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Abstract This paper develops three different types of finite element models for revolute
joints in flexible multibody systems, in which the dry clearance revolute joints have been
coupled with the flexibility of connected bodies. The first model, a modified kinematic con-
straint model, contains only three kinematic constraints. Unlike conventional approach, this
model constrains user-defined description of the relative rotation in an efficient manner, re-
ducing the number of constraints from four to three. The second model, a new type of recur-
sive model, introduces the relative rotation angle φ as an isolated variable and makes use of
φ to describe the rotations of joint in a recursive sort of way. The associated governing equa-
tions of motion are easily solved ordinary differential equations. The third model, a contact
model for revolute joints, takes into account the relative planar motion caused by the clear-
ance between the outer and inner races. This model applies a penalty method to simulate the
phenomenon of inner penetration between contact/impact bodies. The relationship between
the normal contact force and the inner penetration is described by the nonlinear Hertz model
with energy dissipation. Meanwhile, the friction force can be predicted from both the con-
tinuous Coulomb law and the analytical LuGre model, respectively. Finally, three examples
of flexible multibody systems are presented to validate the developed models.

Keywords Revolute joints · Flexible multibody systems · Recursive formula · Hertz
model · LuGre model

1 Introduction

This paper has developed three different types of numerical models for revolute joints in
flexible multibody systems using finite element method. These numerical models are defined
in the absolute nodal coordinate systems and therefore can be connected to any rigid or
flexible body in a multibody system, featuring high modeling flexibility. The coupling effect
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between dry clearance joints and flexibility of the links has been studied by simulating the
dynamic behaviors of complex flexible multibody systems with two joint clearances. Special
attentions have been paid to the way how to improve the modeling efficiency and accuracy
of revolute joints.

In traditional analysis of multibody systems, the effects of clearance, friction, wear and
lubrication at the revolute joints are neglected to obtain the ideal kinematic joints, which
can be represented by a set of kinematic constraints [1]. As described in Ref. [2], Lagrange
multipliers are generally applied to enforce the kinematic constraints. This enforcement will
lead to infinite frequencies because Lagrange multipliers have associated degrees of freedom
that are massless. It becomes the main source where the stiff properties of the multibody
systems stems from. The first innovation in this paper is the development of a modified
kinematic constraint model to decrease the stiffness of multibody systems. The user-defined
description of the relative rotation has been enforced in a new approach, thereby avoiding the
definition of the relative rotation angle as an independent variable with massless degree of
freedom. Through this improvement, the modified model reduces the number of constraints
from four to three as discussed in detail later.

When using the kinematic constraints to model the ideal joints, the governing equations
of motion for multibody system with joints will be stiff Differential Algebraic Equations
(DAEs) of index 3. In contrast, recursive theory [3] takes advantage of the system topology
and applies the joint coordinates to formulate a nonstiff Ordinary Differential Equations
(ODEs). Petzold [4] had pointed out that these equations are easier to solve than DAE of
index 3. As the second innovation in this paper, the recursive relationship between the bod-
ies connected by a revolute joint is identified to formulate a recursive model. This new type
of recursive model introduces the relative rotation angle φ as an independent variable to
describe the relative rotation of joint. Meanwhile, the Absolute Nodal Coordinate Formu-
lations (ANCF) [5] are applied to model the flexibility of connected bodies. If a multibody
system contains only the recursive models of joints, its motion will be controlled by a set of
nonstiff ODE.

In fact, the clearances in the joints are inevitable to allow for the assembly of the pair el-
ements. Additionally, manufacturing tolerances [6], wear [7] and thermal effects [8] are also
the causes of clearances. In the past few decades, the problems of modeling simple mechan-
ical systems with clearance joints were extensively investigated [9–13]. A typical problem is
the slider–crank mechanism, in which only the radial clearance located in the planar revolute
joint is considered. For example, Mukras and the coauthors [14] studied a rigid slider–crank
mechanism with a clearance joint. Since modeling the links as rigid will affect the prediction
of the system real dynamic behavior, the effect of mechanism flexibility on dynamic behav-
ior needs to be explored. A comprehensive review can be found in Ref. [15], where the
commercial software MSC ADAMS was applied to simulate the crank–slider mechanism
with rigid/flexible links and planar joint clearances. More recently, the combined influence
of the axial and radial clearances in the revolute joint has been studied in Refs. [16, 17].
Meanwhile, Ref. [18] predicts the dynamic behavior of slider–crank mechanism with single
and two revolute clearance joints. It concludes that the dynamic response in a mechanism
with two clearance joints is not a simple superposition of that in mechanism with one clear-
ance joint, and then proposes that all the joints in a multibody system should be modeled as
clearance joints. Even though the effect of mechanism flexibility and one or two joint clear-
ances have been simulated for the crank–slider mechanism [15, 18], the coupling problem
of joint clearances and link flexibilities of the complicated mechanism is still an open topic.
The third innovation in this paper is the implementation of a contact model for the clearance
joint with the purpose of providing a general solution to the coupling problem. Similar to
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the ideal joint models developed in this paper, the new contact model is also defined in the
absolute nodal coordinate systems. It can be used to connect any rigid/flexible bodies with
arbitrary topologies.

