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Abstract With the widespread use of computer-aided engineering (CAE) to solve computa-
tional mechanics problems, engineering design has become more accurate and efficient. The
integration of the finite element method (FEM) and flexible multibody dynamics (FMD) is
a typical application of computational mechanics. It constitutes an important contribution to
engineering development, but its potential is restrained by numerical computation. Compu-
tational time is a critical factor that influences the efficiency and cost of design and analysis.
The advent of symbolic computation enables faster simulation code, but the symbolic inte-
gration of FEM and FMD is at the initial stages. A general symbolic integration procedure
is presented in this paper. The performance of the symbolic model is compared with models
from the literature and numerically-based commercial software.

Keywords Finite element method · Multibody system dynamics · Symbolic computation ·
Floating frame of reference · 3D Rayleigh beam · Geometrical stiffening

1 Introduction

The advent of symbolic programming enables faster simulation code, via which the develop-
ment of FMD has made significant achievements [20, 22, 28] that show better performance
over numerically-based simulations. There are several symbolically-based FMD software
packages, such as Dymola and Robotran, which have libraries of flexible beams and plates
to increase the fidelity of system-level models. However, since all these flexible bodies use
classical variational methods [12], their usage is limited to simple geometries.

The symbolic integration of FMD with FEM is at the initial stages, and publications
in this area are scarce. Certain researchers have demonstrated simple integration examples
using the Modelica symbolic language [30] in Dymola and shown dramatic reduction of
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computational cost compared with numerical computation [11], but the detailed process of
implementation is not presented.

The method described in this paper is a general way of implementation using symbolic
computation via MapleSim, which is a multi-domain physical modeling environment built
on Maple’s technology that provides users with a general-purpose symbolic computation en-
vironment. The dynamic equations of a flexible beam based on the finite-element approach
[24] are explicitly derived in symbolic form first, which are modified specifically to realize
the implementation. Newly-defined explicit expressions regarding the geometric stiffening
nonlinearity are derived based on the classic Rayleigh beam theory, which is specific for
the nodal approach. In addition, the graph-theoretical (GT) method [28] is used to imple-
ment the FMD system equations in MapleSim. With this approach, highly-optimized system
equations are generated.

There are two main approaches, which differ in the selection of coordinate systems, used
to formulate the dynamic equations of motion of deformable bodies in FMD: the floating
frame of reference (FFR) [25] and absolute nodal coordinate (ANCF) methods [26]. A large
amount of research work has been done to validate the functionality of the two methods in
the analysis of flexible beams [3, 5].

FFR is currently the mainstream approach adopted by most commercial FMD software
packages. This method defines the configuration of the flexible body in terms of two sets
of coordinates: reference coordinates and elastic coordinates. Reference coordinates define
the location and orientation of a selected body-fixed frame. Elastic coordinates describe the
body deformation with respect to the body-fixed frame. The potential energy defined using
these local elastic coordinates yields a simple expression assuming small strains. The ex-
pressions of the kinetic energy as well as the virtual work of the forces, however, are highly
nonlinear since they are written in terms of coupled reference and elastic coordinates. As a
result, FFR will generate a simple and usually constant stiffness matrix while unavoidably
yielding a deformation-dependent mass matrix and nonlinear inertia forces. This approach
is widely used and proven efficient in modeling flexible bodies under large overall motion
with small deformation [23–25].

ANCF, according to its name, uses coordinates with respect to the inertia frame directly
to define the configuration of the deformable body. Its conceptual difference in the formula-
tion makes it effective in modeling deformable bodies with large deformation since it uses
no infinitesimal rotations as elastic coordinates. The difference also comes with the fact that
due to the elimination of the coupling of reference and elastic coordinates, the mass matrix
becomes constant, which no longer depends on the body deformation. However, using abso-
lute coordinates will bring complexity into the formulation of continuum mechanics because
the stiffness matrix turns to be nonlinear even in the case of a linear elastic body with small
deformation [26].

A number of test problems have been developed to compare these two methods [6, 9, 10].
Most of the cases show a good agreement between the two approaches, but some cases in-
dicate results diverge when the deformation of the body is large [10]. Although ANCF has
been used by many researchers to analyze flexible multibody problems, the ANCF technol-
ogy is not yet well developed as demonstrated by the study presented in [4].

