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Abstract Virtually all machines and mechanisms use mechanical joints that are not perfect
from the kinematic point of view and for which tolerances, in the fitting of their components,
are specified. Together with such controlled clearances, mechanical joints may require the
use of bushing elements, such as those used in vehicle suspensions. Furthermore, in many
situations the joints exhibit limits (stops) in their translational or rotational motion that have
to be taken into account when modeling them. The dynamic response of the mechanical
systems that use such realistic mechanical joints is largely dependent on their character-
istic dimensions and material properties of the compliant elements, implying that correct
models of these systems must include realistic models of the bushing/clearance joints and
of the joint stops. Several works addressed the modeling of imperfect joints to account for
the existence of clearances and bushings, generally independently of the formulation of
the perfect kinematic joints. This work proposes a formulation in which both perfect and
clearance/bushing joints share the same kinematic information making their modeling data
similar and enabling their easy permutation in the context of multibody systems modeling.
The proposed methodology is suitable for the most common mechanical joints and easily
extended to many other joint types benefiting the exploration of a wide number of model-
ing applications, including the representation of cut-joints required for some formulations
in multibody dynamics. The formulation presented in this work is applied to several demon-
strative examples of spatial mechanisms to show the need to consider the type of imperfect
joints and/or joints with stops modeling in practical applications.
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1 Introduction

Mechanical joints in any natural or man-made mechanism allow for the relative motion be-
tween the connected elements of the system. The function and durability of mechanical and
biological joints is not only associated with the geometry of the mating pairs, which in turn
guarantee the correct mobility of the system, but also to the materials used in the interface,
which may allow for some level of energy dissipation and provide local flexibility, and to
the tribological fluids to ensure the proper friction characteristics and wear control. Joints
in mechanisms subjected to impact loading or with large transient loads, such as virtually
all joints in road or railway vehicles, need not only to exhibit some level of compliance but
also to provide some isolation to the transmission of vibrations between connecting bod-
ies.

From the physical point of view, when the modeling of local compliance, energy dis-
sipation or vibrational isolation/modification on the system kinematics are due to features
of the mechanical joints, it is necessary that these are modelled as clearance/bushing joints
and not as perfect kinematic pairs. From the mathematical, or computational, point of view
it is often necessary to allow for the modeling of kinematic chains to have cutoff joints,
i.e., kinematic joints modelled as contact pairs, either because the formulations used cannot
handle closed kinematic loops, or because the multibody system only works due to slight
misalignment of joints or even because it is a suitable modeling strategy to overcome the nu-
merical difficulties associated with the existence of redundant constraints in the multibody
system. In these cases, the availability of efficient and accurate models of clearance/bushing
joints is a valuable feature in multibody computational tools for the development of realistic
multibody systems.

The need for the modeling of clearance joints, in the framework of the dynamics of me-
chanical system, has recognized in earlier theoretical and experimental work by Dubowsky
[11], Dubowsky and Gardner [12], Grant and Fawcett [23], Haines [26] or Soong and
Thompson [47], among many others. This work showed how clearances can condition the
dynamical response of mechanisms, affect performance and even interfere with machine
control systems. In the framework of multibody dynamics Ravn [44], Schwab et al. [46]
or Flores and Ambrósio [14] and Flores et al. [16, 19] presented some of the basic work
for the generalized modeling of clearance joints. Most of this work focuses on the planar
systems involving either revolute or translation joints. Based on that early work, the model-
ing of planar clearance joints has been explored by a wide number of researchers to model
their lubrication [30], to understand the systems behavior in the presence of multiple joints
[7], to apply their basic formulations in a wider range of contact problems [40], to devise
controlling strategies for systems in their presence [1, 51] or simply to implement them in
computer codes based on different formulations [24].

The solution of any contact problem is not simple and the modeling of clearance joints
is not an exception. The solution of the contact problem is divided in two parts: the contact
detection and the modeling of the contact force. Particular care must be put in the numerical
issues associated with the integration of the equations of motion in the presence of sudden
change of forces or even discontinuities. The contact detection for planar joints is rather
simple being solutions for the most common type of joints available in the work of Flores
et al. [16] or Zhang and Wang [53]. The modeling of the contact force is either approached
by using penalty formulations, generally based on Hertz elastic contact [28, 41], or by us-
ing unilateral constraints in the framework of non-smooth contact dynamics [2, 18, 22].
A critical issue in the numerical solution of multibody dynamics problems in the presence
of contact, or impact, is the fitting of the numerical integration method and of the time-step
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selected to the correct integration of the equations of motion. This issue is discussed by Flo-
res and Ambrosio [17] in the framework of continuous contact force models using penalty
formulations, and by Förg et al. [20] or Brogliato [9] in the context of unilateral constraints
or non-smooth contact dynamics.

The use of multibody models for 3D systems that use of spatial clearance/bushing joints
is required for a wide number of realistic problems. Road vehicles, whose suspensions use
bushing elements in the joints [3], railway vehicles for which the extra degrees associated
with the clearance joints provides the compliance of the suspension systems that promote a
better wheel–rail contact [33] or in the multibody modeling of high-speed train pantographs
in which some of the fundamental features of their dynamic response are associated with
the existence of imperfect joints [50] or even in the modeling of mechanical watches [45]
are examples of the need for using imperfect joints. In general, while the numerical issues
associated with the numerical methods and time-stepping procedures in contact problems
are similar in spatial and planar multibody systems, the contact detection and the use of the
contact force models have different issues in planar and spatial clearance/bushing joints. Dif-
ferent computational models for spatial clearance joints, mostly revolute joints, are proposed
in the literature. Flores et al. [15] propose a new revolute joint model which is revisited later
by the same authors, together with models for spatial spherical and translation joints [16].
Alternative formulations for spatial revolute and translation joints are proposed by differ-
ent authors [10, 49, 52, 53]. The main differences between the various formulations consist
in the approaches used for the contact detection and on the description of the continuous
contact force model. The contact force models used in most of the current formulations for
clearance joints are inherited from the analysis of planar contact problems, without fully tak-
ing into account the characteristics of the three dimensional contact geometry. Continuous
force models such as that proposed by Lankarani and Nikravesh [28] or by Pereira et al. [41]
are examples of models that are suitable to be used in planar clearance joints but cannot be
applied in the exact same manner in general spatial cylindrical or revolute clearance joints.
The bushing joints, whose use in vehicle suspensions, in particular, are of fundamental im-
portance, are examples of joints in which the force models are associated with the material
that is included between the contacting surfaces, generally elastomers [3]. The use the strip
method, in which one of the cylindrical contact surfaces of the clearance joint is discretized
in cylindrical patches, being each one of these patches checked independently for contact
with the mating cylindrical surface, has been proposed to address the roller bearing contact
[25]. This approach provides a methodology for using continuous contact models, origi-
nally developed for planar problems, in the context of spatial clearance joints that is applied
here.