When modeling a clearance joint, an appropriate contact/impact force model is impor-
tant. Gilardi and Sharf [19] distinguish the associated force calculation approaches into two
different categories, impulse–momentum and continuous. The first approach is only practi-
cal if there is only a single contact. A serious disadvantage is that it will stop the simulation
when the contact/impact occurs. In a second approach, the simulation is not stopped, and the
contact force in each contact pair is predicted at any time during the simulation [20]. Based
on a relationship between contact force and penetration, for example, by Flores et al. [21],
this approach performs the contact calculation in three steps: contact detection, calculation
of the contact normal force, and calculation of the friction force [22]. In this paper, an al-
gorithm based on the continuous approach is developed to evaluate the contact/impact force
based on nonlinear model of Hunt and Crossley [23], which is suitable for multiple impact
pairs. When the bodies are in contact/impact, the friction force can be predicted from the
continuous Coulomb law and the analytical LuGre model [24], respectively.

It is well known that the Coulomb friction law [25] describes the transitions from sticking
to sliding and vice versa, but these discrete transitions can cause difficulties for their numer-
ical simulations. Many continuous friction laws [26, 27] have been advised to approximate
the discrete transitions. This paper regularizes the friction coefficient of Coulomb law at
first to obtain a continuous friction law, which can describe both sliding and rolling/sticking
behavior of revolute joints. The continuous Coulomb law is then used as reference for the
validation of analytical LuGre model, an innovative friction model. The LuGre model is a
type of bristle model that captures micro-slip, a phenomenological description of friction.
This model is governed by an ODE to capture experimentally observed phenomena of fric-
tion. As the last contribution of this paper, trapezoidal algorithm, featuring second order
accuracy, is designed to solve the ODE of LuGre model. In the current implementation,
the LuGre friction model has been closely combined with the implicit solvers of the Radau
IIA [28, 29]. The instantaneous friction coefficients of LuGre model are predicted at each
stage of Radau IIA solvers.

In summary, this paper focuses on studying the coupling effect of joint clearances and
link flexibilities of the complicated mechanism. The contributions of the paper include:
1) the classical kinematic constraint model is modified to reduce the number of kinematic
constraints from four to three; 2) a new type of recursive model is developed in this paper,
and the rotations of revolute joints are described efficiently in a recursive sort of way; 3) the
paper has designed a detailed contact model for revolute joint with clearance. The nonlinear
Hertz model with energy dissipation describes the relationship between the normal con-
tact force and the inner penetration. The continuous Coulomb law and the analytical LuGre
model are implemented for the simulation of friction phenomena.

The rest of the paper is organized as follows. Section 2 discusses the details of three
different models for revolute joints. Section 3 presents three numerical examples to validate
the new types of models for revolute joints. Finally, Sect. 4 draws the conclusions.

2 Modified models for revolute joints

In this section, as the kernel of the paper, the basic theories behind three different types of
models for revolute joints are introduced.
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Fig. 1 Configuration of revolute
joint

2.1 Kinematic constraint models for revolute joints

As depicted in Fig. 1, a revolute joint links two rigid or flexible bodies denoted with super-
scripts (·)k and (·)�, respectively. The kinematic description of two bodies and joint utilizes
three orthogonal triads. The first triad, an inertial triad I , with unit vectors ī1, ī2, and ī3,
is defined as a global reference. A second triad, body attached triad B0, with unit vectors
b̄01, b̄02, and b̄03, defines the orientation of body in the reference configuration. Similarly,
a third triad B, with unit vectors b̄1, b̄2, and b̄3, describes the orientation of the body in its
deformed configuration. The current implementation defines u0 and u as the displacement
vectors from I to B0, and B0 to B, respectively, R0 and R are the rotation tensors from I to
B0, and B0 to B, respectively.

In the reference configuration, the revolute joint is defined by coincident triads Bk
0 = B�

0.
In the deformed configuration, relative displacements are prohibited, uk = u�, and the cor-
responding triads are allowed to rotate with respect to each other in such a way that b̄k

3 = b̄�
3.