The FEM formulation presented in this article is based on FFR for 3 key reasons:

1. Small deformation is often assumed for FMD problems.
2. Body-fixed frames cooperate well with the symbolically pre-defined joint connectors

(revolute, prismatic, etc.) built in MapleSim to solve rotating beam problems.
3. A general approach, which has been widely accepted, is sought for the symbolic FEM-

FMD development at the initial development stage.
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The Bernoulli–Euler (BE) beam theory [1] is usually the first choice to formulate the
flexible beam equations considering that the deformable components in multibody systems
are often slender links. The Rayleigh beam has the same properties as the BE beam while
it adds cross-sectional rotary inertia to the BE formulation. The key assumption under the
BE theory is the plane sections of the beam initially perpendicular to the centroidal axis
will remain plane and perpendicular to the axis after deformation, which implies that the
shear strain and stress are zero. As pointed out in [1], this formulation can be used for load
cases wherein stresses due to bending are the most significant. Another critical assumption
states that accurate description of the beam deformation will only be guaranteed under small
deflection with small strains. Based on empirical data, it is estimated that the maximum
deflection ratio of the tip deformation over the beam length to be 10%, and errors will
become intolerable if beyond this limit. Certain cases involving large and fast rigid-body
motion of the flexible body lead to the inexact modeling of the deformation by using the
conventional formulation. Theoretically, the assumption of small strains omits higher-order
terms in the full strain energy expression [27]. This hypothesis decouples different types of
deformation (bending, axial, and torsion), and the uncoupled bending and axial deformations
result in the failure to model the dynamic stiffening effect. This effect, usually referred to
as geometric elastic nonlinearity [18], is critical in FMD when the deformable components
undergo large and fast rigid-body motions.

A number of mathematical modifications [2, 7, 18] based on the original BE formulation
have been developed to tackle geometric elastic nonlinearity. However, these modal-based
methods suffer from computational inefficiency due to the necessity to include many axial
deformation modes to approximate the displacement field. An alternative formulation de-
rived by Mayo and Dominguez [17] manually added a foreshortening term in the expression
of axial displacement field. This approach distinguishes the shortening-induced and strain-
induced displacements, and yields the traditionally constant stiffness matrix. The nonlinear-
ity was moved from the elastic forces to inertia, external, and reactive forces. This approach
is computationally efficient [16] and widely used in numerous examples [15, 21] to approx-
imate the stiffening effect. The foreshortening formulation is added in the Rayleigh beam
formulation in this article, and the associated terms are symbolically expressed in explicit
form that we could not find in other publications.

2 Symbolic finite-element modeling of 3D flexible beams with geometrical
nonlinearity

2.1 Global position vector

The global position vector ri is used to locate an arbitrary point P on the ith element of
the flexible body shown in Fig. 1 with respect to the inertia frame XYZ. The velocity and
acceleration vectors differentiated from the global position vector are used, respectively, to
integrate the kinetic energy and virtual work, from which the mass matrix and inertia forces
are extracted.

The global position vector, using the conventional displacement fields, is defined by Sha-
bana [24] as

ri = R + Aui = R + A
(
ui

0 + ui
f

)
, (2.1)

where the position vector ri is written in terms of the reference coordinates R, which defines
the location of the body-fixed frame xyz, and the local position vector ui of point P is shown



390 Y. Liang, J. McPhee

Fig. 1 Finite-element beam
coordinate systems and position
vectors (P0 refers to the point P

before deformation)

in Fig. 1; A is the rotation matrix of xyz relative to XYZ; ui can be seen as the summation
of the local position vector in the undeformed state ui

0 and the local displacement vector ui
f

defined, respectively, as

ui
0 = Niq0, (2.2)

ui
f = NiB2qf , (2.3)

where B2 is a linear transformation matrix [24] that arises from imposing the fixed-free
reference condition, and to eliminate inactive deformation coordinates; q0 is the vector of
original values of the nodal coordinates in the undeformed state; qf contains the time-variant
nodal deformation coordinates; the matrix Ni is defined as

Ni = SiBi
1, (2.4)

where Si is the shape function matrix defined for beam elements, and Bi
1 is the connectivity

matrix used to associate the nodal coordinates for the ith element from q0 and qf [24].
Substituting Eqs. (2.2) and (2.3) into Eq. (2.1), the local and global position vectors can be
written in terms of the reference and nodal coordinates as

ui = Niqn, (2.5)

ri = R + ANiqn, (2.6)

where qn is the vector of total nodal coordinates defined as

qn = q0 + B2qf . (2.7)