This work proposes a novel approach to the modeling of perfect kinematic joints and of
clearance/bushing joints in the sense that they both share a similar basic mathematical de-
scription in terms of the algebraic operations required for their formulation. By also ensuring
a common set of modeling data, it is simple not only to ensure a computational implemen-
tation of the kinematic and clearance/bushing joints in a common framework, allowing for
the existence of joints with mixed features, but also to develop easily recyclable multibody
models in which the nature of the mechanical joints is interchangeable. Besides the unifying
characteristics of the formulation used, also the compliance of the joints is treated in the
same form, being this the result of contact or of the existence of bushing elements. It is also
shown that the modeling of joint stops in revolute, cylindrical or translation joints is just
a particular case of the modeling of clearance joints. Finally, two demonstration cases are
used to show the performance of the formulations proposed in this work with respect to the
geometrical and material features of the clearance/bushing joints developed here.
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2 Multibody formulation of kinematic and contact joints

2.1 Multibody formulation with cartesian coordinates

Without loss of generality, let Cartesian coordinates be used to describe the equations of
motion of the constrained multibody system. Let q denote the vector of the system coordi-
nates, composed with the translation and rotation coordinates of the individual rigid bodies,
and q̇ and q̈ be the velocity and acceleration vectors of the system, respectively [37]. The
constraint equations associated with the kinematic constraints are denoted by Φ , being their
Jacobian matrix, i.e., the matrix with their derivatives with respect to the system coordinates,
denoted by Φq. Then the dynamic response of the system is obtained by solving the system
equilibrium equations [

M ΦT
q

Φq 0

]{
q̈
λ

}
=

{
g
γ

}
(1)

to obtain q̈, which in turn is integrated in time to obtain q̇ and q. In Eq. (1) M is the mass
matrix, g the force vector, λ is the vector of Lagrange multipliers, which are related to the
joint reaction forces, and γ is the right-hand-side of the acceleration constraint equations.
Note that, depending on the rotation coordinates used to describe the spatial kinematics of
the rigid bodies, the velocity vector q̇ may not be simply the time derivative of vector q.
When using Euler parameters to describe rotations, as in the case of this work, the coordi-
nates that describe the position and orientation of a rigid body i are q∗

i = [rT pT ]Ti , where
p = [e0 e1 e2 e3]T are the Euler parameters. The time the velocities of the rigid body can be
expressed as q̇∗

i = [ṙT ṗT ]Ti or as q̇i = [ṙT ω′T ]Ti , in which ω′
i is the body angular velocity,

expressed in the body-fixed coordinate system. The relation between the time derivatives of
the Euler parameters and the angular velocities of the rigid body are given by ω′

i = 2Li ṗi ,
where the 3 × 4 Li matrix, made of the Euler parameters is defined in [37].

Of particular interest for the developments reported in this work are the kinematic joint
reaction forces, included in Eq. (1), and highlighted here as

g(c) = −Φqλ (2)

which derive from the application of the Augmented Lagrangian method to add the kine-
matic constraints to the equations of motion. The first row of Eq. (1) can be written as

Mq̈ = g + g(c) (3)

When some joints of the mechanical system are not perfect kinematic joints but, instead, ex-
hibit joint clearances and/or bushings, their corresponding joint reaction forces are replaced,
in Eq. (3), by specific force elements. In this case, the system equations of motion are

Mq̈ = g + g(ck) + g(c/b) (4)

in which g(ck) represents the joint reaction forces of the remaining kinematic joints and g(c/b)

are the forces in the clearance/bushing joints. In what follows, the clearance/bushing joints
are derived by using the same vector operations required to evaluate the kinematic joints
constraints and suitable force constitutive equations.

The integration of the accelerations and velocities of the multibody system lead to a
numerical drift in the position and velocity constraint equations of the kinematic constraints,



A unified formulation for mechanical joints. . . 321

as these are not explicitly used in the solution process. In all that follows the Baumgarte
stabilization method [6, 37] is used to control the violation of the constraint equations. For
the joints represented as contact pairs, instead of kinematic constraints, there are, naturally,
no constraint violations and, consequently, no stabilization method required.

When dealing with impact/contact between the bodies of a system, such as those that
form the contact pair in clearance/bushing joints, the detection of the time of initiation of
contact is fundamental. When variable time-step integration algorithms are used and the
pre-impact dynamics does not involve high frequencies the integration algorithms may use
larger time steps and the contact between two surfaces may start with initial penetrations
that are artificially high. Either this fact leads to a stall of the integration algorithm or to
contact forces that are physically impossible which, in turn, lead to post-impact dynamics
that is unrelated to the physical problem. The procedure proposed by Flores and Ambrosio
[17] that ensures that for any impact in a multibody system the time step of the integration
is such that any initial penetration is below a prescribed threshold is applied here. When
any new contact start, and after a time step is complete, the numerical error control of the
selected integration algorithm is forced to handle the physical criteria to accept/reject time
steps in equal terms with the numerical error control that it normally uses. In this case, if the
initial penetration is higher than the threshold the integrator is instructed to reject the time
step, implying that its internal control decreases it until the threshold is met.

2.2 Perfect kinematic joints: an alternative view

Although the general approach proposed in this work can be used for the formulation of all
types of kinematic and clearance/bushing joints, only the cylindrical, revolute, translation
and rigid joints are considered here. The formulation for the spherical clearance/bushing
joint used in the applications presented here is that proposed by Flores et al. [16] in what
contact detection is concerned while the use of general constitutive models for the contact
force is discussed hereafter.

A general representation for cylindrical, revolute, translation or even rigid joints is de-
picted in Fig. 1(a). The input required to define the constraint equations of any of the kine-
matic joints referred are the positions of points P and the vectors aligned with the joint axis
in bodies i and j , respectively denoted as s′P

i , s′P
j , s′

i and s′
j . The superscript (•)′ denotes

that the quantity (•) is defined in the body-fixed coordinate system of the body used in the
subscript of the same quantity.