This kinematic constraint implies the orthogonality of the unit vector b̄k
3 to both b̄�

1 and b̄�
2,

and it can be written equivalently as

c =
∣
∣
∣
∣

c1

c2

∣
∣
∣
∣
=

∣
∣
∣
∣

b̄kT
3 b̄�

1

b̄kT
3 b̄�

2

∣
∣
∣
∣
= 0. (1)

Based on the augmented functional of Hamilton’s principle [29], the current implementation
enforces these kinematic constraints by the addition of a constraint potential,

δWC = δcT (kλ + 2p c), (2)

where λ = �λ1, λ2�T is the Lagrange multipliers, k and p the scaling and penalty factors,
respectively. The corresponding forces of constraints Fc are readily obtained as

Fc =
∣
∣
∣
∣

˜bk
3b̄

�
1(kλ1 + 2p c1) + ˜bk

3 b̄
�
2(kλ2 + 2p c2)

−˜bk
3 b̄

�
2(kλ1 + 2p c1) − ˜bk

3 b̄
�
2(kλ2 + 2p c2)

∣
∣
∣
∣
. (3)

The kinematic constraints, Eqs. (1), imply only the planar rotation is allowed when observed
in body k attached triad Bk . It is not difficult to determine the relative rotation tensor mea-
sured in Bk

Rφ =
⎡

⎣

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

⎤

⎦ , (4)
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and this relates the orientation of body k to � like

R�R�
0 = RkRk

0Rφ. (5)

Once the corresponding triads of revolute joints are given, the rotation tensors RkRk
0 and

R�R�
0 can be identified alternatively from

RkRk
0 = [

b̄k
1, b̄k

2, b̄k
3

]

and R�R�
0 = [

b̄�
1, b̄�

2, b̄�
3

]; (6)

then the relative rotation tensor Rφ is determined by

Rφ = (

RkRk
0

)T
R�R�

0, (7)

and, in detail,

Rφ =
⎡

⎢
⎣

b̄kT
1 b̄�

1 b̄kT
1 b̄�

2 b̄kT
1 b̄�

3

b̄kT
2 b̄�

1 b̄kT
2 b̄�

2 b̄kT
2 b̄�

3

b̄kT
3 b̄�

1 b̄kT
3 b̄�

2 b̄kT
3 b̄�

3

⎤

⎥
⎦ . (8)

Comparing two formulas of the relative rotation tensor, Eqs. (4) and (8), it can be found that

sinφ = −b̄kT
1 b̄�

2 and cosφ = b̄kT
1 b̄�

1. (9)

The conventional approach [30] introduces the relative rotation angle φ as a new variable,
adding a third constraint,

b̄kT
1 b̄�

1 sinφ + b̄kT
1 b̄�

2 cosφ = 0. (10)

For a user-defined description of the relative rotation φ(t), the fourth constraint is enforced,

φ − φ(t) = 0. (11)

Obviously, the conventional approach has to introduce four components of Lagrange multi-
pliers for the enforcement of kinematic constraints, Eqs. (1), (10) and (11). It is well known
that these components of Lagrange multipliers produce infinite frequencies since they have
associated degrees of freedom that are massless. This becomes the main source where the
stiffness of DAE of index 3 stems from. Except for these Lagrange multipliers, careful ob-
servations show that the degree of freedom of the relative rotation angle φ is also massless
and makes the stiff problem worse. The current implementation relieves this bad situation
by eliminating relative rotation angle φ from the associated kinematic constraints. Once the
user-defined description φ(t) is given, combination of Eqs. (10) and (11) will lead to

c3 = b̄kT
1 b̄�

1 sinφ(t) + b̄kT
1 b̄�

2 cosφ(t) = 0. (12)

Here again, the force of constraint F 3
c , corresponding to the above modified description

φ(t), is obtained from the associated constraint potential as

F 3
c =

∣
∣
∣
∣

[˜bk
1 b̄

�
1sinφ(t) + ˜bk

1b̄
�
2cosφ(t)](kλ3 + 2p c3)

−[˜bk
1 b̄

�
1sinφ(t) + ˜bk

1b̄
�
2cosφ(t)](kλ3 + 2p c3)

∣
∣
∣
∣
. (13)

If no user-defined description φ(t) is given, the kinematic constraint of Eq. (12) will be
automatically excluded from the kinematic constraints. When rotation angle and rotation
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speed, φ and φ̇, are required for torsional spring and dash-pot damper, these quantities can
be evaluated in the following post-process. If initial value is given as φn at time step tn, the
relative rotation can be rewritten as φ = φn + dφ, where dφ is the incremental rotation and

sindφ = −b̄kT
1 b̄�

2 cosφn − b̄kT
1 b̄�

1 sinφn,

cosdφ = −b̄kT
1 b̄�

2 sinφn + b̄kT
1 b̄�

1 cosφn,
(14)

then the relative rotation is predicted from

φ = φn + atan 2(sindφ, cosdφ). (15)

