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Abstract This paper describes the use of an instrumented bicycle and its computational
model for teaching multibody dynamics. The presented approach employs the Whipple
model for the kinematic and inverse dynamic simulation of a bicycle ride using as an in-
put three generalized coordinates registered with digital sensors. During the experimental
phase, students ride the instrumented bicycle to collect the necessary sensor data. The kine-
matic and inverse dynamic simulations based on these signals provide a full picture of the
motion of the system in different positions and at a range of velocities and accelerations. In
addition, they estimate the traction, control, and tire-to-road contact forces during the ride.
To validate the simulated results, the simulated velocity and accelerations are compared with
the data acquired with an inertial measurement unit (IMU) installed on the bicycle. The pa-
per describes the experimental setup of the instrumented bicycle, enabling readers to build
the very same system for their own educational use. The instrumented bicycle system is
based on open-source software and as much as possible on open hardware.

Keywords Education of multibody dynamics · Real-time simulator · Vehicle stability ·
Symbolic computation

1 Introduction

This paper is the continuation of a previous one [1] in which the authors describe the use
of a bicycle multibody model (Whipple model) to teach multibody dynamics. The model
itself and the dynamic properties of the bicycle are ideal tools to design a varied, mod-
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ern, and enjoyable multibody course. The course was designed for graduate students, and
it deals with the kinematics and dynamics of multibody systems, stability analysis, com-
puter implementation, experimental validation, and real-time interactive simulation. This
paper examines the possibilities of the bicycle model to teach multibody dynamics in an
undergraduate course. In fact, this paper shows the content of the course “Kinematics and
Dynamics of Machines” delivered at the third-year BSc level at the University of Seville
from the academic year 2011–2012 to 2015–2016. The response from the students was very
positive.

The well-known Whipple bicycle model [2], which consists of four rigid bodies with
constraints, is an excellent example for teaching multibody dynamics to engineering stu-
dents. The apparently simple bicycle model contains a large variety of elements that make
it very appealing for teaching purposes. Therefore, the model can be used in courses from
intermediate to advanced, allowing students to better understand the analytical dynamics
of constrained mechanical systems as well as computational techniques applied to a sys-
tem with which they are familiar. The educational developments in this and the former
paper [1] are inspired by the excellent work of Schwab and co-workers [3–5] in the field
of bicycle dynamics. Paper [3] is a gentle introduction to the Whipple model and the dy-
namics of the bicycle that gives the students the opportunity to benchmark their modeling
results.

The literature on the education of multibody dynamics includes some works related to
appropriate theoretical approaches, the design of courses including student projects, and the
description of multibody software for teaching purposes. The work of Frączek and Wojtyra
[6] describes the design of Multibody Systems (MBS) courses for undergraduate, graduate,
and doctoral students and the relation of an MBS course to other subjects. Cavacece et al.
[7] report their experiences in introducing MBS courses in engineering education, focus-
ing also on the course design. Pennestrì and Vita [8] explain the theoretical and numerical
methods that are used for kinematic and dynamic analysis and multibody computer pro-
gramming. Fissete and Samin [9, 10] have applied the concept of project-based learning
to the education of multibody dynamics. In a more recent work, Docquier et al. [11] have
used a mountain bike as an example to describe modeling hypotheses and simplifications
in multibody dynamics. García de Jalón and Callejo [12–14] describe a methodology for
teaching multibody dynamics based on the use of natural coordinates. Petuya et al. [15]
describe educational software for teaching the kinematics of spatial mechanisms. Rideout
[16] presents an intuitive method to teach multibody dynamics based on parasitic elements
(stiff springs to allow a small but finite relaxation of ideal joint constraints). Wolfsteiner
[17] has proposed a methodology for learning multibody dynamics with Matlab based on
the symbolic derivation of equations and their numerical solution.

This paper is a conceptually different educational approach to multibody dynamics. In
the proposed course, it is assumed that students already have a background in the kinematics
and dynamics of machines and analytical mechanics. The bicycle example is then used to
fix the concepts in an example-oriented course dealing with the kinematics and dynamics
of multibody systems, computer implementation and experimental validation. This paper
is the result of four years of teaching multibody dynamics to undergraduate students at the
University of Seville using the bicycle as a theme. The course includes three lessons. Each
lesson consists of three parts: theory and a related example, and one experimental activity
in the laboratory, as follows:
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Lesson 1
Theory: Coordinate selection, frames and constraints in multibody systems.
Example: Whipple bicycle model.
Experiment: Experiment with instrumented bicycle and signal processing.

Lesson 2
Theory: Kinematics of multibody systems.
Example: Simulation of a bicycle; treatment of non-holonomic constraints.
Experiment: Simulation of the bicycle driven by experimental measurements (sensor

data); experimental validation of the multibody kinematic model.

Lesson 3
Theory: Dynamics of multibody systems.
Example: Inverse dynamics of the bicycle; calculation of reaction, control and drive

generalized forces.
Experiment: Inverse dynamics of the bicycle driven by experimental measurements;

calculation of rider actions on the bicycle and wheel–road contact forces
during the ride.

This paper is organized as follows: the next section briefly describes the basic assump-
tions in the model, generalized coordinates and frames. It also includes a description of the
symbolic calculation of velocities and accelerations and the kinematic constraints and their
derivatives. Section 3 is devoted to the kinematic simulation of the bicycle model based on
experimentally measured data. Section 4 establishes the symbolic procedure for computing
the equations of motion of the bicycle model and the assumptions made about the applied
forces. Section 5 proposes a computational procedure for the inverse dynamic analysis of
the bicycle model based on experimentally measured data. Section 6 describes the full ex-
perimental setup. Sensors, the microcontroller, computers, connections, communications,
software and programming languages are detailed. Section 7 shows the proposed method to
compare the computer simulations based on multibody dynamics with the experimentally
measured data. Finally, Sect. 8 shows these comparisons and the interpretation of the results
with an educational perspective.

