

where C = P TCT
nbC

T
b , D = CbCnbM

−1
s U1, E = P TM−1

s U1, and B = [ b1 b2 ··· bβ ] ∈ R
3×β .

Notice that Eq. (108) is only written in terms of Ω and known variables. Now, we combine
the coefficients of Ω by first breaking it as Ω = [ ω1 ω2 ··· ωc ] ∈R

3×c as

⇒ F = 1

2

⌊
l̂−2BTΩC

⌋=

⎡
⎢⎢⎢⎢⎣

. . . 0 0

0
c∑

j=1

Cj,i

2l2
i

bT
i ωj 0

0 0
. . .

⎤
⎥⎥⎥⎥⎦ . (109)

Therefore, the element on the mth row and nth column of the matrix G= 1
2B�l̂−2BTΩC�D,

for m ∈ {1,2,3} and n ∈ {1,2, . . . , c}, is equal to

Gm,n = bm,1F1,1D1,n + bm,2F2,2D2,n + · · · + bm,βFβ,βDβ,n =
c∑

j=1

β∑
i=1

bm,iDi,n

Cj,i

2l2
i

bT
i ωj .

(110)

The second term in Eq. (108) is also written in terms of the Lagrange multiplier as

ΩE = [ω1 ω2 · · · ωc]E = ω1E1,: + ω2E2,: + · · · + ωcEc,: =
c∑

j=1

ωjEj,:. (111)

Similarly, the element on the mth row and nth column of this matrix is equal to

(ΩE)m,n =
c∑

j=1

eT
mωjEj,n =

c∑
j=1

Ej,ne
T
mωj . (112)
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Substituting the m,nth element from Eq. (110) and Eq. (112) into Eq. (108) gives

c∑
j=1

β∑
i=1

bm,iDi,n

Cj,i

2l2
i

bT
i ωj −

c∑
j=1

Ej,ne
T
mωj = Am,n, (113)

⇒
c∑

j=1

(
β∑

i=1

bm,iDi,nCj,i

2l2
i

bT
i − Ej,ne

T
m

)
ωj = Am,n. (114)

This can be rearranged to shape a matrix equation:

Θ3c×3c

⎡
⎢⎢⎢⎣

ω1

ω2
...

ωnc

⎤
⎥⎥⎥⎦=

⎡
⎢⎣
AT

1,:
AT

2,:
AT

3,:

⎤
⎥⎦ , (115)

⎡
⎢⎣
AT

1,:
AT

2,:
AT
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The above equation represents 3c equations for 3c unknowns and taking the inverse will
give us Eq. (103). �

Appendix C: Bar length correction algorithm

In order to compensate the error accumulated during the integration of dynamics equations,
the vector of each rod b, the center of mass vector r and their time derivatives ḃ and ṙ
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have to be modified. In the following section, first we will correct the bar vector b and its
derivative ḃ in such a way that the resulting rod vector preserves its length and its velocity
vector is orthogonal to it. After correcting b and ḃ, we will find r and ṙ such that the Class-k
constraints are satisfied.

C.1 Class 1 bar length correction

Let us denote the corrupted value of bar vector and its derivative after integration as b̄ and ˙̄b,

respectively. Let the additive vectors p and r be added to b̄ and ˙̄b in such a way that the
resulting rod vector preserves its length and its velocity vector is orthogonal to it. Among
infinite pairs satisfying the constraints above, one reasonable choice can be selected by the
following statement.

Theorem 1 For any given b̄ and ˙̄b, the corrective vectors p and r minimizing:

J (p, r) = q‖p‖2 + ‖r‖2, (119)

subject to constraints ‖b̄ + p‖ = l and (b̄ + p)T( ˙̄b + r) = 0 are calculated as

p = lv − b̄, r = −vvT ˙̄b, (120)

where v = [xI + ˙̄b ˙̄bT]−1qlb̄, and x is a real root of the following polynomial:

x4 + a3x
3 + a2x

2 + a1x + a0 = 0, (121)

and

a3 = 2‖ ˙̄b‖2, a2 = ‖ ˙̄b‖4 − (ql)2‖b̄‖2, (122)

a1 = 2(ql)2
((

b̄T ˙̄b)2 − ‖ ˙̄b‖2‖b̄‖2
)
, a0 = (ql)2‖ ˙̄b‖2

((
b̄T ˙̄b)2 − ‖ ˙̄b‖2‖b̄‖2

)
. (123)

Proof The corrected rod vector and its corrected time derivative satisfy

(b̄ + p)T(b̄ + p) = bTb = l2, (124)

(b̄ + p)T( ˙̄b + r) = bTḃ = 0. (125)

Note that Eqs. (124) and (125) implied that

b̄ + p = lv ⇒ p = lv − b̄, ∀vTv = 1, (126)

vT( ˙̄b + r) = 0 ⇒ r = −vvT ˙̄b + Vvz, (127)

for any arbitrary z, since (vT)+ = v and vTVv = 0, where Vv is the left null space of v. Now,
one can solve the minimization problem of Eq. (119), with p and r given by Eq. (126) and
Eq. (127), subject to constraint vTv = 1:

J (p, r) = q‖p‖2 + ‖r‖2 + λ
(
vTv − 1

)= q‖lv − b̄‖2 + ‖ − vvT ˙̄b + Vvz‖2 + λ
(
vTv − 1

)
,

(128)

= ql2vTv + q‖b̄‖2 − 2qlb̄Tv + (
vT ˙̄b)2 + ‖z‖2 + λ

(
vTv − 1

)
. (129)
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Since V T
v Vv = I . Note that Eq. (129) is minimized with respect to z when z = 0. More-

over, in order to minimize Eq. (129) with respect to v, one can write

∂J

∂v
= 0 ⇒ 2ql2v − 2qlb̄ + 2 ˙̄b ˙̄bTv + 2λv = 0, (130)

⇒ v = ((
ql2 + λ

)
I + ˙̄b ˙̄bT

)−1
qlb̄ = (

xI + ˙̄b ˙̄bT
)−1

qlb̄, (131)

where x = ql2 + λ. Using the matrix equivalence (A + BCD)−1 = A−1 − A−1B(C−1 +
DA−1B)−1DA−1 to express v in terms of x yields

(
xI + ˙̄b ˙̄bT

)−1 = x−1I − x−1
(
x + ‖ ˙̄b‖2

)−1 ˙̄b ˙̄bT = (
x
(
x + ‖ ˙̄b‖2

))−1((
x + ‖ ˙̄b‖2

)
I − ˙̄b ˙̄bT

)
,

(132)

⇒ v = ql
(
x
(
x + ‖ ˙̄b‖2

))−1((
x + ‖ ˙̄b‖2

)
b̄ − ˙̄b ˙̄bTb̄

)
. (133)

Finally, substituting Eq. (133) in vTv = 1 and after some algebraic manipulations, one
can obtain the polynomial equation (121). Therefore, any real root of this polynomial can be
substituted in Eq. (133) to generate v, which in turn gives the pair p and r using Eq. (120). �

C.2 Class-k bar length correction

From the above polynomial algorithm, we get b and ḃ which can be arranged in matrix form
to give B and Ḃ . Now, we should update R and Ṙ such that the Class-k constraints are
satisfied.

Theorem 2 For any given B , Ḃ and corrupted matrix of center of mass vectors and its

derivatives, R̄ and ˙̄R, we can find corrected R and Ṙ using

R =
(

1

2
D − 1

4
BCbP

)
V1Σ

−1UT
1 + R̄U2U

T
2 , (134)

Ṙ = −1

4
ḂCbPV1Σ

−1UT
1 + ˙̄RU2U

T
2 , (135)

where NP = D comes from Class-k constraints and U1,U2,Σ,V1 and V2 come from the
SVD of matrix CrP as

CrP = [
U1 U2

][Σ 0
0 0

][
V T

1
V T

2

]
. (136)

Proof From our dynamics derivation, we define

N = [
B R

][ 1
2 Cb

2Cr

]
. (137)

We use the class-k constraint equation

NP = D, (138)

[
B R

][ 1
2 Cb

2Cr

]
P = D, (139)

RCrP = 1

2
D − 1

4
BCbP. (140)
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The singular value decomposition of matrix (CrP ) can be written as

CrP = [
U1 U2

][Σ 0
0 0

][
V T

1
V T

2

]
, (141)

CrP = U1ΣV T
1 . (142)

Using the SVD of matrix CrP , the existence condition can be written as

(
1

2
D − 1

4
BCbP

)
V2 = 0, (143)

where V2 represents the right null space of matrix CrP . Moreover, all the solutions can be
written as

R =
(

1

2
D − 1

4
BCbP

)
(CrP )+ + Z2U

T
2 , (144)

R =
(

1

2
D − 1

4
BCbP

)
V1Σ

−1UT
1 + Z2U

T
2 , (145)

where U2 represents the left null space of matrix CrP and Z2 is an arbitrary matrix.
We minimize the 2 norm of difference between previous center of position matrix (R̄)

and updated center of position matrix (R) i.e. ‖R − R̄‖2, to find the arbitrary matrix Z2:

min
z2

∥∥∥∥
(

1

2
D − 1

4
BCbP

)
V1Σ

−1UT
1 + Z2U

T
2 − R̄

∥∥∥∥
2

. (146)

Using the known result that X = A+CB+ minimizes the ‖AXB − C‖, the arbitrary
matrix Z2 can be found:

Z2 =
[
R̄ −

(
1

2
D − 1

4
BCbP

)
V1Σ

−1UT
1

]
U2 (147)

Z2 = R̄U2 (148)

as UT
1 U2 = 0. Putting it back in Eq. (145), we get Eq. (134) and similar procedure can be

used to get Eq. (135) using ṄP = 0. �

Finally, with updated B and Ḃ from Sect. 1 and updated R and Ṙ from the above section,
we get

N = [
B R

][ 1
2Cb

2Cr

]
, Ṅ = [

Ḃ Ṙ
][ 1

2Cb

2Cr

]
. (149)
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