In the current implementation, the kinematic model for revolute joints is closely related to
the stiff integrators of H.H.T. [28] and Radau IIA [29, 31]. When advancing the integration
of flexible multibody dynamics by using these stiff integrators, only a small step size h is
used to guarantee the accuracy of solution. In such a situation, the incremental rotation dφ

remains small, dφ � π , and it can be uniquely determined from the function atan 2(·, ·).
Meanwhile, the relative speed is evaluated by

φ̇ = b̄kT
3

(

ω� − ωk
)

(16)

Similarly, the variation of the relative rotation can be formulated thus:

δφ = b̄kT
3

(

δψ� − δψk
)

. (17)

If a torsional spring with stiffness ks is attached to the revolute joint, the variation of the
spring energy can be written as δφksφ. With the help of the variation of the relative rotation,
Eq. (17), it is not difficult to obtain the torque generated by the elastic spring,

∣
∣
∣
∣

Fk
s

F �
s

∣
∣
∣
∣
=

∣
∣
∣
∣

−ksφb̄k
3

ksφb̄k
3

∣
∣
∣
∣
. (18)

When the dash-pot damper with damping cs is involved, the torque corresponding to the
damper is readily obtained from the virtual work of damper, δφ csφ̇, as

∣
∣
∣
∣

Fk
d

F �
d

∣
∣
∣
∣
=

∣
∣
∣
∣

−csφ̇b̄k
3

csφ̇b̄k
3

∣
∣
∣
∣
. (19)

2.2 Recursive models for revolute joints

Even though the modified constraint model of Sect. 2.1 has reduced the number of kinematic
constraints from four to three, the governing equations of motion of multibody system are
still DAE of index 3, which features stiff and nonlinearity. As advocated by Petzold [4],
solving DAE of index 3 is much harder by stiff integrators than solving system of ODE. The
recursive models developed in this section will resolve the stiff problem by formulating the
revolute joint in the form of ODE instead of DAE of index 3. This paper has no means to
develop recursive formula for flexible multibody system. However, it is a valuable practice
modeling revolute joints efficiently based on recursive theory. In the current implementation,
the recursive models are valid only in the case of the bodies connected by the revolute joints
possess independent degrees of freedom. Recursive theory implies the rotation of body �
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can be readily described by rotation of body k and relative rotation angle φ. The variation
of rotation of body � is presented by

δψ� = δψk + b̄k
3δφ (20)

and similarly the angular velocity by

ω� = ωk + b̄k
3φ̇. (21)

The time derivative of the angular velocity produces the angular acceleration

ω̇� = [

I, b̄k
3

]
∣
∣
∣
∣

ω̇k

φ̈

∣
∣
∣
∣
+

[
˜bk

3

T

φ̇, 0
]
∣
∣
∣
∣

ωk

φ̇

∣
∣
∣
∣
. (22)

When the rotation of body � is described independently, the governing equations of rotation
of body � are assumed to be

M�
e ω̇

� = F�
e

(

R�,ω�
)

, (23)

where M�
e is the elemental mass matrix of body �, and F�

e the associated elemental right hand
side vector. Following the conventional assembling procedure of finite element method, the
above elemental equations need to be assembled into the global system. The current imple-
mentation will transform elemental equations of body � to the sort of recursive form at first,
and then it will be assembled. Substituting angular acceleration, Eq. (22), into the above
elemental equation to find

M̄�
e

∣
∣
∣
∣

ω̇k

φ̈

∣
∣
∣
∣
=

[
I

b̄kT
3

](

F�
e

(

R�,ω�
) − M�

e
˜bk

3

T

ωkφ̇
)

, (24)

where M̄�
e is the transformed mass matrix and

M̄�
e =

[

I

b̄kT
3

]

M�
e

[

I, b̄k
3

]

. (25)

Similar transformation needs to be applied to the elemental stiffness and damping matrices,
K�

e and C�
e , respectively. With the help of linearization of the angular velocity,

dω� = [

I, b̄k
3

]
∣
∣
∣
∣

dωk

dφ̇

∣
∣
∣
∣
+

[
˜bk

3

T

φ̇, 0
]
∣
∣
∣
∣

dψk

dφ

∣
∣
∣
∣
, (26)

and linearization of the angular acceleration,

dω̇� = [

I, b̄k
3

]
∣
∣
∣
∣

dω̇k

dφ̈

∣
∣
∣
∣
+ ˜bk

3

T [

φ̇, ωk
]
∣
∣
∣
∣

dωk

dφ̇

∣
∣
∣
∣

+
[
˜bk

3

T

φ̈ + φ̇ω̃k ˜bk
3

T

ωk, 0
]
∣
∣
∣
∣

dψk

dφ

∣
∣
∣
∣
, (27)

the stiffness and damping matrices have been transformed to

C̄�
e =

[

I

b̄kT
3

](

C�
e

[

I, b̄k
3

] + M�
e
˜bk

3

T [

φ̇, ωk
])