Using the method of Mayo and Dominguez [17], the foreshortened local position vector ui
G

is derived by adding a foreshortening value in the axial displacement of the local position
vector ui in Eq. (2.1):

ui
G = ui +

⎧
⎨

⎩

ui
s

0
0

⎫
⎬

⎭
, (2.8)

where the subscript G refers to the geometrically nonlinear formulation, and ui
s represents a

negative foreshortening value in the axial direction. The foreshortening amount of a single
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Fig. 2 Accumulated shortenings of the elements

element can be calculated as

uei
s = −1

2

∫ li

0

(
u′

fy
2 + u′

f z
2
)
dx, (2.9)

where li is the length of the element, ufy and uf z are the transverse displacements along
y and z directions, and the prime (′) denotes the derivative with respect to x. To calculate
the total foreshortening of a beam discretized by more than one finite element, some critical
factors must be considered. When the beam has several finite elements, the foreshortening
calculated in Eq. (2.9) only represents the shortened amount produced in that element by
its own deflection instead of the whole amount with respect to the base frame. Even though
the nodal coordinates represent the actual transverse displacements with respect to the base
frame, the integration along a finite length li makes uei

s only able to represent a local short-
ening of the single element. Attention should be paid to the integration of uei

s , as it cannot be
integrated along the entire length L of the beam when using FEM. The shape function matrix
of each element uses its own nodal coordinates to estimate an arbitrary point displacement
within that element, so the integration must be taken within the same element. Integrating
Eq. (2.9) along the entire beam length will yield incorrect results. The total shortening accu-
mulated by the finite elements located between the base frame and the ith element should be
calculated by the sum of the shortenings of the i − 1 elements plus that of itself, as shown in
Fig. 2. Therefore, the axial foreshortening of an arbitrary point on the ith element is defined
as

ui
s =

i−1∑

i=1

uei
s + uei

s,x = Bi
sB2qf , (2.10)

where the matrix Bi
s is taken as

Bi
s = −(B2qf )T Hi (2.11)

where Hi is a symmetric matrix, which is a function of the spatial coordinate x, defined as

Hi = −1

2

[
i−1∑

n=1

∫ l

0

(
NnT

y

′
Nn

y
′ + NnT

z

′
Nn

z
′)

dx +
∫ x

0

(
NiT

y

′
Ni

y

′ + NiT
z

′
Ni

z

′)
dx

]

, (2.12)

where Ni
y and Ni

z are the rows associated with the transverse deformations of Ni defined in
Eq. (2.4). Using Eqs. (2.8) and (2.10), the global position vector defined by Eqs. (2.1)–(2.7)
can be rewritten as

ri = R + Aui
G = R + A

(
Niq0 + Ni

Gqf

)
, (2.13)
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where Ni
G is defined as

Ni
G = (

Ni + 2Bi
H

)
B2 (2.14)

and Bi
H is

Bi
H = [

Bi
s 0 0

]T
. (2.15)

The modification in the shape function is associated with the deformation coordinates only,
which takes the foreshortening effect into account, and does not affect the coordinates in
the reference configuration. This shape function is used in the symbolic implementation to
obtain the numerical results.

The global velocity vector can be obtained by differentiating the redefined global position
vector in Eq. (2.13) with respect to time

ṙi = Ṙ − Aũi
Gω + ANi

Gq̇f , (2.16)

where ũi
G is the skew-symmetric matrix of ui

G, and ω is the angular velocity vector of xyz

resolved in the local coordinate system. The symmetry of the time-invariant matrix Hi de-
fined in Eq. (2.12) is used during the differentiation of Bi

H B2qf with respect to time.
The global acceleration vector can be derived by differentiating ṙi defined in Eq. (2.16)

as

r̈i = R̈ − Aũi
Gω̇ + Aω̃2ui

G + 2Aω̃Ni
Gq̇f + AḂi

H B2q̇f + ANi
Gq̈f , (2.17)

where ω̃ is the skew-symmetric matrix of the angular velocity, and Ḃi
H is calculated as

Ḃi
H = [

q̇T
f Hi 0 0

]T
. (2.18)

The underlined terms are used to derive the quadratic velocity force vector in Sect. 2.3.

2.2 Mass matrix

The element mass matrix can be derived from the kinetic energy expression of the ith ele-
ment defined as

T i = 1

2

∫

V i

ρi ṙiT ṙi dV i = 1

2

∫ li

0
ρi ṙiT ṙiAi dx, (2.19)

where ρi and V i are the mass density and volume, and Ai and li are the cross-section area
and length of the element, respectively. Substituting Eq. (2.16) into Eq. (2.19) yields

T i = 1

2
q̇i TMi q̇i , (2.20)

where q̇ represents the time-derivatives of the total generalized coordinates:

q̇ = [
q̇T

r q̇T
f

]T = [
ṘT ωT q̇T

f

]
, (2.21)

where qr is the vector of reference coordinates; Mi is the mass matrix for the ith element,

Mi =
∫ li

0
ρi

⎡

⎢
⎣

[I] [−Aũi
G] [ANi

G]
[ũi T

G ũi
G] [ũi

GNi
G]

sym [NiT
G Ni

G]

⎤

⎥
⎦Ai dx. (2.22)
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Having the mass matrix of each element, one can obtain the total mass matrix of the body
by summing up all the element mass matrices:

M =
⎡

⎣
mrr mrθ mrf

mθθ mθf

sym mff

⎤

⎦ =
n∑

i=1

Mi , (2.23)

where n is the number of elements, and M is the total mass matrix; the subscripts r , θ , and
f indicate the coupling of rigid-body translation, rotation, and flexible-body deformation,
respectively.