2 Multibody model of the bicycle

The multibody model of the bicycle was explained in detail in [1]. This section provides
a summary of the model. Coordinates used in the multibody formulations can be divided
into reference coordinates that are associated with each body in the system and relative or
joint coordinates. The former coordinate family results in highly constrained formulations,
easy to implement in general purpose computer programs. The latter family results in less
constrained and more efficient formulations requiring more user involvement in the model-
ing process. This paper selects a set of relative coordinates to model the bicycle, assuming
it to be a closed-loop single-chain mechanism. This selection results in a minimal set of
coordinates.

Figure 1 shows the bicycle in an arbitrary position, and the frames and coordinates used.
The model includes four moving bodies: rear wheel (body 2), rear frame-rider (body 3),
steering assembly (body 4) and front wheel (body 5). The wheels are modeled as circles
(without volume). The road is assumed planar and horizontal. Rolling without slipping of
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Fig. 1 Coordinates and frames
for kinematic description

the wheels is assumed. The body frames are located at the center of the mass of each moving
body. The selected relative coordinates are grouped in the following column matrix:

q = [
xC yC φ θ ψ β γ ε ξ

]T
, (1)

where

• coordinates xC and yC are the Cartesian components of the position vector of the contact
point C of the rear wheel in the global plane 〈XY 〉;

• angle ϕ is the heading angle (yaw);
• angle θ is the lean angle (roll);
• angle ψ is the rolling angle of the rear wheel (pitch);
• angle β is the pitch angle of the rear frame;
• angle γ is the steering angle;
• angle ε is the rolling angle of the front wheel (pitch);
• angle ξ is the angle of the radius that contains the contact point of the front wheel in the

body frame.

The selected coordinates enable the calculation of the position vector of the origin and
orientation matrix of the body frames with respect to the global frame as follows:

Ri = Ri (q), Ai = Ai (q), i = 2,3,4,5. (2)

The absolute velocity vector and angular velocity vectors are computed using Jacobian ma-

trices H i and Ḡ
i

as follows:

vi
G = H i (q)q̇, ω̄i = Ḡ

i
(q)q̇, i = 2,3,4,5, (3)
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where the bar over the symbol means that the components of the vector are given in the body
frame. The Jacobian matrices can be obtained symbolically from the expressions given in
(2) as follows:

H i = ∂Ri

∂q
, Ḡ

i = ∂ω̄i

∂ q̇

ω̄i = axial
(
AiT

Ȧ
i)

, i = 2,3,4,5.

(4)

Similarly, the acceleration and angular acceleration of the moving bodies are:

ai
G = H i (q)q̈ + hi (q)q̇, ᾱi = Ḡ

i
(q)q̈ + ḡi (q)q̇, i = 2,3,4,5, (5)

where also the new Jacobian matrices in this expression are obtained symbolically as fol-
lows:

hi = ∂vi
G

∂q
, ḡi = ∂ω̄i

∂q
, i = 2,3,4,5. (6)

Note that once the relations given in Eq. (2) are established, the velocities and accelerations
of the moving bodies can be calculated automatically and systematically using symbolic
computation.

The coordinates in Eq. (1) are not free but subjected to six nonlinear constraints as fol-
lows:

C =
[

Ccon(q)

Crws(q, q̇)

]
= 0, (7)

where Ccon refers to the two holonomic contact constraints that guarantee that the front
wheel has a contact point on the road and Crws stands for the four non-holonomic rolling-
without-slipping constraints (two for each wheel). The Crws constraints are linear in the
generalized velocities. The equations can be written as:

Crws(q, q̇) = B rws(q)q̇ = 0, (8)

where B rws is the coordinate-dependent Jacobian of the constraints with respect to the gen-
eralized coordinates and can be computed symbolically. Details about the definition and
symbolic computation of these constraints can be found in [1]. Since the multibody model
of the bicycle used n = 9 generalized coordinates subjected to m = 6 constraints, the model
has g = n − m = 3 degrees of freedom.

3 Kinematic simulation of the bicycle

3.1 Kinematic simulation of multibody systems with holonomic constraints

Given a multibody system kinematically described with n generalized coordinates q sub-
jected to m constraints C, find (n − m) mobility constraints Cmob (rheonomic constraints,
explicit functions of time) defined in a time interval tspan = {t0 tend} and calculate the numer-
ical value of the generalized coordinates q(ti) (position problem), the generalized velocities
q̇(ti) (velocity problem) and generalized accelerations q̈(ti) (acceleration problem) in a set
of time instants ti ∈ tspan.
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The kinematic simulation of multibody systems with holonomic constraints follows this
algorithm:

1. Discretize the time interval into N instants using a small time step �t :

tspan = [
t0 t0 + �t t0 + 2 × �t · · · tend

] = [
t0 t1 t2 · · · tN−1

]
.

2. For each time instant ti , solve the following:
(a) Position problem. Calculate the value of the n coordinates solving the m constraint

equations C augmented with the (n − m) mobility constraints Cmob using an iterative
procedure (Newton–Raphson):

[
C(q)

Cmob(q, ti)

]

= 0 =⇒ q(ti).

(b) Velocity problem. Calculate the value of the n generalized velocities solving the time
derivative of the m constraint equations Ċ augmented with the time derivative of the

(n − m) mobility constraints Ċ
mob

:

[
Ċ(q)

Ċ
mob

(q, ti )

]

=
[

Cq

Cmob
q

]

q̇+
[

0

Cmob
t

]

= 0 =⇒ q̇(ti) = −
[

Cq

Cmob
q

]−1 [
0

Cmob
t

]

.