In all that follows, and without loss of generality, let it be assumed a set of rules to be
used in the construction of the multibody models that has to be followed for the definition
of the perfect and clearance/bushing joints:

• Body j includes the bearing while body i includes the journal;
• The location of point Pj is half-way along the bearing axial length, defined as lj ;
• The location of point Pi is half-way along the journal axial length, defined as li ;
• The location of point Qj is in one of the ‘edges’ of the bearing axis, such that lj = 2PjQj

• The location of point Qi is in one of the ‘edges’ of the journal axis, such that li = 2PiQi

• The journal length is always longer or equal to the bearing length, i.e., li ≥ lj .

Note that for perfect kinematic joints the concept of bearing and journal, or of their length,
is not important. However, for clearance joints not only the knowledge of the lengths is
important but also the location of the points defining the joint axis is used to define the
application of the joint reactions. Therefore, it is preferred that the same set of rules is used
for the definition of mechanical joints, regardless of them being perfect or not.



322 J. Ambrósio, J. Pombo

Fig. 1 Generic representation of perfect cylindrical, revolute, translation or rigid kinematic joints; (a) iden-
tification of the points required; (b) vectors based on pre-defined points

Let two orthogonal sets of vectors be defined, in each one of the body-fixed coordinate
frames, as seen in Fig. 1(b), such that

h′
i⊥s′

i; t′i⊥s′
i; h′

i⊥t′i
h′

j⊥s′
j ; t′j⊥s′

j ; h′
j⊥t′j

(5)

Start with vectors bi and bj , in Fig. 1(b), which not only are parallel to si and sj , but
also have the same orientation of si , i.e., b′

i = s′
i/|s′

i | and b′
j = AT

j Aib′
i at time t0, where

matrices Ai and Aj are the transformation matrices from bodies i and j coordinate systems,
respectively, to the inertial referential. Generate vector h′

i , in Eq. (5), to be orthogonal to b′
i ,

for instance by using a Householder transformation [31]. From the numerical point of view
it is assumed that the vectors are generated such a way that h′

i = AT
i hi and h′

j = AT
j hi .

Finally, the vectors t′i and t′j are such that not only Eq. (5) is fulfilled but also such that
right-hand vector triads are obtained. A joint coordinate system (h, t,b)i is associated with
the journal and another coordinate system (h, t,b)j is associated with the bearing, being
these parallel to each other in the initial time t0 of the analysis. Of particular importance
in what follows is the transformation of coordinates from the journal coordinate system to
the body i coordinate system, which is expressed by the constant transformation matrix
Ajoint = [h′

i t′i b′
i]. In all time steps during the numerical integration of the equations of

motion of a multibody system, the distance vector d, depicted in Fig. 1(b), is

d = (
rj + Aj s′P

j

) − (
ri + Ais′P

i

)
(6)

The different perfect kinematic joints are described by defining the convenient vector op-
erations with the quantities presented in Eqs. (5) and (6). The constraint equations for a
cylindrical joint are defined as

Φ(c,4) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

hT
i bj

tTi bj

hT
i d

tTi d

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 0 (7)
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For a revolute joint the constraint equations are obtained by adding to the cylindrical joint
constraint equations a restriction that prevents the axial displacement of body i with respect
to body j , i.e.,

Φ(r,5) ≡
{

Φ(c,4)

dT d − d2
0

}
= 0 (8)

in which the square of the axial distance between points P in bodies i and j , defining
the joint, d2

0 = (dT d)time=t0 , is evaluated for time t0. For a translation joint the constraints
equations are obtained by adding to the cylindrical joint constraints a restraint that prevents
the rotation of body i with respect to body j ,

Φ(t,5) ≡
{

Φ(c,4)

hT
i tj − h2

0

}
= 0 (9)

being the square of the angular alignment of bodies i and j along the joint axis, h2
0 =

(hT
i tj )time=t0 , evaluated for time t0.
The rigid joint is obtained with the cylindrical joint constraints plus the restrictions for

the axial displacement and rotation about the axis defined between bodies i and j , as

Φ(rig,6) ≡

⎧⎪⎨
⎪⎩

Φ(c,4)

dT d − d2
0

hT
i tj − h2

0

⎫⎪⎬
⎪⎭ = 0 (10)

Note that the rigid joint can be expressed by a formulation alternative to that used here, in
which the set of constraints defining a spherical joint are complemented by a frame align-
ment constraint as that used in the path motion constraint proposed by Pombo and Ambrósio
[42]. In fact, if d0 = 0 and the frames defined by vectors h, t, b, associated with each body,
are substituted by the unit vectors associated with the body-fixed coordinate systems both
formulations become identical.

2.3 General description of imperfect kinematic joints or contact joints

Equation (7) through (9) define the perfect kinematic joints that need to be included in
Eq. (1) using the Augmented Lagrangian method [37]. However, in many applications the
kinematic joints are not perfect, as that illustrated in Fig. 2. Instead of enforcing kinematic
constraints between rigid bodies, the relative displacements and rotations between them lead
to contact forces which are related to the relative displacements by appropriate constitutive
relations.

A general clearance/bushing joint that restricts all relative motions between two con-
nected bodies requires that the axial and radial displacements, axial misalignment and axial
rotation, identified in Fig. 2, are penalized. The penalization forces must be evaluated and
applied in the bodies constrained by the joint in specific interaction points, which must be
clearly defined also. The contact forces between the two bodies are proposed by Ambrosio
and Verissimo [3], in the case of pure bushing joints, and by Flores et al. [16], in the case
of clearance joints. These contact force constitutive models are revisited here with several
enhancements, not only to accommodate for the simultaneous application of clearances and
bushings but also to explicitly use the same vectors obtained for the definition of the perfect
joints, while providing improved numerical performance.
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Fig. 2 General representation of
clearance/bushing cylindrical,
revolute and translation joints
with the identification of specific
relative motions required for their
formulation

2.3.1 Relative displacements/rotations

The concepts of axial and radial displacements, axial misalignment and axial rotation, vi-
sualized in the graphical aids depicted in Fig. 2, are defined first. For this purpose, let the
distance vector d be decomposed, as illustrated in Fig. 2, into axial displacement component
along vector bi , which specifies the joint axis in body j , defined as

dt = (
dT bi

)
bi (11)

and an orthogonal component, the radial displacement with respect to the joint axis, defined
as

dn = d − dt (12)

The radial displacement, denoted by δn, and the radial direction, urd , are obtained:

δn =
√

dT
n dn (13)

urd = dn/δn (14)

The axial displacement, denoted by δt , and the radial direction, uad , are obtained:

δt =
√

dT
t dt (15)

uad = dt /δt (16)

The axial misalignment of joint axis in bodies i and j is described by an angle θam measured
about a vector uam written as

θam = arcsin
(|b̃ibj |

)
(17)

uam = b̃ibj /|b̃ibj | (18)
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in which the skew-symmetric matrix of a vector b, denoted by b̃, is defined in Nikravesh
[37]. It must be noted that if the axial misalignment is null, i.e., |b̃ibj | ≈ 0, Eq. (18) is
not required because the conditions of alignment of the axis of the bearing and journal are
fulfilled and no penalization force needs to be calculated. The axial rotation of the bearing
with respect to the journal is defined by angle αar , obtained:

αar = arc sin
(
hT

i tj
)

(19)

The measures of misalignments and relative displacements between the joint bearing and
journal are used to define the clearance/bushing joints. Note that in their definition only the
vectors already used for the definition of the perfect kinematic joints are required.