2.3 Generalized forces

Quadratic velocity force The quadratic velocity force vector is part of the inertia force
that becomes significant when rotational rigid-body motion exists, and it consists of gyro-
scopic and Coriolis forces. The virtual work of the inertia force of the ith element is defined
as

δWi =
∫

V i

ρiδriT r̈i dV = δqT Qv, (2.24)

where ri is defined in Eq. (2.13), and its virtual change can be written as

δri = δR − Aũi
GNδω + ANi

Gδqf , (2.25)

and δq is the virtual change of the generalized coordinates, [δR δω δqf ]; Qv is the quadratic
velocity force vector. Only the underlined parts of r̈i in Eq. (2.17) are involved in deriving
the quadratic velocity force, as one can prove that the other terms are related to the ki-
netic energy that has been used to derive the mass matrix in Eq. (2.22). Therefore, using
Eqs. (2.24)–(2.25) and the underlined terms of r̈i , the quadratic velocity force vector of the
ith element can be written as

Qv =
⎡

⎣
Qvr

Qvθ

Qvf

⎤

⎦ =
∫ li

0
ρiAi

⎡

⎢
⎣

Aω̃2ui
G + 2Aω̃Ni

Gq̇f + AḂi
H B2q̇f

−ũiT
G ω̃2ui

G − 2ũiT
G ω̃Ni

Gq̇f − ũiT
G Ḃi

H B2q̇f

NiT
G (ω̃2ui

G + 2ω̃Ni
Gq̇f + Ḃi

H B2q̇f )

⎤

⎥
⎦ dx. (2.26)

Generalized gravitational force The virtual work due to gravity can be expressed as

δWi
g =

∫

V i

ρigT δri dV = δqT Qg, (2.27)

where g is the gravity vector defined as g = [0 −g 0 ]T if the gravity is determined along
−Y axis, and g is the gravity value. Substituting δri defined in Eq. (2.25) into Eq. (2.27),
the generalized gravitational force vector Qg is obtained as

Qg =
⎡

⎣
Qgr

Qgθ

Qgf

⎤

⎦ =
∫ li

0
ρiAi

⎡

⎣
gT

−gT Aũi
G

gT ANi
G

⎤

⎦ dx. (2.28)
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Generalized external force The external force applied on a body can either be a point
load or a distributed load. If the load is distributed, the derivation of the generalized external
force vector will be similar to the generalized gravitational force vector as the gravity is
a typical distributed load. The derivation of the generalized external force vector resulting
from a single point load is presented here. The force vector has three components, which are
defined in the global coordinate system, that is,

F = [
F1 F2 F3

]T
. (2.29)

The virtual work of the force F is defined as

δWe = FT δrp, (2.30)

where δrp is the virtual change of the global position vector of the point P to which the load
is applied. Substituting δrp calculated by Eq. (2.25) into Eq. (2.30), the generalized external
force vector Qe can be derived as

Qe =
⎡

⎣
Qer

Qeθ

Qef

⎤

⎦ =
⎡

⎣
FT

−FT Aũp

G

FT ANp

G

⎤

⎦ . (2.31)

It is necessary to know, in advance, with which element the point P is associated so that only
the corresponding element equations are used to calculate δrp . The superscript p indicates
the equations for the pth element, assuming point P is on this element. One may notice that
the rotational component Qeθ is the generalized moment caused by the point load. If there is
any additionally applied moment on the body, it can be directly applied to the corresponding
node.

2.4 Stiffness matrix

The strain energy can be generalized as

U = 1

2
qT

f Kf qf , (2.32)

where Kf is the total stiffness matrix of the flexible beam. The full expression of the stiff-
ness matrix corresponding to the conventional Bernoulli–Euler beam theory has been well
developed in [24], which is applicable to the Rayleigh beam. It is derived by considering
the normal stain energy with addition of independent torsional strain energy; thus the ax-
ial, bending, and torsional stiffness are decoupled. It is proved in [17] that, after adding the
foreshortening term in the axial displacement field, the normal strain energy defined for the
conventional theory is unchanged. Therefore, the linear stiffness matrix defined in [24] can
be used for the geometrically nonlinear formulation.

3 Symbolic integration with multibody systems

The finite-element beam model implemented in MapleSim is referred to as “MapleSim
FEM.” MapleSim has its own multibody systems dynamics library from where users can
select different types of multibody components (bodies, drivers, joints, etc.) and config-
ure open- or closed-loop mechanisms. Different from traditional FMD modeling methods,
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MapleSim uses graph theory [28] to generate the global constraint equations and system
equations of motion.