(c) Acceleration problem. Calculate the value of the n generalized acceleration solving
the second time derivative of the m constraint equations C̈ augmented with the second

time derivative of the (n − m) mobility constraints C̈
mob

:

[
C̈(q)

C̈
mob

(q, ti)

]

=
[

Cq

Cmob
q

]

q̈ +
[

Ċq

Ċ
mob
q

]

q̇ +
[

0

Ċ
mob
t

]

= 0

=⇒ q̈(ti) = −
[

Cq

Cmob
q

]−1 ([
Ċq

Ċ
mob
q

]

q̇(ti) +
[

0

Ċ
mob
t

])

.

The kinematic simulation of multibody systems with holonomic and non-holonomic con-
straints, such as the bicycle model, cannot follow this scheme. The reason is that non-
holonomic constraints cannot be used in the position problem to obtain the value of the
generalized coordinates because these equations also depend on the value of the generalized
velocities, which are unknown during this first phase. The only solution to this problem is
to perform a numerical time-integration of a subset of the generalized coordinates to ob-
tain their value. Once the position problem is solved, the velocity and acceleration problems
follow the procedure described above.

3.2 Kinematic simulation of the bicycle based on experimental signals

In a general multibody system, the number of constraints m is the sum of the number of
holonomic constraints mh and the number of non-holonomic constraints mnh (m = mh +
mnh). As discussed in the previous subsection, when non-holonomic constraints are used,
coordinates are obtained at position level using three different methods: applying mobility
constraints to prescribed coordinates, solving holonomic constraints, or performing time-
integration. Accordingly, the set of generalized coordinates is divided into three groups:
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1. Dynamic coordinates qdyn. The number of dynamic coordinates is equal to the number
of degrees of freedom g = n − m. These are the coordinates whose time-evolution is
prescribed by mobility constraints.

2. Kinematic coordinates qkin. The number of kinematic coordinates is equal to the number
of non-holonomic constraints mnh. Values of these coordinates are calculated using time-
integration.

3. Remaining coordinates q rem. The number of remaining coordinates is equal to the number
of holonomic constraints mh. These are the coordinates whose value is calculated by
solving the holonomic constraints.

The mathematical conditions for an adequate coordinate partition are explained at the
end of this section. In the case of the bicycle, the coordinates are divided as follows:

q =
⎡

⎣
qdyn

qkin

q rem

⎤

⎦ , qdyn =
⎡

⎣
θ

ψ

γ

⎤

⎦ , qkin =

⎡

⎢
⎢
⎣

xC

yC

φ

ε

⎤

⎥
⎥
⎦ , q rem =

[
β

ξ

]
. (9)

This coordinate partitioning follows the modeling experience and fulfills the required math-
ematical conditions.

In the experiments proposed in this paper, a bicycle is instrumented with a set of sensors
that provide the values (signals) of the dynamic coordinates during the experimental ride.
Thus, the time-evolution of the dynamic coordinates is described during the simulation ac-
cording to the experimental data. Sensor signals are used in the mobility constraints of the
kinematic simulation of the bicycle as follows:

Cmob(q, t) = qdyn −
⎡

⎣
θ exp(t)

ψexp(t)

γ exp(t)

⎤

⎦ = 0, (10)

where θ exp, ψexp and γ exp are the experimentally measured lean angle, rear wheel rolling
angle and steering angle, respectively. In reality, these are not continuous functions of time
but discrete signals. In the kinematic simulation of the bicycle, the time step �t coincides
with the sampling period Ts used by the data acquisition system.

The generalized coordinates of the bicycle are subjected to two holonomic contact con-
straints and four non-holonomic rolling-without-slipping constraints given in Eq. (7), as well
as the three rheonomic and holonomic experimental-measure constraints given in Eq. (10).
Overall, there are nine coordinates subjected to nine constraints. However, only the five
holonomic constraints can be used at position level.

The time-derivative of the holonomic constraints can be augmented with the non-
holonomic constraints as follows:

⎡

⎣
Ccon

q

B rws

Cmob
q

⎤

⎦ q̇ +
⎡

⎣
0
0

Cmob
t

⎤

⎦ = Dq̇ + E = 0, (11)

where Ccon
q is the Jacobian of the holonomic contact constraints, Cmob

q is the Jacobian of the

experimental measure constraints (Boolean matrix) and Cmob
t is given by

Cmob
t = −

⎡

⎣
θ̇ exp(t)

ψ̇exp(t)

γ̇ exp(t)

⎤

⎦ . (12)
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As Eq. (11) shows, the Jacobian matrices and time dependent terms are grouped into ma-
trix D, which is coordinate-dependent, and E. Equation (11) is a linear system of equations
that can be solved each instant to find the value of the generalized velocities.

The goal of the kinematic simulation of the bicycle is to obtain the numerical value of
all generalized coordinates, velocities and accelerations during the ride from the measured
signals given in Eq. (10). The numerical procedure follows this algorithm:

1. The time interval discretization coincides with the set of instants in which the experimen-
tal signals have been obtained:

tspan = [
0 Ts 2 × Ts · · · (N − 1) × Ts

] = [
t0 t1 t2 · · · tN−1

]
.

2. For each time instant ti , solve the following:
(a) Position problem:

(i) Obtain the value of qdyn from the sensor signals (Eq. (11)).
(ii) Calculate the value of qkin using a constant acceleration integration scheme:

qkin(ti) = qkin(ti−1) + Ts × q̇kin(ti−1) + 1

2
(Ts)

2q̈kin(ti−1).

(iii) Calculate the value of q rem by solving the holonomic constraints (Newton–
Raphson):

Ccon
(
qdyn(ti),q

kin(ti),q
rem

) = 0 =⇒ q rem(ti).

(b) Velocity problem:
Solve Eq. (11) as follows:

q̇ = −D−1E.

(c) Acceleration problem:
Solve the time derivative of Eq. (11) as follows:

q̈ = −D−1(Ḋq̇ + Ė).