(28)
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Fig. 2 Configuration of revolute
joint with clearance

and

K̄�
e =

[

I

b̄kT
3

](

K�
e

[

I, b̄k
3

] + M�
e

[

˜bk
3

T

φ̈ + φ̇ω̃k ˜bk
3

T

, 0
])

+
[

I

b̄kT
3

]

C�
e

[

˜bk
3

T

φ̇, 0
]

. (29)

Then the mass, stiffness and damping matrices, M̄�
e , K̄�

e and C̄�
e , together with transformed

right hand side vector, need to be assembled into the global ones. The orthogonality condi-
tions of revolute joints have been automatically satisfied, and kinematic constrains, Eqs. (1)
and (12), do not required anymore. Observations of recursive model, Eqs. (24), show that
the governing equations are exactly ODE and relative rotation angle φ associated degree of
freedom are not massless. The recursive model has avoided formulating the stiff DAE of
index 3. When torsional spring and dash-pot damper are considered, the torques of spring
and damper are easily obtained as ksφ and csφ̇, respectively.

2.3 Contact models for revolute joints with clearance

With the unilateral contact condition [25], a contact model for revolute joints is developed
in this section to capture the phenomena of contact/impact due to clearance.

2.3.1 Contact kinematics of revolute joints with clearance

Except the kinematic constraints, Eqs. (1), an additional constraint needs to be applied to
the revolute joints with clearance for the guaranty of planar motion of the inner and outer
parts with respect to each other. As depicted in Fig. 2, the relative displacement of the inner
and outer parts is defined like

u = u�
0 + u� − uk

0 − uk (30)

and an additional constraint is written as

c4 = b̄kT
3 u = 0. (31)

The corresponding force of constraint F 4
c is readily obtained from the associated constraint

potential like

F 4
c =

∣
∣
∣
∣
∣
∣
∣

−b̄k
3

˜bk
3u

b̄k
3

∣
∣
∣
∣
∣
∣
∣

(kλ4 + 2p c4). (32)
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For the modeling of clearance, the scheme of contact detection should be designed at first.
A straightforward strategy is predicting the relative distance between the contact point-pair
candidates with the unilateral contact condition and then make a judgment of weather the
contact is happened or not. Observation of the geometric configuration of revolute joint
with clearance, as depicted in Fig. 2, shows that the contact point-pair candidates could be
identified along the normal direction n̄ defined as

n̄ = u

‖u‖ , (33)

where ‖ · ‖ presents the 2-norm of vector and ‖u‖ = √

uT u. The positions of contact point-
pair candidates on inner and outer races k and �, respectively, are written as

zk = uk
0 + uk + ρkn̄ and z� = u�

0 + u� + ρ�n̄, (34)

where ρk and ρ� are the radii of inner and outer races. The relative distance between the
contact candidates is predicted from

q = n̄T
(

zk − z�
)

, (35)

in detail,

q = −n̄T u + ρk − ρ�. (36)

During contact/impact, the inner and outer bodies will exert tension on one another and
the inner penetration will be happened. Obviously, if q < 0, the contact/impact occurs and
the inter-penetration between the contacting bodies is denoted by a negative value of q as
a = −q . This work develops a penalty approach by adding spring and damper in the contact
interface between inner and outer bodies to the modeling of unilateral contact conditions.
Denoting the magnitude of normal contact forces as fn, the virtual work of normal contact
forces during contact can be written as

δWn = fnn̄
T δ

(

zk − z�
)

(37)

and the normal contact forces applied to bodies k and � become

∣
∣
∣
∣

F k
n

F �
n

∣
∣
∣
∣
=

∣
∣
∣
∣

fnn̄

−fnn̄

∣
∣
∣
∣
. (38)

In the case of friction in the contact interface there are possibilities of sticking and slid-
ing. When sliding occurs, the velocities of material points which coincide with the contact
candidates compute from time derivatives of positions, zk and z�, as

żk = u̇k + ω̃kρkn̄, ż� = u̇� + ω̃�ρ�n̄, (39)

and the relative velocity will be

vr = ż� − żk. (40)

The component of the relative velocity in the null space of normal direction n̄ is readily
obtained from

vt = (

I − n̄n̄T
)

vr (41)
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and the normalization of vt produces the following tangent vector:

t̄ = vt

‖vt‖
, (42)

indicating the direction of sliding. The current implementation predicts a magnitude of the
friction force, ft , by using the continuous Coulomb law and analytical LuGre models, re-
spectively. The virtual work done by the friction force

δWt = ft t̄
T δ

(

zk − z�
)

(43)

is expanded to yield the friction force applied to bodies k and �, respectively, like

Fk
t = ft

∣
∣
∣
∣

t̄

ρkñt̄

∣
∣
∣
∣
, F �

t = −ft

∣
∣
∣
∣

t̄

ρ�ñt̄

∣
∣
∣
∣
. (44)