The current finite-element implementation in MapleSim adopts a nodal approach, also
referred to as transient analysis in some commercial software packages, which generates the
system equations in terms of all elastic nodal coordinates. The modal approach, as opposed
to the nodal approach, has been used by others to reduce the problem dimensionality. How-
ever, it requires the user to pre-compute a modal analysis [8] that relies heavily on numerical
modeling procedures, which need remodeling to obtain new system equations when chang-
ing geometrical or material parameters. Symbolic computation is able to recall the equations
pre-defined for each body and joint from the library and combine them automatically (using
graph theory) for every multibody system during modeling. There is no need to go back to
remodel a flexible body if its parameters have changed, since the equations contain only the
symbolic parameters that can be given any numerical value before time integration. More-
over, the modal approach often needs a large number of finite elements to obtain a set of
exact mode shapes, but the nodal approach only needs a small number since it fully utilizes
the shape function that describes the deformation of the material points.

For a flexible body component in multibody systems, what needs to be formulated are
two sets of terminal (constitutive) equations with graph-theoretic (GT) edges associated
with each. The first one is referred to as the body element that defines generalized forces
and torques, and the second one is referred to as an “arm” that serves to locate any arbitrary
point on the body where an imparted load (external load, joint reaction, etc.) is applied.

3.1 Body element

In practice, when defining the terminal equations for the body element of a flexible compo-
nent, they are separated into two parts which are, respectively, corresponding to rigid-body
and flexible-body equations since the total coordinates associated with a flexible body are
divided as q = [qr qf ]T .

Reference terminal equations (rigid-body) The terminal equations of generalized rigid-
body forces and torques are defined as

Frb = −(mrrR̈ + mrθ ω̇ + mrf q̈f ) + Qgr + Qvr + 〈Qer〉, (3.1)

Trb = −(mθr R̈ + mθθ ω̇ + mθf q̈f ) + Qgθ + Qvθ + 〈Qeθ 〉, (3.2)

where the subscript rb refers to rigid-body; the m terms are defined in Eq. (2.23); the Qg and
Qv terms are, respectively, the components of the gravitational force vector of Eq. (2.28) and
the quadratic velocity force vector of Eq. (2.26). Notice that the external loads surrounded
by angle brackets 〈〉 are omitted in GT models, since they are already represented by the
built-in force drivers (applied loads) or dependent virtual work element (reactions) [28].

Elastic terminal equations (flexible-body) The terminal equation of the generalized elas-
tic force is written as

Ff b = −(mf rR̈ + mf θ ω̇ + mff q̈f ) − Kf qf + Qgf + Qvf + Qef . (3.3)

Notice that the force F defined in Eq. (2.30) that was used to derive Qef can be either the
external loads or reaction forces.



396 Y. Liang, J. McPhee

3.2 Arm element

The kinematics of any point of interest on the beam are given by:

rP = ui , (3.4)

ṙP = ω × ui + Ni q̇f , (3.5)

r̈P = ω̇ × ui + ω × ω × ui + 2ω × Ni q̇f + Ni q̈f , (3.6)

AP : rotation matrix by 1–2–3 sequence of θP = Ni ′qf , (3.7)

ωP = θ̇P = Ni ′q̇f , (3.8)

ω̇P = θ̈P = Ni ′q̈f , (3.9)

where the subscript P refers to a distal point P shown in Fig. 1; ui is the local position vector
of the point P defined in Sect. 2.1; ω is the angular velocity vector of xyz; Ni is defined by
Ni

G in Eq. (2.14); AP is the rotation transformation matrix of the frame of reference whose
origin is at the distal point P with respect to the body-fixed frame; ωP is the corresponding
angular velocity of the distal point reference frame relative to the body-fixed frame. Since
the deformation has been assumed small, the slopes of point P , estimated by θP , are used
as Euler angles to evaluate the rotation matrix AP . For greater accuracy, high-fidelity ap-
proaches [29] should be used to calculate the rotation matrix; ωP is estimated here by the
time derivative of θP .

3.3 System equations

The assembly of system equations is done using graph theory [20, 28] and depends on “tree”
and “co-tree” selections [19]. Dependent coordinates at joints can be eliminated using ap-
propriate tree selection unless certain reaction results are needed. The Lagrange multipliers
in the kinetic equations depend on the co-tree selection. For open-loop systems, the kinetic
equations can be expressed by the ordinary differential equations (ODEs)

M∗q̈∗ = Q∗, (3.10)

where all coordinates of q∗ are independent, and the stars on symbols indicate system-
level equations. In constructing Eq. (3.10), the rigid- and flexible-body loads in Sect. 3.1,
as well as other pre-defined loads from joint-connected components or force drivers, are
symbolically substituted to form the inertia loads M∗q̈∗ and generalized loads Q∗.