To carry out this kinematic simulation of the bicycle, the following set of arrays and
matrices associated with the bicycle constraints have to be computed: Ccon,B rws,Ccon

p , Ċ
con
p

and Ḃ
rws

. These terms are computed symbolically and evaluated numerically at each time
step.

To calculate the terms Cmob
t and Ċ

mob
t used in the velocity and acceleration problems, the

measured signals need to be differentiated. Centered finite differences are used in this work.
The differentiation takes place in a pre-processing stage before the kinematic simulation
loop. Numerical differentiation amplifies noise and requires numerical filtering. To minimize
the effect, digital signals are low-pass filtered using a second order Butterworth with a 5 Hz
cut-off frequency. To avoid phase delay, the filter is applied twice, once in the forward and
once in the backward direction of time. Second order differentiation of the digital signals is
conducted through the first order differentiation of the first numerical derivative instead of
the second order numerical differentiation of the original signal. Experience shows that this
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method produces smoother results. The first order derivatives are filtered twice more before
the second order derivatives are calculated.

To start the kinematic simulation process, it is assumed that in the initial instant t1, the
dynamic and kinematic coordinates have zero value (the rear wheel is assumed to be over
the origin of the global frame pointing in the X direction), and all generalized velocities and
accelerations are zero in this and the previous instants.

Going back to the problem of the coordinate partitioning, the different sets of coordinates
must fulfill the following conditions for the kinematic simulation to be solvable:

1. Dynamic coordinates must be such that the coefficient matrix Dkinrem used in the velocity
and acceleration analyzes is non-singular at each time step.

2. The remaining coordinates must be such that the Jacobian of Ccon with respect to them
is not singular at each time step. This condition allows calculating their value using the
Newton–Raphson method once the value of the dynamic and kinematic coordinates is
known.

4 Equations of motion of the bicycle

4.1 Symbolic calculation of equations of motion

The procedure used in this paper to obtain the equations of motion of the bicycle starts with
the assembly of the Newton–Euler equations of the moving rigid bodies. These equations
are transformed into the bicycle equations of motion using the kinematic relations given in
Eqs. (4)–(5). Assuming the body frames to be attached to the centers of gravity, the Newton–
Euler equations of the moving bodies are given by

[
mi1 0

0 Ī
i

][
ai

G

ᾱi

]

=
[

F i

M̄
i

]
+

[
0

−ω̄i ∧ Ī
i
ω̄i

]
, i = 2,3,4 and 5, (13)

where 1 is the 3 × 3 identity matrix, mi is the mass, Ī
i

are the components of the inertia
tensor in the body frame, F i andM̄

i
are the resultant of the forces and moments acting on

the center of gravity, and the bar over the symbols means that the components are given in
the body frame. The assembly of the Newton–Euler equations of the four moving bodies
results in the following:

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

m21
. . .

m51
Ī

2

. . .

Ī
6

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

︸ ︷︷ ︸
M̂

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

a2
G

...

a5
G

ᾱ2

...

ᾱ5

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

F 2

...

F 5

M̄
2

...

M̄
5

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

︸ ︷︷ ︸
Q̂

+

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

0
...

0
−ω̄2 ∧ Ī

2
ω̄2

...

−ω̄5 ∧ Ī
5
ω̄5

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

︸ ︷︷ ︸
Q̂v

. (14)
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Using Eqs. (4)–(5), the accelerations can be written as

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

a2
G

...

a5
G

ᾱ2

...

ᾱ5

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

H 2

...

H 5

Ḡ
2

...

Ḡ
5

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

︸ ︷︷ ︸
L

q̈ +

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

h2

...

h5

ḡ2

...

ḡ5

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

︸ ︷︷ ︸
l

q̇. (15)

Substituting Eq. (15) into Eq. (14) yields

M̂(Lq̈ + lq̇) = Q̂ + Q̂v. (16)

Multiplying Eq. (16) by LT and reordering yields

Mq̈ = Q + Qv, (17)

where

M = LTM̂L, Q = LTQ̂, Qv = LT(Q̂v − M̂lṗ). (18)

The vector of generalized forces Q in Eq. (17) includes applied forces Qap and reaction
forces Qreac. The assumed applied forces Qap on the bicycle include gravity forces and
aerodynamic resistance. The calculation of all these forces is described next.

4.2 Reaction forces

Generalized reaction force vector Qreac appears due to the constraint equations given in
Eq. (7) and the mobility constraints due to the experimental measures given in Eq. (10).
This vector is calculated using the Lagrange multiplier technique. Due to the presence of
the holonomic and non-holonomic constraints, this vector is given by

Qreac = −DTα, (19)

where D, which was defined in Eq. (11), acts as the Jacobian of the constraints in multibody
systems with just holonomic constraints, and λ is the vector of unknown Lagrange multipli-
ers. One Lagrange multiplier λi is associated with each constraint. Including Eq. (19) into
Eq. (17), one obtains

Mq̈ + DTα = Qap + Qv. (20)

These equations are augmented with the previously calculated second derivative of the
constraint equations as follows:

[
M DT

D 0

][
q̈

α

]
=

[
Qap + Qv

−Ḋq̇ − Ė

]

. (21)
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4.3 Applied forces

The vector of generalized applied forces Qap is given by

Qap = Qgrav + Qaero, (22)

where Qgrav is the generalized gravity force and Qaero is the generalized force due the aero-
dynamic resistance.