2.3.2 Normal contact force based on Hertz model

For penalty method, the relationship between normal contact force and inner penetration
will be given by a constitutive law during contact. Conventional approach applies Hertz
model [23], a spring model as the constitutive law, to derive the magnitude of normal contact
force fn from a potential, V (a), like

fn = ∂V

∂a
. (45)

In a generic sense, this work separates the normal force of contact into its elastic and dissi-
pative components and a suitable expression [23] is given as

fn = fe + fc = ∂V

∂a

(

1 + fd(ȧ)
)

, (46)

where fd(ȧ) accounts for energy dissipation during contact and is represented by, fd(ȧ) =
μȧ. In the case of a Hertzian contact, the current implementation applies the nonlinear mod-
eling of the elastic contact force,

fe = kha
3
2 , (47)

and of the damping contact force,

fc = μkha
3
2 ȧ. (48)

The definitions of stiffness parameter kh and damping coefficient μ can be found in
Refs. [23, 32].

2.3.3 Modeling of friction force

This work affords two options for the modeling of friction force, one is the Coulomb fric-
tion law and the other the LuGre model. The Coulomb law states the friction force ft is
proportional to the magnitude of the normal contact force fn like

ft = −μkfn, (49)
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where μk is the coefficient of dynamic friction. If the relative velocity vanishes, sticking or
rolling takes place. In this case, the friction force becomes

|ft | ≤ μsfn, (50)

where μs is the coefficient of static friction. This highly nonlinear phenomenon of friction
coefficient switching between sliding and sticking conditions makes it very hard to deal with
the classic Coulomb law numerically [33, 34]. In the current implementation, the friction
coefficient is regularized to obtain a continuous friction law [35], successfully treat sticking,
sliding and transition regions, like

|ft | = −μkfn tanh

(
vt

vc

)

, (51)

where vc is a characteristic velocity.
The LuGre model is a type of bristle model captures micro-slip and also accounts for

the drop in friction force as the sliding speed is increased. This analytical friction model is
governed by the following ordinary differential equations:

ż = v − |v|
g(v)

z,

g(v) = 1

σ0
μk + (μs − μk)e

−|v/vs |γ ,

(52)

where v is the magnitude of the relative velocity component in tangent plane, v = |vt |,
and vs the Stribeck velocity, γ a model parameter, which is often selected as γ = 2. The
instantaneous friction coefficient computes from

μ = σ0z + σ1ż + σ2v, (53)

where σ0 is the stiffness and σ1 and σ2 the damping coefficients. The friction force is still
proportional to the magnitude of normal contact force

ft = −μfn. (54)

When Radau IIA algorithms [29, 31] with stage number s = 2 and 3 are used to solve the
contact problem, the stage quantities, zi and żi for i = 1,2, . . . , s at each time integral dura-
tion, t ∈ [tn, tn+1], needs to be solved from Eqs. (52) before computing friction contact force.
This work applies a trapezoidal algorithm, żi + żi−1 = 2/h(zi −zi−1), featuring second order
accuracy, to approximate these quantities,

zi = vi + żi−1 + 2
h
zi−1

2
h

+ σ0|vi |
g(vi )

, żi = vi − |vi |
g(vi)

zi, (55)

where vi is the ith stage value of v, and z0 and ż0 are the given values at initial time tn.

3 Numerical examples

Three numerical examples are presented to validate the developed models for revolute joints
in flexible multibody systems.
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Fig. 3 Configuration of four-bar
linkage

Table 1 Coordinates of the four-bar linages control points

No. Left wing No. Right wing

L1 (−4.91071, 0.00000, 0) R1 (4.91071, 0.00000, 0)

L2 (−2.25663, 2.38975, 0) R2 (2.25663, 2.38975, 0)

L3 (−2.22156, 9.08609, 0) R3 (2.22156, 9.08609, 0)

L4 (−0.76893, 12.3488, 0) R4 (0.76893, 12.3488, 0)

L5 (−11.4767, 12.7227, 0) R5 (11.4767, 12.7227, 0)

L6 (−44.0461, 13.8600, 0) R6 (44.0461, 13.8600, 0)

L7 (−45.4988, 10.5974, 0) R7 (45.4988, 10.5974, 0)

L8 (−47.5828, 13.3630, 0) R8 (47.5828, 13.3630, 0)

L9 (−48.0479, 10.7251, 0) R9 (48.0479, 10.7251, 0)

L10 (−52.9394, 13.4378, 0) R10 (52.9394, 13.4378, 0)

L11 (−100.256, 14.0985, 0) R11 (100.256, 14.0985, 0)

L12 (−11.5390, 10.9380, 0) R12 (11.5390, 10.9380, 0)

L13 (0.00000, 8.75726, 0) R13 (0.00000, 8.75726, 0)