Constraint equations, C(q∗, t) = 0, are derived by using rP in Eq. (3.4), with point P

representing the joint location, in the traditional vector summations around closed kinematic
chains. It is shown in [28] that different reactions (Lagrange multipliers) appear in the ki-
netic equations in Eq. (3.10) when different trees are selected, and the system equations are
represented by a set of differential algebraic equations (DAEs) comprising the kinetic and
constraint equations together. Details of using the terminal equations defined in Sects. 3.1
and 3.2 to assemble system equations using graph theory are given in [14].
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Fig. 3 Planar spin-up beam

Fig. 4 Tip deflection of the
spin-up beam

4 Examples

4.1 Planar spin-up flexible beam

The planar rotating flexible beam is a benchmark problem for testing dynamic analysis of
flexible bodies under large overall motion [13], which is shown in Fig. 3. The beam is
rigidly attached to a rotating hub which is driven with an angular displacement θ(t) about
the Y axis, and the gravity is assumed zero. The focus is the free-tip transverse deformation.

The geometric and material properties taken from [13] are: length L = 10 m, cross-
sectional area A = 0.0004 m2, mass density ρ = 3000 kg/m3, second moment of area
Iy = Iz = 2 × 10−7 m4, Young’s modulus E = 7 × 1010 N/m2, and shear modulus G =
2.7 × 1010 N/m2. The prescribed motion of the hub is written as

θ(t) =
{

ωs

Ts
[ t2

2 + ( Ts

2π
)

2
(cos( 2πt

Ts
) − 1)], t < Ts,

ωs(t − Ts

2 ), t ≥ Ts,
(4.1)

where ωs is set to 6.0 rad/s, and Ts to 15 s.
Five elements are used to model the beam in MapleSim FEM, and both conventional lin-

ear and geometrically nonlinear formulations are used separately to predict the deformation.
MapleSim FEM can shift between the two implemented formulations. The results are val-
idated by using the built-in analytical beam model in MapleSim, which uses the nonlinear
formulation presented in Shi et al. [29]. The tip transverse deflection of the beam predicted
by the three formulations is shown in Fig. 4.

The peak deflection magnitude of the nonlinear FEM (geometrically nonlinear formula-
tion) is 0.573 m, and the result is very close to that predicted by the analytical beam and
result in [17] with a root-mean-square error (RMSE) of 0.074%. However, the linear FEM
(conventional linear formulation) fails to predict the correct deformation after about t = 4 s.



398 Y. Liang, J. McPhee

Fig. 5 Tip deflection of the
stiffer beam

Table 1 CPU time (sec) for 1 to 5 elements

1 2 3 4 5

Modeling time Nonlinear 4.41 25.8 88.2 160 267

Linear 1.03 2.05 4.90 8.21 12.5

Simulation time Nonlinear (1st case) 1.21 7.17 21.0 43.5 85.6

Nonlinear (2nd case) 0.81 5.00 15.6 34.5 72.3

Linear (2nd case) 0.45 0.96 1.72 2.77 4.16

The reason for this is because the linear FEM is unable to capture the dynamic stiffening
effect [13] when the beam spins with a relatively high angular speed.

For structural analysis in a steady state, or dynamic analysis with small and slow over-
all motion, or with stiffer flexible bodies, the dynamic stiffening that is largely associ-
ated with centrifugal and Coriolis effects is negligible. In this case, the linear functions
inside the conventional formulation are sufficient to model the deformation of the body.
This can be shown by applying another set of properties to the beam, which makes the
beam stiffer while the motion is kept the same. The stiffer properties are: length L = 3 m,
cross-sectional area A = 0.005 m2, mass density ρ = 3000 kg/m3, second moment of area
Iy = Iz = 1.989 × 10−6 m4, Young’s modulus E = 7 × 1010 N/m2, and shear modulus
G = 2.7 × 1010 N/m2. The tip transverse deflection of the stiffer beam predicted by the
three formulations is shown in Fig. 5. Although slight differences exist between the linear
FEM and the other two, they agree quite well with an RMSE less than 0.001% since the
dynamic stiffening effect becomes negligible for the stiffer beam.