Gravity forces acting on each body are given by

F i
grav =

⎡

⎣
0
0

−mig

⎤

⎦ , i = 2,3,4 and 5. (23)

The total virtual power of gravity forces is given by

Ẇ ∗
grav =

5∑

i=2

(
vi

G

∗)T
F i

grav = (
q̇∗)T

5∑

i=2

H iT
F i

grav, (24)

where Eq. (3) has been used, and the asterisk refers to virtual magnitudes. Using this equa-
tion and the principle of virtual power, vector Qgrav is obtained as

Qgrav =
5∑

i=2

H iT
F i

grav. (25)

The aerodynamic resistance is assumed to be proportional to the square of the velocity and to
be applied in solid number 3 (rear frame-rider). This is reasonable since this body is clearly
the one that generates larger resistance. The modulus of the aerodynamic drag is given by

∣
∣F 3

aero

∣
∣ = cv

(
v3

G

)T
v3

G = cv

∣
∣v3

G

∣
∣2

, (26)

where cv is the aerodynamic coefficient. The direction of this force is opposite to the instan-
taneous direction of the velocity as follows:

F 3
aero = −∣∣F 3

aero

∣∣ v3
G

|v3
G| = −cv

∣∣v3
G

∣∣v3
G. (27)

Using again the principle of virtual power, vector Qaero yields

Qaero = H 3T
F 3

aero = −cv

∣∣v3
G

∣∣H 3T
v3

G. (28)

5 Inverse dynamics of the bicycle

In the inverse dynamic analysis of the ride, the objectives are to use the experimentally
measured signals to

1. Calculate the actions taken by the cyclist with regard to the bicycle during the ride;
2. Calculate the forces acting between the tires and the road during the ride.
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Fig. 2 Actions of the rider on
the bicycle

These generalized forces are calculated from the Lagrange multipliers that appear as un-
knowns in the linear Eqs. (21). Inverse dynamics simulation is the result of substituting “step
c”, acceleration analysis, of the previously defined kinematic simulation with the solution
of Eq. (21) as follows:

[
q̈

α

]
=

[
M DT

D 0

]−1
[

Qap + Qv

−Ḋq̇ − Ė

]

. (29)

Therefore, the inverse dynamics simulation provides the same information as the kinematic
simulation combined with the value of the Lagrange multipliers.

As explained in [1], the first contact constraint in Ccon guarantees that a point in the front
wheel is in contact with the ground while the second one guarantees that the tangent vector
to the wheel at the contact point is parallel to the ground. As discussed in [18] the physi-
cal meaning of the Lagrange multiplier associated with the first contact constraint λ1 is the
value of the normal contact force (with opposite sign) in the front wheel and the Lagrange
multiplier associated with the second contact constraint λ2 is always zero. The four La-
grange multipliers associated with the rolling-without-slipping constraints in Crws represent
the two components of the tangential contact force (with opposite sign) in the rear wheel
(λ3 and λ4) and front wheel (λ5 and λ6). The physical meaning of the Lagrange multipliers
associated with the experimental measures in Cmob represent the generalized forces needed
to drive these movements (with opposite sign). Multipliers λ8 and λ9 associated with the
measure of the rear wheel rotation ψ and the steering angle γ may be related to the pedaling
torque Mped (or braking torque) and steering torque Msteer, respectively, affected by the rate
of transmission of the chain in the case of the pedaling torque (see Fig. 2). This interpretation
is not precise because these torques are, in reality, internal generalized forces when riding
a bicycle. Recall that body 3 combines the rear frame and the rider, and in reality, pedaling
and steering are the consequence of internal forces within this compound body. The inter-
pretation of multiplier λ7 associated with the measure of the lean angle θ is more difficult.
In fact, there is no lean torque when riding a bicycle. Relative lean between the rider and the
frame is a possible way to steer a bicycle, but our model cannot represent this motion and
λ7 cannot be interpreted as the resulting torque. Therefore, the resulting non-zero multiplier
λ7 has to be accepted as proof that our model does not accurately represent the riding of a
bicycle.
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Fig. 3 Overview of the instrumented bicycle

Fig. 4 Details of instrumented bicycle

6 Experimental setup

The experimental setup consists of a bicycle equipped with a data acquisition system pow-
ered by a battery. This equipment includes a Raspberry Pi 3 computer, an Arduino Due
board and a set of sensors. The data acquisition system communicates via WiFi with the
user (“Client”) that processes the data and visualizes the bicycle motion using a laptop or a
smart phone. The details of this experimental equipment (hardware and software) are pro-
vided in the Appendix including the full component list in Table 1. Figure 3 presents an
overview of the system, and Fig. 4 shows detailed photographs of the main components.

The electronic equipment has two main objectives: to record the sensor data that are used
as an input to the kinematic (Sect. 3) and inversed dynamic analysis (Sect. 5), and to provide
the means for the experimental validation of the kinematic analysis. To this end, the dynamic
coordinates qdyn described previously are measured as follows:

1. The lean angle θ is measured with an inclinometer.
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2. The rolling angle ψ is measured with the rotary encoder installed in the rear wheel and
the rear frame.

3. The steering angle γ is measured with the rotary encoder installed in the steering assem-
bly and the rear frame.

Because the encoder used to measure the rear wheel angle, ψ , is mounted on the rear frame,
as can be observed on the right in Fig. 4, the measure is affected by the angle β of the rear
frame. However, ψ being a large angle of rotation that increases monotonically and β a very
slightly changing oscillatory angle, the measure of this encoder can be considered as a good
estimation of ψ .

An inertial measurement unit (IMU) including a three-axis accelerometer and a three-
axis gyroscope is installed to record the acceleration and angular velocity of the rear frame.

Afterwards, the students use the recorded sensor data to compute offline the kinematic
and inverse dynamics of the bicycle using Matlab/Octave. The numerical results are experi-
mentally validated as explained in the next section.

7 Validation of kinematic analysis

Validation is important for the students to understand the validity and expected accuracy of
the multibody modeling and simulation of the bicycle. Validation is provided at the three lev-
els of the kinematic analysis: position level, velocity level and acceleration level, as shown
next.

7.1 Validation of position analysis

The output of the position analysis is used to generate a simple computer graphics animation
of the bicycle ride using the Matlab/Octave script “AnimateBike.m”, which is given to the
students. This computer-generated animation can be shown simultaneously with a video
recording of the ride for a full but non-measurable comparison of the position analysis.