L14 (−4.91071, 4.39570, 0) R14 (4.91071, 4.39570, 0)

L15 (−7.36607, 4.39570, 0) R15 (7.36607, 4.39570, 0)

L16 (0.00000, 0.00000, 0) R16 (0.00000, 0.00000, 0)

3.1 Bio-inspired flight flapping wing

The first example deals with the kinetic problem of a stick model of flying robot, which is
designed to simulate the flapping motion of birds. The internal structure of wing has been
simplified to the four-bar linkages for stick model. Due to symmetry, only a half of the
basic geometric configuration is depicted in Fig. 3. Note that 16 points are numbered in
the figure to determine the geometric topology of the four-bar linage, where the left link-
age will connect to the right one through points 13 and 16. The whole structure is clamped
at point 16. The coordinates of all the points are given in Table 1 with the unit of length
cm. In the current implementation, the numerical model of four-bar linkage is consisted of
beam elements [36] and revolute joints. A user-defined function, φ(t) = ωt with constant
angular speed ω = 12.56 rad/s, prescribes rotation of crank shaft, and the kinematic con-
straint, Eq. (12), is enforced to the kinematic model for revolute joint located at point 1.
The beam elements have shared the same material properties as following: mass per unit
length, ρ = 0.1032 kg/m, bending stiffness, I22 = I33 = 29.856 N m2, torsional stiffness,
J = 23.303 N m2. Three different test cases have been performed. For case I , all the revolute
joints have been modeled by using kinematic constraints, Eq. (1). The governing equations
of motion for discrete model will be DAE of index 3 with degrees of freedom, N = 1368,
containing 42 Lagrange multipliers. The 2-stage Radau IIA algorithm [29] is applied to in-
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Fig. 4 Trajectory of four-bar
linkage

Fig. 5 Relative rotations of
revolute joints at points 8 and 9,
current implementation: ♦,
results of DYMORE: �

tegrate the governing equations and the predicted trajectory of four-bar linkage is shown
in Fig. 4. The cyclic flapping of four-bar linkage apparently mimics the flapping motion
of birds. As depicted in Fig. 5, the time histories of relative rotations for revolute joint lo-
cated at points 8 and 9 are sensed and compared with the results of DYMORE [38], in
which all the revolute joints are modeled by using the classical formula. The relative error
between these two predictions for φ8 is computed as ε8 = 5.04 × 10−6. For case II , the
kinematic constraints at point 2 and point 4 for both left and right linkages are replaced by
four recursive models, with the rest remaining unchanged. The relative rotation of recursive
model located at point 4 is described in Fig. 6. The time history has been compared with
this of case I . The relative error between the responses of φ4 for these two different models,
ε4 = 1.44 × 10−8, shows that the recursive model has the same accuracy as the kinematic
constraint model. For case III , the kinematic constraints at point 4 for both left and right
linkages are replaced by two contact models, leaving the rest unchanged. The contact mod-
els with the same properties have been applied, and their physical properties are defined as
the radii of inner and outer races are 50 and 50.1 mm, respectively. The stiffness parame-
ter for Hertz model is kh = 1 × 109 N/m3/2. The Coulomb law has been applied to predict
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Fig. 6 Relative rotations of
revolute joints at point 4,
recursive model: ♦, kinematic
constraints: �

Fig. 7 Time histories of position
for point 11 at the tip of linkage,
contact model: ◦, kinematic
constraints: ♦

the friction force, where μk = 0.6, and vc = 2 m/s. The numerical simulation results show
that the clearance joints seriously affect the dynamic response of the flexible linkage and
degrade the dynamic performance of connected bodies. Figure 7, presents the time histories
of dynamic response of point 11 located at the tip of linkage. The simulation result of case
III has been compared with that of case I . The apparent deviation can be observed from
the figure.

3.2 The ground resonance problem

The second example solves a problem of ground resonance by using the finite element
method. As described in Fig. 8, a four-bladed rotor mounted on a rigid block of mass
mt = 30 kg. The block is connected to the ground by a spring of stiffness constant
Kt = 12 kN/m and dash-pot of constant Ct = 150 N s/m. The four-bladed rotor is con-
nected to the block by means of a revolute joint. Each uniform blade of length 4.25 m has a
mass of 12.75 kg and soft bending stiffness [29]. The blade root hinge is located at distance
0.25 m from the bub. In the current implementation, the rotor-block system, a typical flex-
ible multibody system, has been discretized into geometrically nonlinear beams [36], rigid
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Fig. 8 Ground resonance
problem

Fig. 9 Time history of lag
angles. Results of recursive
models: solid line, results of
constraint model: dashed line.
φ1 (	), φ2 (◦), φ3 (�), φ4 (�)

bodies and revolute joints. Each blade is discretized with three cubic beam elements. A rev-
olute joint located at the rigid block prescribes rotation of the rotor, and four revolute joints
model the lead-lag hinges of the blades. Both kinematic constraint and recursive models for
revolute joints developed in this work will be tested for their efficiency and accuracy.