The computational (CPU) times of 4000 time steps for 1 to 5 elements are also recorded
for both cases. The CPU time can be divided into two categories, one being the time to
generate the system equations (modeling time), and the second one is used for numerical
time-integration (simulation time). The CPU time is shown in Table 1. The modeling time
is the same for both cases due to the generation of the same symbolic system equations.
The simulation time of the linear FEM for the first case is not shown because of its failure
after t = 4 s. It can be seen from the table that the computational cost associated with the
nonlinear FEM increases dramatically with the number of elements while the cost for the
linear FEM increases gently. If 10 minutes is set as a limit for the modeling time, which users
can probably tolerate for simple mechanisms, the corresponding number of finite elements
of a flexible beam in the current MapleSim FEM is about 24 with the linear formulation and
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Table 2 RMSEs (%) for 1 to 5
elements 1 2 3 4 5

1st case Nonlinear 0.546 0.122 0.081 0.075 0.074

2nd case Nonlinear 1.23 × 10−3 � 10−3

Linear 1.24 × 10−3 � 10−3

Fig. 6 Slider–crank mechanism

8 with the nonlinear one, respectively. Note that the modeling time is incurred only once;
after the symbolic equations are generated for a system, any number of simulations can be
performed.

The RMSEs from the results of using 1–5 elements are given in Table 2. The convergence
for both FEM models is reached at using only 1–2 elements. Although one can use more than
2 elements to refine the results, it is efficient to use 1 or 2 elements to quickly get numerical
results which are quite accurate. In addition, the small RMSE results from the 2nd case
(stiffer beam) indicate that the predicted results are very accurate under small deformations,
which coheres with the beam theory assumption described in Sect. 1.

4.2 Planar slider–crank mechanism with flexible crankshaft and connecting rod

This slider–crank mechanism example is used to test the functionality of the finite-element
flexible beam with a closed-loop mechanism and to help further demonstrate the usage of
the conventionally linear and the geometrically nonlinear formulations. This mechanism is
taken from [10] as shown in Fig. 6. The flexible crankshaft has a length of 0.152 m, a cross-
sectional area of 7.854 × 10−5 m2, a second moment of area of 4.909 × 10−10 m4, a mass
density of 2770 kg/m3, and a Yonge’s modulus of 1.0 × 109 N/m2. The connecting rod has
a length of 0.304 m, and has the same dimensions and material properties as the crankshaft
with the exception of the Yonge’s modulus, which is 0.5 × 108 N/m2. The slider is assumed
massless. The crankshaft of the system is assumed to be driven by the following torque
expressed in N/m:

M(t) =
{

0.01(1 − e−t/0.167), t < 0.70 s,
0, t ≥ 0.70 s.

(4.2)

The crankshaft is modeled using one element, and the connecting rod is modeled using two
elements. Figure 7 shows the midpoint deformation results of the connecting rod measured
with respect to its body-fixed frame obtained by using the two FEM formulations along
with the result recorded in [10]. It is seen that the three sets of results agree well with each
other. The nonlinear FEM generates a very small difference of the deformation because the
connecting rod is quite short so that the centrifugal and Coriolis effects discussed in the
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Fig. 7 Deformation of the
midpoint of the connecting rod

Fig. 8 Position of the slider
block

Fig. 9 Schematic of the spatial manipulator with a flexible link

preceding section are negligible. In addition, the difference between the result in [10] and
the others is probably due to that the beam model in the reference adopts a modal approach.
This difference will be discussed particularly in the next example problem.

The position of the slider block is plotted in Fig. 8. It is shown that the influence of the
slight difference of the deformation to the position of the slider block is trivial.

4.3 Spatially rotating flexible beam

In this section, a spatial manipulator with a flexible link, shown in Fig. 9, is modeled by the
MapleSim FEM with the nonlinear nodal formulation and validated by the built-in analytical
beam model. The results are compared with an MSC. ADAMS/Nastran model which uses a
numerical modal approach.

The mechanism shows that the flexible beam is attached to a hub that can rotate about
a vertical Y axis. The beam can also rotate about its body-fixed horizontal zb axis. There
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Fig. 10 Tip deflection
magnitudes

is a tip mass attached to the beam which adds additional inertia and weight. The spatial
motion of the manipulator is such that when t < 1 s there is no rotation so that the beam is
static, which is the same as a cantilever beam under gravity; when 1 s ≤ t < 2 s the beam
is spinning only about the Y axis like a planar spin-up beam; when 2 s ≤ t < 3 s the beam
has spatial motion about both the Y and zb axis. The prescribed angular motions about both
axes are defined as

θ̇ =
{

0, t < 1 s,
ωθ , 1 s ≤ t < 3 s,

β̇ =
{

0, t < 2 s,
ωβ, 2 s ≤ t < 3 s,

(4.3)

where ωθ is set to π rad/s, and ωβ is set to π/2 rad/s. The parameters of the flexible beam
are: length L = 3 m, cross-sectional area A = 0.005 m2, mass density ρ = 3000 kg/m3,
second moment of area Iy = Iz = 1.989×10−6 m4, Young’s modulus E = 7.0×1010 N/m2,
shear modulus G = 2.7 × 1010 N/m2, and gravity g = 9.81 m/s2. The rigid hub has a radius
of 0.5 m, and the tip mass has a mass of 30 kg.