2.3.2 Forces in clearance/bushing joints

A cylindrical clearance/bushing joint is defined by using a proper penalization of the relative
motion between bearing and journal, i.e., the radial displacement and the axial misalignment
lead to contact forces during the contact phase. Based on the joint description in Fig. 2
and using the definitions of Eqs. (11) through (18), the clearance/bushing cylindrical joint,
requires that the forces are applied in points Pi and Pj , of bodies i and j , respectively,
defined by

f(cyl)
i = fcyl(δn, δ̇n, δt , δ̇t , θam, θ̇am)

f(cyl)
j = −f(cyl)

i

(20)

The force constitutive equation fcyl(δn, δ̇n, δt , δ̇t , θam, θ̇am) is, in general, a relation in which
all relative displacements and misalignments are coupled but that also involves the clear-
ance size, bearing and journal geometry and the material constitutive properties, which is
discussed in next section. Besides the force penalization, also a penalization moment must
be considered in the cylindrical joint, written in its general form as

n′ (cyl)
i = ncyl,i (δn, δ̇n, δt , δ̇t , θam, θ̇am)

n′ (cyl)
j = ncyl,j (δn, δ̇n, δt , δ̇t , θam, θ̇am)

(21)

For a clearance/bushing revolute joint, the penalization forces due to the axial displace-
ment, presented in Fig. 2, is also required. Besides the penalization forces and moments
expressed by Eqs. (20) and (21) the revolute joint also requires the application of contact
forces in points Pi and Pj , of bodies i and j , respectively, defined by

f(ad)
i = fad(δt , δ̇t )uad

f(ad)
j = −f(ad)

i

(22)

The axial displacement dt is calculated by using Eq. (11). The force relation fad(δt , δ̇t ) is
a nonlinear relation that involves the axial displacement, its speed and the geometric and
material characteristics of the joint.

For a clearance/bushing translation joint, the penalization forces due to the axial rotation
between bearing and journal, shown in Fig. 2, is required together with the contact forces
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and moments expressed by Eqs. (20) and (21). The penalization of the axial rotation requires
the application of penalty moments in bodies i and j defined by

n′ (ar)
i = far(α, α̇)AT

i bi

n′ (ar)
j = −AT

j Ain
′ (ar)
i

(23)

The relation far(α, α̇)far(αar, α̇ar) is a nonlinear relation that includes the axial rotation
angle, its speed and the geometric and material characteristics of the joint.

The total forces and moments to be applied on bodies i and j resulting from the clear-
ance/bushing constitutive equations are defined independently by Eqs. (20) through (23),
being the forces applied on points Pi and Pj , in bodies i and j , respectively. Therefore,
their transference to the center of mass of each body, where the fixed coordinate system
is assumed to be attached, must be considered. The contribution of the clearance/bushing
joints to the force vector of the bodies connected by one of those joints is given by

gi =
{

(f(cyl)
i + f(ad)

i )

s̃′P
i AT

i (f(cyl)
i + f(ad)

i ) + n′ (cyl)
i + n′ (ar)

i

}

gj =
{

f(cyl)
j + f(ad)

j

s̃′P
j AT

j (f(cyl)
j + f(ad)

j ) + n′ (cyl)
j + n′ (ar)

j

} (24)

All penalization forces and moments defined in Eqs. (20) through (23) involve relative
displacements and rotations and their time derivatives. For the evaluation of the relative dis-
placement and rotation speeds the reader is directed to reference [3]. In the definition of the
penalty moments, defined by Eqs. (21) and (23) the penalization of the axial displacement
and axial rotation are decoupled from each other, and from the other relative motion penaliz-
ing force components. In some particular applications, the relative motion components may
be coupled as, for instance, in biological structures, such as intervertebral disk in the human
spine, where the axial deformation is coupled with the axial rotation.

2.4 Application to a clearance/bushing cylindrical joint

The computational treatment of a clearance/bushing joint has a computational implementa-
tion similar to that of any other contact problem. First the general contact detection has to be
solved. The contact detection depends on the geometry of the contact pair being its imple-
mentation more or less specialized for particular geometries [27, 36], being in general the
most, computationally, expensive part of the solution of the contact problem. When contact
is detected, an appropriate constitutive force model is applied to obtain the contact forces.
The force modeling may be more or less costly, depending on the constitutive relations
involved, eventually leading to numerical integration difficulties that need to be handled
[9, 17, 20]. To overcome the computational cost of solving the contact problem online, it is
common the use of contact lookup tables to obtain the contact forces based on the relative
position of the two surfaces of the contact pair [8, 32], represented in this work by Eqs. (20)
through (23). To demonstrate the calculations required for the solution of the contact detec-
tion problem in clearance/bushing joints, the case of a cylindrical joint is presented here.

2.4.1 Contact detection

Let the clearance/bushing cylindrical joint be shown in Fig. 3(a). Let the journal be a cylinder
defined in the journal coordinate system (h, t,b)i by the parameters θi and bi , shown in
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Fig. 3 Representation of clearance/bushing cylindrical joint: (a) Exploded view for contact detection;
(b) Parametric description of the surfaces in the contact pair

Fig. 3(b), and the bearing be another cylinder discretized by a selected number of circular
patches defined in the bearing coordinate system (h, t,b)j by parameters θj , also shown in
Fig. 3(b).