Finally, the data provided by the installed IMU can be used in sensor fusion algorithms
[19, 20] to determine the orientation of the bicycle rear frame (body 3) during the ride.
These algorithms combine information provided by the gyroscope (rate of rotation), the
accelerometer (direction of gravity) and in some cases a magnetometer (direction of Earth’s
magnetic north) to obtain the actual orientation of the sensor at any instant. This orientation
can be compared with the simulated results. Combining the IMU data with GPS data or
a computer vision system can also be used to find an accurate estimation of the bicycle
trajectory. These solutions have not been implemented in the experimental setup.

7.2 Validation of velocity and acceleration analysis

The data acquired by the gyroscope and accelerometer can be used to validate the velocity
and acceleration kinematic analysis, respectively. To this end, the angular velocity of the rear
frame where the IMU is installed and the acceleration vector of the exact point where this
sensor is located have to be evaluated as a function of the computed q, q̇ andq̈ . The sensor
is installed in the rear frame with the sensor-fixed frame parallel to the global frame in the
reference position of the bicycle. It is important to consider that the sensor measures the
components of the angular velocity and acceleration in the sensor-fixed frame. The gravity
force g along the absolute vertical axis Z is a DC signal output in the case of the capacitive
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accelerometer sensor which is used in the presented setup (piezoelectric and piezoresistive
accelerometers behave differently). In the case of the angular velocity, the following formula
is used to distinguish the vector components out of the simulated coordinates and velocities:

ω̄IMU = Aβ ω̄3 = AβḠ
3
q̇, (30)

where Aβ is the rotation matrix associated with the angular coordinate β and the Jacobian

matrix Ḡ
3

is defined in Eq. (4). In the case of the acceleration, the following formula is used
to derive the vector components out of the simulated coordinates, velocities and accelera-
tions:

āIMU = (AφAθ )
T
(
H IMUq̈ + hIMUq̇ + [

0 0 g
]T

)
, (31)

where the two first terms in the second set of brackets are the global components of the ac-
celeration vector of the sensor (calculated as in Eq. (5)) and the third term is the acceleration
of gravity. These vector components are projected onto the sensor frame using the appro-
priate transformation matrix. Notice that the rotation due to the frame angle β has not been
considered in this transformation because its effect is very small. The Jacobian matrices
associated with the IMU are symbolically computed as in Eq. (6):

H IMU = ∂R3
IMU

∂q
, hIMU = ∂(H IMUq̇)

∂q
. (32)

8 Experimental simulation results

The experimental results in this section correspond to a 37-second ride with the instrumented
bicycle in which a simple closed-loop trajectory is developed: going straight forward ap-
proximately 50 m, making a U-turn, going straight 50 m in the opposite direction, making
another U-turn and stopping the bicycle in the same position and orientation as when the ride
started. During the experiments, students are free to choose the trajectory. The sampling fre-
quency used for all sensors was 100 Hz. The sampling period coincides with the time-step
used in the kinematic simulation and inverse dynamic analysis. Therefore, no interpolation
of the measured data is needed. Table 1 provides the geometric and inertial parameters and
the assumed aerodynamic coefficient. All distances are given in millimeters. Table 1 dis-
plays the position of the centers of gravity G2–G5 of the four moving bodies with respect to
the center of the rear wheel in the reference configuration. Rf and Rr stand for the radius of
the front and rear wheels.

Figure 5 shows some results of the kinematic position analysis. The plot on the left
shows a capture of the animation that is generated from the simulation results. The plot on
the right of Fig. 5 shows the simulated trace of the contact point in the rear wheel. It can
be observed that the simulated trace is not a closed loop, as the contact point does not end
in the position where the ride started (at the origin). This is obviously an erroneous result.
This problem is due to the accumulation of errors due to the time integration process in the
kinematic coordinates qkin (step 2(a)(ii) of the kinematic analysis). The problem could be
resolved by using a more precise integration rule or decreasing the sampling period Ts . More
precise integration rules, such as multistep or implicit algorithms, are not used in this work
because they would complicate in excess the kinematic analysis loop that the students have
to program. Decreasing the sampling period is technically difficult.
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Table 1 Parameters of the bicycle

Geometric parameters [mm]

G2 G3 G4 G5 IMU

X 0 222 863 1049 60

Z 0 560 477 0 440

Inertial parameters

m [kg] Ixx [kg m2] Iyy [kg m2] Izz [kg m2] Ixz [kg m2]

2 2.52 0.0884 0.1357 0.0884 0

3 85.0 9.2 11.0 2.8 −2.4

4 2.96 0.3056 0.158 0.0385 −0.0385

5 1.96 0.0525 0.119 0.0525 0

Other geometric parameters and aerodynamic coefficients

Rf Rr Head angle [deg] Wheelbase cv [N m2/s2]

352 352 19 1049 0.5

Fig. 5 Kinematic position analysis. Instantaneous position on the left and simulated trajectory on the right

Nevertheless, the drift problem observed in Fig. 5 cannot be solved completely because
all sensors used relative motions of the vehicle for the kinematic simulation measure, thus
resulting in a non-observable system. An absolute position signal provided by, for example,
GPS is needed for accurate trajectory estimation, as it is well known in vehicle position
tracking.

Figure 6 shows the time evolution of the pitch rate (Y component) and yaw rate (Z com-
ponent) calculated using Eq. (30) with the results of the kinematic velocity analysis (simu-
lation) and compared with the gyroscope measurements (experimental). Very good experi-
mental simulation agreement is found in the yaw rate while very poor agreement is found
in the pitch rate. The main reason for the disagreement in the pitch rate is that the bicycle
used in the experiments has a front suspension (it was not the bicycle shown in Fig. 3 that
is the result of the most recent developments in this work), but the model does not include
this additional degree of freedom. The activation of the front suspension allows for a much
larger value of the magnitude of the pitch rate. Students learn from this result that the model
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Fig. 6 Kinematic velocity analysis: simulation vs. experimental. Pitch rate on the left and yaw rate on the
right

is just partially valid to describe the vehicle dynamics. The validity of the model depends on
its complexity. Of course, this disagreement can be solved by using an instrumented bicy-
cle without front suspension or by including front suspension in the model. However, since
other aspects of the vehicle dynamics are well captured, this disagreement is considered as
a positive result for educational purposes.