The “CBEAM” formulation and nonlinear element formulation “LAGR” embedded in
Nastran are selected, respectively, to construct the beam properties and element equations,
and 10 elements are used to generate the mode shapes of the flexible beam before assem-
bling the mechanism in MSC. ADAMS. On the other hand, two elements are used for the
MapleSim FEM. Both results are validated by the analytical beam model in MapleSim. The
tip deflection magnitudes predicted by the three models are plotted in Fig. 10. The results of
all three models are in good agreement with an RMSE of 0.23%, though a small difference
observed between MSC. ADAMS/Nastran and the other two after t = 2.5 s.

This negligible difference can be explained by the different values of axial foreshortening
predicted by MSC. ADAMS/Nastran and the other two models shown in Fig. 11, as the
tip transverse deflections from the three models are converged exactly shown in Fig. 12.
Different approaches of nonlinear formulation between Nastran and MapleSim FEM and
the fact that Nastran forces the selection of lumped mass distribution when generating the
mode shapes could both result in the small divergence of the axial deformation. Since the
nonlinear formulation embedded in the analytical beam model uses the same foreshortening
approach as the MapleSim FEM, they generate the same foreshortening value.

Although the modal approach (Nastran) and the nodal approach (MapleSim FEM) both
display comparable accuracy when modeling this problem, a large difference exists between
them in terms of ability to converge. For such an example where low-frequency flexible
modes are dominating, only one element is sufficient for the MapleSim FEM to reach con-
vergence with an RMSE of 0.02% as shown in Fig. 13. This is because the displacement
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Fig. 11 Tip axial deflection
along the xb axis (Analytical and
MapleSim FEM results converge)

Fig. 12 Tip transverse deflection along the local yb and zb axis (all results converge)

Fig. 13 Tip transverse deflection
for different numbers of elements
(MapleSim FEM)

field of an element described by the shape functions is accurate enough to directly predict
the actual deformation of the flexible body in simple conditions.

Unlike the nodal approach, the modal approach usually relies on a larger number of
elements in order to generate accurate mode shapes. The ability to reach convergence for
Nastran is shown in Fig. 14. The RMSEs from the results of using 3, 6, and 10 elements are,
respectively, 1.49%, 0.26%, and 0.24%. It is obvious that using the mode shapes generated
by 3 elements is insufficient to predict accurate deformation results, so at least 6 elements
are usually used to obtain a good estimation. Even 10 or more elements have to be selected
in order to refine the results afterwards.
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Fig. 14 Tip transverse deflection
for different numbers of elements
(MSC. ADAMS/Nastran)

Associated with the larger number of elements and selection of mode shapes is always
a higher cost. When considering the CPU time, it will take less than 10 s for MapleSim
FEM to finish one round of calculation when using one element for this example, which
includes both modeling and simulation time. However, it will take about 2.6 minutes for
MSC. ADAMS to finish the simulation when using 6 elements for this example. Other than
that, if the user wants to change the number of elements in MapleSim FEM, he or she can just
type a different number before each simulation without doing anything else when using the
nodal approach. The modal approach needs the user to redefine the flexible body in Nastran
and generate a new set of mode shapes, which requires many manual operations. Therefore,
the convenience of manipulation should not be compared solely on the CPU time.

Moreover, since the symbolic computation is able to generate the equations of motion
as a pre-processor, parameters other than the number of elements, such as dimensional and
material properties, can be easily changed afterwards. For this example, if using the sym-
bolic approach, the user can modify the beam density, length, cross-sectional area, Young’s
modulus and so forth very conveniently. Plus, equations do not have to be regenerated. This
allows the user to have more time to analyze many different results associated with vary-
ing parameters, which will benefit control and design engineers to efficiently optimize the
system.

5 Conclusions

The objective of integrating the FEM with FMD using symbolic computation has been suc-
cessfully completed using the nodal formulation and GT approach. The nonlinear FEM
beam formulation is based on the Rayleigh beam theory, and a foreshortening formulation
is added to capture the dynamic stiffening effect. Planar spin-up and spatially rotating beam
examples are used to examine the convergence of the FEM beam model in FMD, and CPU
time is used as the criteria to assess its performance. It is shown that the symbolic FEM
model provides good accuracy with less computational cost and more convenience of ma-
nipulation when compared with numerical approaches.

Using symbolic computation, the future extension from beam elements to those with
more complex geometries seems promising. However, the total number of degrees of free-
dom generated by the nodal formulation is an outstanding issue to be resolved. It can be
worthwhile to develop or implement specific coordinate reduction techniques, such as nodal
condensation or substructuring approaches, which fully take advantage of symbolic compu-
tation.
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