Let two points, Ci and Cj , in bodies i and j , respectively, be candidates to contact points.
Their coordinates, in journal and bearing coordinate systems, are written as:

s′′C
i =

⎧⎨
⎩

Ri cos θi

Ri sin θi

bi

⎫⎬
⎭ (25)

s′′C
j =

⎧⎪⎨
⎪⎩

Rj cos θj

Rj sin θj

bj

⎫⎪⎬
⎪⎭ (26)

in which the circumference located with the coordinate bj along the axis of the bearing
cylinder is considered for contact. Note that in what follows bj is known while θj , θi and
bi are unknown parameters that need to be calculated. The bearing surface tangent vector at
point Cj is defined by

t′′Cj =

⎧⎪⎨
⎪⎩

− sin θj

cos θj

0

⎫⎪⎬
⎪⎭ (27)

The normal, tangent and binormal vectors to the journal cylindrical surface at point Ci are

h′′C
i =

⎧⎪⎨
⎪⎩

cos θi

sin θi

0

⎫⎪⎬
⎪⎭ (28)



328 J. Ambrósio, J. Pombo

t′′Ci =

⎧⎪⎨
⎪⎩

− sin θi

cos θi

0

⎫⎪⎬
⎪⎭ (29)

b′′C
i =

⎧⎪⎨
⎪⎩

0

0

1

⎫⎪⎬
⎪⎭ (30)

For convenience, the local journal coordinate system (h, t,b)i is used to carry all the
calculations required for the contact search. The rotation of the bearing coordinate frame to
the journal coordinate frame is defined by a sequence of two rotations. The first rotation, by
θam, represented in Fig. 2 and described by Eqs. (17) and (18), leads to the alignment of axis
bj with bi by a set of Euler parameters pam, which are related to the axial misalignment as:

pam =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eam,0

eam,1

eam,2

eam,3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
{

eam,0

eam

}
=

{
cos(θam/2)

sin(θam/2)uam

}
(31)

The transformation matrix, for the first rotation, defined as Aam, is obtained by using the
Euler parameters as shown in [37]. The second rotation, αar , represented in Fig. 2, defined
about the axis bi leads to a transformation matrix Aar . Therefore, the rotation that aligns
(h, t,b)j to (h, t,b)i , is defined as Aj2i = AarAam.

The location of point Cj with respect to point Ci , represented in Fig. 3, is given by

dC = d + Aj Abearing2j s′′C
j − AiAjournal2is′′C

i (32)

where the transformation matrices from bearing to body j frame and from journal to body
i frame are given by Abearing2j = [h′

j t′j b′
j ] and Ajournal2i = [h′

i t′i b′
i], respectively. Vector

d′C
i is now expressed, in the journal coordinate system, as:

d′′C
i = AT

bearing2iA
T
i d + AT

bearing2iA
T
i Aj Ajournal2j s′′C

j − s′′C
i (33)

by observing Eq. (33) it is clear that the transformation from the journal frame to the bearing
frame is given by Aj2i = AT

bearing2iA
T
i Aj Ajournal2j . Noticing that the same transformation is,

alternatively, given by Aj2i = AarAam, Eq. (33) is re-written as

d′′C
i = AT

bearing2iA
T
i d + AarAams′′C

j − s′′C
i (34)

The conditions for points Cj and Ci to be candidates to contact points require not only
that the displacement between them is normal to the journal surface, but also that the journal
normal vector in point Ci is normal to the tangent vector in point Cj , written as [43]:

Φ ≡

⎧⎪⎨
⎪⎩

(bC
i )T dC

i

(tCi )T dC
i

(hC
i )T tCj

⎫⎪⎬
⎪⎭ = 0 (35)
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which is transformed to the journal coordinate system leading to

Φ ≡

⎧⎪⎨
⎪⎩

(b′′C
i )T d′′C

i

(t′′Ci )T d′′C
i

(h′′C
i )T t′′Cji

⎫⎪⎬
⎪⎭ = 0 (36)

where t′′Cji = AT
bearing2iA

T
i Aj Ajournal2j t′′Cj or, using the sequence of two rotations between the

bearing and journal frames, is given by t′′Cji = Aj2it′′Cj . Equation (36) is a nonlinear system
that must be solved for θj , θi and bi in order to identify the candidates to contact points,
as defined in Eqs. (25) and (26). The interference between the journal and bearing at these
points is evaluated as

δ = (
h′′C

i

)T
d′′C

i (37)

If δ > 0 there is contact, being Cj and Ci the contact points, the contact forces need to
be calculated. Otherwise, there is no contact and no force penalization is applied in the
clearance/bushing joint.

In the case of contact, the normal and tangential contact forces need to be applied on
points Pi , of the journal, and Pj , of the bearing, so that the expressions for the body forces,
given by Eq. (24), can be applied. The contact forces applied at point Ci , of the journal are
written as:

f(cyl)
i = −fnormalhC

i + f t
tangentialt

C
i + f b

tangentialb
C
i (38)

where the normal and tangential components of the contact force, fnormal, f t
tangential and

f b
tangential are discussed in Sect. 2.4.2. The normal and tangential vectors of the journal cylin-

drical surfaces, in global coordinates, are defined as:

hC
i = AiAbearing2ih′′C

i

tCi = AiAbearing2it′′Ci

bC
i = AiAbearing2ib′′C

i

(39)

The moment n′ (cyl)
i applied in the journal body is the result, in the case of the cylindrical

clearance/bushing joint proposed here, of the transport of the force from point Ci to Pi , is:

n′ (cyl)
i = s̃′C

i AT
i f(cyl)

i (40)

where s′C
i = Abearing2is′′C

i is the vector of the position of point Ci with respect to point Pi in
the coordinates of body i. Similarly, the bearing transport moment due to moving the point
of application of force f(cyl)

j from point Cj to Pj , is evaluated as

n′ (cyl)
j = s̃′′C

j AT
j f(cyl)

j (41)

The contact search with the bearing must be done for the top circle of the bearing cylin-
drical surface, defined by Eq. (26) when bj = lj /2, and, at least, also for the lower circle
in the same surface. In general, it is better that the complete bearing cylindrical surface is
discretized by a finite number of contact patches, as seen in Fig. 4. The discretization of the
surface in this form easily accommodates surfaces of revolution for the bearing that are not
necessarily cylindrical. Let each of the N contact patch of the bearing cylindrical surface,
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Fig. 4 Discretization of the
surface of the bearing and its
contact with the cylindrical
surface of the journal

Fig. 5 Representation of force-displacement constitutive relations for: (a) Clearance with free-flight dis-
placement δc ; (b) Bushing with maximum compression of δb ; (c) Clearance with a free-flight displacement,
a bushing compression and ‘hard’ material deformation

with a length of lj /N , be represented by its mid-circle. The bearing cylindrical surface is
discretized by N circles, defined by

s′′C
k,j =

⎧⎪⎨
⎪⎩

Rj cos θj

Rj sin θj

(N−2k+1
2 )

lj

N

⎫⎪⎬
⎪⎭ , k = 1, . . . ,N (42)

Then the contact search problem is solved for each one of the circles, using Eqs. (25) through
(41), playing s′′C

k,j in Eq. (42) the role of s′′C
j in Eq. (26). The sum of all contributions of all

patches are accounted for in the vector of the bodies forces by using Eqs. (38) through (41).
Note that the constitutive force model must take it into account the discretization in contact
patches.