At first, ground resonance is simulated by using the finite element model involving five
modified kinematic constraints for revolute joints. The initial rotor speed sets as 20.01 rad/s,
an unstable rotor speed as pointed in Ref. [37]. The governing equations of motion for this
discrete model are also a DAE system of index 3. The number of total degrees of freedom is
199, containing 10 Lagrange multipliers. Here again, the 2-stage Radau IIA algorithm [29]
is used to integrate the DAE of index 3. Second, the modified constraint models for rev-
olute joints are replaced by the recursive models and the other elements keep unchanged.
The governing equations of motion of system have been assembled into an easily solved
ODE system. The total number of degrees of freedom of system has been decreased to 179.
The statistic information of simulation shows that it runs faster for 2-stage Radau IIA algo-
rithm to solve ODE by 17 s of CPU times than solving DAE of index 3, 21 s of CPU times.
All the simulations are performed on the desktop with Intel(R) Celeron(R) CPU G1620
2.70 GHz. Figure 9 shows the time histories of lag angles, φi for i = 1,2, . . . ,4, predicted
by kinematic constraints and recursive model, respectively. The relative error of φ1 between
predictions of two different models for revolute joint is evaluated as ε1 = 4.66 × 10−6, in-
dicates the recursive model for revolute joints has the same accuracy as modified constraint
model.
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Fig. 10 Clearance rotor with
flexible anisotropic bearings

Fig. 11 Trajectory of inner race
respected to the outer race,
the Coulomb law: solid line;
the LuGre model: dashed line

3.3 Clearance rotor with flexible anisotropic bearings

As depicted in Fig. 10, the last example validates the contact model for revolute joint by
solving a contact problem of clearance rotor. The rotor is consisted of a flexible shaft with
a midspan rigid disk. The shaft is connected to the end flexible couplings, represented by
concentrated springs. At point R, a revolute joint is connected to the ground by concentrated
spring; at point T, the finite stiffness end bearing is consists of a revolute joint with clearance
and a concentrated spring. The contact model for revolute joint at point T describes the
relative planar motion of inner and outer races of joint. For this example, the radii of inner
and outer races are 80 and 80.8 mm, respectively. The geometric size and properties of rotor
can be found in Ref. [29]. For finite element modeling, the shaft has been discretized into
six geometrically exact beam elements [36], the rigid disk has been modeled by rigid body,
a kinematic model for revolute joint located at point R describes the rotation of rotor with
a constant angular velocity Ω = 24 rad/s. The dynamic response of rotor was simulated
with the application of 2-stage Radau IIA algorithm. As shown in Fig. 11, the trajectory
of inner race center respected to the outer race is predicted. The nonlinear phenomena of
contact and penetration between the inner and outer races are observed. The accuracies of
the Coulomb friction law and the LuGre model are compared with respect to each other
when contact/impact occurs. Figure 12 shows the time history of friction forces predicted
by using these two models. A good curve fitting is observed.
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Fig. 12 Time history of friction
force, the Coulomb law: solid
line; the LuGre model: dashed
line

4 Conclusion

Three different types of numerical models for revolute joints in flexible multibody systems
are developed by finite element method. These models can be used to connect rigid or flexi-
ble bodies in multibody system with arbitrary topology, featuring high modeling flexibility.
The following conclusions have been drawn:

1. The first model is a modified kinematic constraint model that reduces the number of
constraints from four to three by dealing with relative rotation in an efficient manner.
The numerical simulation shows that this model behaviors more stable than the classical
constraint model with four constraints because the stiff properties of multibody systems
have been degraded.

2. The second recursive model introduces the relative rotation angle φ as an isolated vari-
able to avoid the stiff phenomena of multibody systems caused by the kinematic con-
straints. This recursive model has a higher efficiency and is more reliable than the con-
straint model.

3. The third model includes a set of dry clearance joint and flexible links to simulate the cou-
pling effect between clearance joint and links’ flexibility. Similar to the recursive model,
the clearance model does not impose kinematic constraints to the multibody system. The
dynamical behaviors of revolute joints are controlled by contact forces from the force
models. It can be concluded the clearance joints seriously affect the dynamic response of
the flexible multibody systems.

Finally, three numerical models of revolute joints have been validated by using three nu-
merical examples of flexible multibody systems. All of these models have good accuracy,
of which the recursive model is more efficient. In addition, the clearance model strengthens
the dynamical nonlinearity of flexible multibody system because the joint clearance leads to
the jump in contact forces.

Acknowledgements The paper is supported by the Beijing Natural Science Foundation of China No.
3172014.
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