Figure 7 shows the time evolution of the forward acceleration (X component) and vertical
acceleration (Z component) of the point where the IMU is located, calculated using Eq. (31)
with the results of the kinematic acceleration analysis (“Simulation”) and compared with the
accelerometer measurements (“Experimental”). The forward acceleration shows relatively
good agreement, but not as good as the one identified for the yaw rate. As explained before,
the acceleration analysis requires the second numerical derivative of the acquired sensor data
(encoders and inclinometer) that naturally amplifies the noise in the signals, degrading the
quality of the results. On the other hand, also the accelerometer signals contain noise. Better
agreement in the forward acceleration can be obtained with proper filtering. However, this
is a signal processing exercise going beyond the purpose of this work. In the plot showing
the forward acceleration (on the left in Fig. 7), the acceleration and braking periods at the
beginning and the end of the ride and the braking before starting the U-turns can be clearly
observed. In Fig. 7 and in subsequent plots, the first and second U-turn periods are marked
with magenta and cyan vertical lines, respectively. In the vertical direction, the magnitude of
the accelerations obtained by simulation are much smaller than those in reality. This effect
could be explained by the deformation of the tires during the ride and possibly the influ-
ence of the structural flexibility of the bicycle bodies. These possible reasons have not been
investigated. However, it is reasonable to conclude again that the model cannot adequately
capture this aspect of the vehicle dynamics without increasing its complexity. The vertical
acceleration disagreement is also considered as a positive result for educational purposes.

Figures 8 and 9 show some results of the inverse dynamic analysis. The plots in Fig. 8
show the steering torque (left) and pedaling torque (right). Comparing the steering torque,
which is obtained as the Lagrange multiplier associated with the steering angle mobility
constraint, with the yaw rate of the bicycle (on the right in Fig. 6), one can observe the time
evolution of the steering torque during the U-turns, which does not require particularly high
but biased values of this torque. The pedaling torque on the right is computed by applying
two procedures. The first one is the direct use of the Lagrange multiplier associated with the
rear-wheel-angle mobility constraint. The second method is the use of the reduced inertia
concept employed in machines dynamics. Assuming a simple one-degree-of-freedom planar
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Fig. 7 Kinematic acceleration analysis: simulation vs. experimental. Forward acceleration on the left and
vertical acceleration on the right (Color figure online)

model of the bicycle, the kinetic energy of the system can be computed as a function of the
angular velocity of the rear wheel as follows:

T = 1
2 I 2

y ψ̇2 + 1
2 m2|v2

G|2 + 1
2m3|v3

G|2 + 1
2m4|v4

G|2 + 1
2 I 5

y ε̇2 + 1
2 m5|v5

G|2
|v2

G| = |v3
G| = |v4

G| = |v5
G| = Rψ̇, ε̇ = ψ̇

}

=⇒ T = 1

2

[
I 2
y + I 5

y + (
m2 + m3 + m4 + m5

)
R2

]
ψ̇2 = 1

2
I 2

bicycleψ̇
2 (33)

where R is the radius of the rear and front wheels, which are assumed equal, and I 2
bicycle

is the moment of inertia of the bicycle reduced to the rear wheel. In the experiment, the
value of the reduced moment of inertia is 12.17 kg m2. The green line in Fig. 8 shows the
calculation of the pedaling torque as

Mped = I 2
bicycleψ̈, (34)

which is obtained from the application of the principle of work and energy. As Fig. 8 demon-
strates, both ways to compute the pedaling torque match very well. A difference exists
mainly because the motion of the bicycle is three-dimensional and the energy input to the
lateral dynamics is not considered in the model used to obtain a reduced inertia.

Figure 9 shows the calculated reaction forces (Lagrange multipliers) in the inverse dy-
namic analysis. The plot on the left shows the normal contact force in the front wheel (−λ1).
This force is oscillating around an approximate value of 220 N. Since the total mass of the bi-
cycle and the rider is 93 kg, this load represents approximately one fourth of the total weight
of the system being carried by the front wheel during the ride. The plot shows that this force
can be doubled during the braking of the bicycle and can be reduced to half due to the vehi-
cle dynamics. This gives an idea of how far the bicycle is from wheel–road separation that
would occur if the normal force drops to zero. Because the selected generalized coordinates
do not need to be constrained to guarantee the rear wheel contact with the ground [1], the
normal contact force on the rear wheel cannot be obtained using an associated Lagrange
multiplier. The calculation of the time evolution of this force requires post-processing of the
simulation results using equilibrium equations that contain this force as an unknown. The
ease of computing the reaction forces is an advantage of the use of reference coordinates
instead of the selected minimum set of coordinates.
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Fig. 8 Calculated steering torque (left) and pedaling torque (right) during ride (Color figure online)

Fig. 9 Calculated normal tire force (left) and tangential tire force (right) on front wheel during ride

The plot on the right in Fig. 9 shows the transverse tangential contact force in the front
wheel. This value is obtained by projecting the total tangential force, whose components are
given by λ5 and λ6 associated with the rolling-without-slipping constraint of the front wheel,
in the transverse direction to the front wheel. Projection is necessary because the global
components of the absolute tangential velocity of the contact points are used in the rolling-
without-slipping constraints as defined in [1]. Therefore, Lagrange multipliers provide the
value of the tangential force in the global frame. The time evolution of this transverse contact
force during the U-turns can be clearly observed. Figure 10 shows the ratio between the
norm of the tangential contact force and the normal contact forces on the front wheel. Peak
values occur at the initial instant of acceleration (1.28), the first U-turn (1.06), the second
U-turn (0.89) and final braking (0.96). In conclusion, the minimum value of 1.28 of the tire–
road coefficient of friction is required to prevent gross sliding of the front wheel during this
particular ride. A smaller value of the coefficient of friction would mean that friction could
not provide the required force to prevent the wheel from slipping.