2.4.2 Clearance/bushing constitutive force models

The penalization forces for the clearance/bushing joints, defined by Eqs. (20) through (24)
require that proper constitutive relations for the continuous contact force models are used.
Here, the contact detection problem is solved independently for each strip of the bearing,
illustrated in Fig. 4. It is shown by Pereira et al. [41] that in the internal cylindrical contact
the Hertz elastic contact theory can still be applied. Therefore, any of the cylindrical contact
force models overviewed by Pereira et al. [39] can be applied to the problem in hand, within
the limitation inherent to each one of the models, identified in the referenced work.

In general, the penalization of displacements, or moments, is described by a force-
displacement relation as that depicted in Fig. 5(a). A known model, for spherical clearance
joints, is the contact force model proposed by Lankarani and Nikravesh [28], suitable for
low impact velocities in which local plasticity effects do not develop or are negligible, is
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given by

fnormal =
{

0 δ ≤ 0

f (c)(δ, δ̇) = 4E∗
3N

(
Rj Ri

�R
)1/2δn[1 + 3(1−c2

e )

4
δ̇

δ̇(−) ] δ > 0
(43)

where δ is evaluated using Eq. (37) and include E∗ = E/2(1 − ν2), which is the composite
modulus, assuming materials with similar elastic modulus, E, and Poisson coefficients, υ ,
and �R = Rj − Ri , is the radial clearance between the two contacting bodies, the pseudo-
penetration exponent n and the restitution coefficient ce dependent on the geometry and
material of the contacting surfaces. δ̇ is the velocity of indentation and δ̇(−) is the velocity
of indentation at the initial instant of contact. Note that in Eq. (43) the number of cylindrical
stripes that discretize the journal is N , shown in Fig. 4.

The Lankarani and Nikravesh contact force model (1994) provides a representation of
the damping coefficient present in the Hunt–Crossley model as hysteresis damping, which
in turn is related to the material properties and coefficient of restitution, leading to Eq. (43). It
must also be noted that ratio δ/δ̇(−) leads to numerical problems for very small velocities of
indentation at the start of contact, i.e., when δ̇(−) ≈ 0. In the computational implementation
of the Lankarani and Nikravesh model, or any other that has the dissipative part written in
the same form, the ratio δ/δ̇(−) = 1 anytime the penetration velocity δ̇ exceeds δ̇(−) or when
δ̇(−) ≈ 0.

Of practical interest to the modeling of the forces in cylindrical and revolute clearance
joints are the cylindrical contact force models. After a critical overview of the most com-
monly used cylindrical contact models Pereira et al. [39] concluded that all of them have
serious limitations on their range of application. As a result of this study, Pereira et al. [41]
proposed an enhanced cylindrical contact model suitable for the type of geometries and ma-
terials more commonly encountered in clearance joints. The cylindrical contact force model
is

fnormal = (a�R + b)LE∗

N�R
δn

[
1 + 3(1 − c2

e )

4

δ̇

δ̇(−)

]
(44)

in which

a =
{

0.965 for internal contact
0.39 for external contact

(45)

b =
{

0.0965 for internal contact
0.85 for external contact

(46)

n =
{

Y�R−0.005 for internal contact

1.094 for external contact
(47)

Y =
{

1.51[ln(1000�R)]−0.151 if �R ∈ [0.005,0.34954[ mm

0.0151�R + 1.151 if �R ∈ [0.34954,10.0[ mm
(48)

For internal contact �R = Rj − Ri and for external contact �R = Rj + Ri . The remaining
quantities in Eq. (44) are similar to those used in the Lankarani and Nikravesh model.

Note that the relative displacement refers, in this section, in generic terms to the axial
or radial displacements present in Eqs. (20) and (22), i.e., δ = δn or δ = δt , respectively, or
to the radial and axial displacements in Eqs. (13), (15) or (37). The same type of penaliza-
tion constitutive relation can be used for the angular misalignment or rotation appearing in
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Eqs. (17) or (19), for which δ = θam and δ = αar , respectively, provided that proper penal-
ization parameters are identified.

For bushing joints several models are available in the literature [3, 29, 38]. The common
approach is to penalize the relative displacement between two bodies by a constitutive force
relation that reflects the material response of the deformable media, such as that shown in
Fig. 5(b). The constitutive relations, obtained by experimental testing, detailed finite element
analysis, such as those proposed by Ambrosio and Verissimo [3] or analytical approaches,
are written in the form

fnormal = f (b)(δ, δ̇) = f (δ) + bδ̇ (49)

where f (δ) is the radial stiffness and b is the damping characteristics of the bushing. De-
pending on the material properties, including its strain-rate sensitiveness, and geometry the
relation expressed by Eq. (49) may be a nonlinear function of both relative displacement and
relative velocity.

Assume that a bushing element can only be compressed until a point after which it ei-
ther breaks or becomes excessively rigid. Afterwards, the relation between the force and
the displacement becomes similar to that of the dry contact model, expressed by Eq. (44),
for cylindrical contact. A unified formulation for joints with clearances and bushings is ex-
pressed by allowing an initial clearance on the joint, followed by a bushing loading relation
that is maintained until a maximum compression, after which dry contact starts. In order
to have a smooth numerical transition between the constitutive relations either a weighted
sum [16] or an exponential blending function [48] can be used, over a preset range. Using a
weighted sum blending function, the general constitutive relation for the clearance/bushing
penalization forces is

fnormal =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 δ ≤ δc

f (b)(δ1, δ̇) δc < δ ≤ δb

(δb+ε)−δ

ε
f (b)(δ1, δ̇) + δ−δb

ε
f (c)(δ2, δ̇) δb < δ < δb + ε

f (c)(δ2, δ̇) δ ≥ δb + ε

(50)

in which δ1 = δ − δc and δ2 = δ − δb , being the free-flight displacement δc , and the maxi-
mum bushing compression δb , shown in Fig. 5. Functions f (b)(δ1, δ̇), representing the bush-
ing normal force, and f (c)(δ2, δ̇), representing the ‘hard’ material contact force due to a
pure clearance joint, which appear in Eq. (50) are defined in Eqs. (49) and (43), or (44),
respectively. The blending displacement ε is a small number define by the user, for instance
ε = 0.01δb. The relative velocity between the two bodies connected by the joint, referred to
in Eqs. (43) through (50), is given in references [3, 16] for the different displacement/rotation
penalizations.

Although the modeling of friction forces in the clearance/bushing joints is not explicitly
described in this example, they can be included in the force contact model in the same way
they are in any contact application using a formulation with the nature of that presented in
this work. After evaluating the location of the contact points, the component of the relative
velocity between the contacting points along the tangent plane to the contacting surfaces
is easily obtained by subtracting the normal component of the relative velocity from the
total relative velocity. Then any selected friction force model can be applied [34], being the
friction force calculated in this form added to bodies force vectors gi and gj , depicted by
Eq. (24).
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Fig. 6 Kinematic joints with limits in their range of motion: (a) cylindrical joint with limits on its translation
displacement; (b) revolute joint with limits on its rotation range

2.5 Joint motion limits

Translation and cylindrical joints are, often, subject to limits on the relative translation mo-
tion between the two bodies, such as that pictured in Fig. 6(a). Revolute joints can also have
a limited range for the relative rotation between its two bodies, as the joint exemplified in
Fig. 6(b). The definition of the joint motion limits, for perfect kinematic joints or for clear-
ance/bushing joints, can now be handled as a penalization on the joint motion to which limits
are defined.

The penalization is achieved by including in the force vector of the bodies that share the
joint the appropriate force relation, i.e., one of the relations defined by Eqs. (20) through
(23). For instance, a perfect kinematic translation joint, with limits in the translation degree-
of-freedom, includes the following contributions to the system constraint equations and
force vector:

in constraint equations: Φ(t,5) = 0

in force vector:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fi = f(ad)
i

fj = −f(ad)
i

n′
i = AT

i s̃P
i fi

n′
j = AT

j s̃P
j fj

(51)

in which the range of motion is defined in Fig. 6(a) as δc . For a revolute joint with limits on
its rotation degree of freedom, as that shown in Fig. 6(b), the contributions for the constraint
equations and force vector are

in constraint equations: Φ(r,5) = 0

in force vector:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fi = 0

fj = 0

n′
i = n′ (ar)

i

n′
j = −AT

j Ain
′ (ar)
i

(52)

where the range of motion is defined in Fig. 6(b) as θc = θc1 + θc2. For a cylindrical joint
with limits on translation and rotation d.o.f. the contributions to the constraint equations and
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force vector are

in constraint equations: Φ(c,4) = 0

in force vector:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fi = f(ad)
i

fj = −fi

n′
i = AT

i s̃P
i f(ad)

i + n′ (ar)
i

n′
j = −AT

j s̃P
j f(ad)

i − AT
j Ain

′ (ar)
i

(53)

When the joint motion limits are hard stops the penalization of the relative motion is
defined only with the clearance part of the constitutive relation defined by Eq. (50), i.e., by
defining δb = δc and ε = 0. When the joint limits are defined with soft stops, such as the
bounce stops in the vehicle suspensions, all terms in Eqs. (49) through (53) must be defined
according to their physical characteristics.

3 Demonstrative applications

3.1 3D slider–crank mechanism

Consider the 3D rigid slider–crank mechanism depicted in Fig. 7, part of the library of multi-
body benchmark problems [35]. The mechanism consists of a crank AB of length 0.08 m,
a connecting rod BC of length 0.3 m, and a sliding block DE. The crank, connected to the
ground by revolute joint A, is driven from initial position θ = 0 rad with initial angular speed
of 6 rad/s. There is a spherical joint at B and a universal joint at C. The block is constrained
to the ground by a translation joint DE, allowing only its sliding displacement. All joints are
frictionless.

Three rigid bodies, plus the ground, are used to represent the 3D slider crank. A local
reference frame (ξ , η, ζ ) is rigidly attached to the center of mass of each body in such a way
that the axes are aligned with the principal inertia directions of the bodies. In this way, the
inertial tensor of the bodies is completely defined by the inertia moments Iξξ , Iηη and Iζζ .
The mass and the inertia properties of each body are defined in Table 1. The first column of
the table lists the reference numbers that identify the bodies in the model shown in Fig. 7.

The Cartesian coordinates and Euler parameters, which define, respectively, the initial
position of the center of mass and the orientation of the local frame of each body with respect
to the global reference frame (x, y, z), are defined in Table 2 according to the benchmark
problem specifications [35]. Also the initial Cartesian velocities, with respect to the global

Fig. 7 3D slider–crank
mechanism
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Table 1 Mass and moments of
inertia of rigid bodies of the
slider crank

ID Body Mass (kg) Inertia properties (kg/m2)

Iξξ Iηη Iζζ

0 Ground 1.00 1.0 1.0 1.0

1 Crank 0.12 1.0 × 10−4 1.0 × 10−4 1.0 × 10−5

2 Connecting rod 0.50 4.0 × 10−4 4.0 × 10−3 4.0 × 10−3

3 Sliding block 2.00 1.0 × 10−4 1.0 × 10−4 1.0 × 10−4

Table 2 Initial position and velocity of rigid bodies of the slider crank

ID Initial position (m) Initial orientation Initial velocities (m/s) Angular velocities (rad/s)

x0/y0/z0 e1/e2/e3 ẋ0, ẏ0, ż0 ωξ /ωη/ωζ

0 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000

1 0.000/0.100/0.160 0.000/0.000/0.000 0.000/−0.240/0.000 6.000/0.000/0.000

2 0.100/0.050/0.100 −0.210/0.397/−0.094 0.120/−0.240/0.000 −1.600/−1.073/1.431

3 0.200/0.000/0.000 0.000/0.000/0.000 0.240/0.000/0.000 0.000/0.000/0.000

frame, and the angular velocities, defined with respect to the local reference frames (ξ , η, ζ )
are specified in Table 2.

Five scenarios are considered here to demonstrate the methodology presented in this
work. First, the dynamic behavior of the 3D slider crank is analyzed considering all its
joints as perfect, i.e., considering the classical kinematic formulation [37]. The second and
third scenarios consider that the mechanism has an imperfect spherical joint and an imper-
fect revolute joint, respectively, with clearances of 0, 10−3, 10−1 and 1 mm. Notice that
when the joints have clearances of 0 mm, it means that, although these are perfect joints,
as there are no gaps between the ball/journal and the socket/bearing, they are still modeled
as clearance/bushing joints. In all cases the clearance sizes refer to radial direction, for the
spherical joints, and to axial and radial displacements, for the revolute joints.