9 Summary and conclusions

This paper uses the bicycle as an example around which a course on multibody dynamics
can be built. In addition, it describes the instrumentation needed to turn a regular bicycle
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Fig. 10 Ratio between norm of
tangential contact force and
normal contact force on front
wheel during ride

into an inexpensive and valuable educational instrument in engineering. In fact, the bicycle,
its model, and the experiments and computer simulations that can be performed with them
can provide to engineering students a wide overview of machine dynamics. Multibody dy-
namics is considered in this paper as a fundamental discipline with important benefits when
combined with others fields: instrumentation, signal processing or Internet communications.

The apparently simple but dynamically rich Whipple model of the bicycle is implemented
symbolically to establish the set of kinematic constraint equations and the equations of mo-
tion for the kinematic and inverse dynamic simulation of the bicycle, respectively. Based on
these equations, algorithms were developed for the kinematic and inverse dynamic simula-
tion of the bicycle with experimentally measured data.

These computer simulations require an instrumented bicycle to collect experimental data.
The sensor network, data acquisition system and internet-based communication scheme on
the bicycle have been developed in full in this investigation and described in this paper.

Experimental validations of the model and the kinematic simulation have been developed
for the position, velocity and acceleration. In the present paper, no validation is included for
the inverse dynamic analysis. This is the topic of a future investigation.

Experimental results and their comparison with multibody simulations show very good
agreement in some respects and very poor agreement in others. However, the disagreement
can be easily explained by the inability of the model to capture some dynamic effects and is
therefore considered a positive aspect in the educational sense.
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Appendix: Description of instrumented bicycle

Five sensors are integrated for the measurements: inertial measurement unit (IMU) Bosch
BMI160 containing a three-axis digital accelerometer and a three-axis digital gyroscope, a
G-NSDOG2-001 two-axis inclinometer from TE Connectivity Sensors and two two-phase
incremental rotary encoders LPD3806-600BM-G5-24G. The BMI160 is provided on a shut-
tle board for easy prototyping. The main specifications of these sensors are:
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Fig. 11 Communications and roles of the instrumented bicycle components.

• IMU BMI160: accelerations with a selectable range ±2, ±4, ±8, ±16 g and a 16-bit
resolution and an angular velocity of a selectable range ±125, ±250, ±500, ±1000,
±2000◦/s and a 16-bit resolution.

• Inclinometer G-NSDOG2-001: Range of ±20◦ and 12-bit resolution.
• Encoders LPD3806-600BM-G5-24G: 2400 pulses/rev or 0.15◦ accuracy.

All sensors are connected to the Arduino Due board, which communicates with BMI160
through a four-wire SPI protocol. Rotary encoders are connected to general I/O pins of Ar-
duino, and each encoder requires two pins to determine the rotation direction and number
of steps. Raspberry Pi 3 serves as a bridge between low-level time critical data sampling
performed by Arduino and high-level processor-intensive tasks of data storage and commu-
nication with smart phone and laptops through WiFi. Task divisions between boards and
communication protocols are presented in Fig. 11, while electrical connections between
components are depicted in Fig. 12. To make the system easier for the user to control, a sim-
ple control panel have been designed to provide the basic information—battery charge level,
operation status (ready, data acquisition, calibration in progress)—with three buttons which
enable the imitation of data acquisition, stopping it, or entering calibration mode (see Fig. 4).
The calibration process is performed while keeping the bicycle in the upright positon to set
the zero value of the two encoders and the inclinometer and the orientation of the accelerom-
eter with respect to the gravity force.

The software of the system consists of the Arduino Due code, a C++ host program run-
ning on Raspberry Pi, and the PHP code on Raspberry Pi for creating a user web interface.
All codes are available as supplementary material to this article. To ease data storage and
management, the MySQL database engine has been installed on Pi. The web server Apache
plus PHP, on the other hand, has been installed for hosting user interface web pages and
manuals. In addition, the file server Samba has been installed to facilitate code and data
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Fig. 12 Electrical connections between the components of the instrumented bicycle.

transfer during development between Raspberry Pi and a laptop. A tight VNC server has
been installed to provide a remote desktop user experience for users connecting from lap-
tops. This eliminates the need of a separate screen, keyboard, and mouse to operate Pi.

Code running on Arduino calibrates all of the sensors, acquiring data from them and
transferring the data to Pi. Arduino also handles physical control panel. It is worth noting
that this task could equally easily be implemented on Raspberry Pi GPIO pins.

The C++ host program running on Pi is the core of communication between Ardunio
and the user. This program acts as a TCP/IP socket server for the PHP code to exchange
commands between users running on laptops/phones and Arduino. The TCP/IP socket for
communication with Matlab is used to visualize the data and run real-time simulations.
Whenever a measurement session is on, the C++ host code collects the data measured by
Arduino and saves it to the MySQL database, also transmitting the data to Matlab clients
connected through TCP/IP sockets.

The web interface has been coded in HTML with CSS and PHP server side scripts. On
the client side, JavaScript is used to communicate with the server asynchronously to refresh
data that is presented to the user and to send user commands to the server. When a data
request is made, JavaScript on the client side transmits the command to an Apache web
server, where PHP script receives that data and forwards it to the C++ code using sockets.
The C++ code executes the command locally (for example, power down), or forwards it to
Arduino, and then responds to the PHP script, which produces a response for the client. If
the client requests measurement data, the PHP script reads the data directly from the MySQL
server and sends formatted data to the client.
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