The contact force model with hysteresis damping proposed by Lankarani and Nikravesh
[28], in Eq. (43), is considered for the imperfect spherical kinematic joints while the cylin-
drical contact model, in Eq. (44), is used for the revolute joints. It is assumed a stiffness
coefficient K = 5.0 × 106 N/m, an exponent of the Hertz contact force model n = 1.5 and a
restitution coefficient e = 0.75. The MUltiBOdy Dynamic analysis program MUBODyn [5]
is used to perform the dynamic analyses of the scenarios described here. The differential and
algebraic equations of motion are numerically integrated with the Gear multistep integration
algorithm [21] and a sparse matrix solver [13] is used for the system of linear equations. The
time-stepping physical control procedure proposed by Flores and Ambrosio [17] is applied
to detect the start of contact. The dynamic analyses are carried out for 5 s simulation time.

The time histories of the slider block position and crank angle, for all scenarios with
null or small spherical clearances, are presented in Figs. 8 and 9, respectively. The results
show that, for the perfect kinematic joints, the amplitude of the slider motion is constant, as
there is no friction or energy dissipation in the joints due to the contact, being the results
coincident with those of the benchmark [35]. When the clearance in the spherical joint starts
to increase it is observed that not only the slider position but also the crank angle start to
have some delay with respect to that of the benchmark in virtue of the energy dissipation
that occurs in the clearance and bushing joints. For longer simulations the energy dissipated
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Fig. 8 Slider position of the slider–crank model with spherical clearance joint for: (a) null or small clear-
ances; (b) large clearances

Fig. 9 Crank angle of the slider–crank model with spherical clearance joint for: (a) null or small clearances;
(b) larger clearances

Fig. 10 Joint reaction force in the spherical joint (X component) for: (a) null or small clearances; (b) larger
clearances

eventually leads to a point in which the crank is unable to complete a rotation and starts to
work as a pendulum.

The joint reaction forces observed in the spherical joint, along X, are displayed in Fig. 10
for the cases with perfect kinematic joints and clearance joints. It is observed that large
peaks in the force develop at the instants that the slider reaches its end of range, or end of
the stroke, and inverts the direction of the motion. For perfect spherical joints modeled either
as spherical kinematic constraints or as imperfect joints with null clearance the response is
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Fig. 11 Slider–crank model with revolute clearance joint: (a) slider position; (b) crank angle

Fig. 12 Joint reaction force for the revolute joint slider–crank models with perfect and with clearance revo-
lute joint: (a) force component X; (b) force component Z

rather smooth, i.e., no oscillations in the reaction force are observed. However, when the
clearance increases the joint reaction force exhibits oscillations during the slider mid-stroke,
being the amplitude of the force oscillations higher as the clearance increases.

Selected results for the slider–crank models with a clearance revolute joint are presented
in Fig. 11 through Fig. 13. The results, depicted in Fig. 11(a) show that, as the clearance in
the revolute joint starts to increase, the time at which the slider reaches its end of stroke is
increasingly delayed. For a clearance of 1 mm it is observed, in Fig. 11(b), that the crank
angle is unable to develop more than two revolutions, after which the crank starts to oscillate
about its static equilibrium position. The effect of the energy dissipation due to the inclusion
of the non-elastic restitution parameter in the contact force model is visible when comparing
the responses of the models with a null clearance revolute joint with and without damping.
It is visible in Fig. 11(a) and (b) that just the existence of the damping favors that the slider
oscillation experiences an increasing delay reaching its end of stroke.

The joint reaction forces observed in the revolute joint, along X and Z, are displayed
in Fig. 12 for the cases with perfect kinematic joints and revolute clearance joints. Just as
for the cases in which the models considered the spherical clearance joints, for the models
with perfect revolute joints modeled either as revolute kinematic constraints or as imperfect
joints with null clearance no oscillations in the reaction force are observed. However, when
the clearance increases the joint reaction force exhibits oscillations, mostly during the slider
mid-stroke, being the amplitude of the force oscillations higher as the clearance increases.

It is interesting to observe the effect of the damping, due to the use of non-elastic restitu-
tion parameters in the contact force models, on the joint reaction forces. The joint reaction
forces in the revolute joint, along X and Z, are displayed in Fig. 13 for the model with a
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Fig. 13 Joint reaction force for the revolute joint slider–crank models with perfect and with clearance revo-
lute joint with and without damping in the contact model: (a) force component X; (b) force component Z

Fig. 14 Triple pendulum with
joint limits

null clearance of the revolute joint. It is clear that, if no damping is considered, the oscilla-
tions in the contact force develop mostly as a result of the slider reaching its end of stroke,
which enhances the impact of the journal and bearing, leads to alternate periods of relative
free-flight motion and contact following motions.

The presence of hysteresis damping in the normal contact model of the clearance joint
eliminates the oscillations of the joint reaction forces observed in Fig. 13. It has been ob-
served in some cases that the friction forces, when present, also mitigate the oscillatory be-
havior observed in the contact joint [4]. The use of different numerical integrator schemes,
with fixed or variable time steps or with internal damping can also mask, or emphasize, the
observed oscillatory behavior. In any case, the clearance joint behavior for a null clearance
can be expected to be similar to that of a perfect kinematic joint not only in terms of kine-
matic behavior, as observed on the displacements depicted by Figs. 8, 9 or 11, but also in
terms of its kinetic response. Therefore, not only the source of the large amplitude oscilla-
tions but also the numerical methods used to handle the dynamics of the problem are worth
being investigated in future work.

3.2 Triple pendulum with joint limits

Consider the triple-pendulum mechanism depicted in Fig. 14. Body 1, of length 0.6 m, is
constrained to the ground by a revolute joint with a horizontal axis. Body 2 has also a length
of 0.6 m and is linked to body 1 by the vertical cylindrical joint with limits on its translation
displacement. Body 3, of length 0.3 m, is connected to body 2 by the revolute joint with
limits on its rotation range, with an orientation of 45◦ with respect to the Z axis. The bodies
have no initial velocity being acted by gravitational forces only. All joints are frictionless.
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Table 3 Mass, moments of inertia, and initial position and orientation of rigid bodies of the triple pendulum

ID Body Mass (kg) Inertia properties (kg/m2) Initial position (m) Initial orientation

Iξξ /Iηη/Iζζ x0/y0/z0 e1/e2/e3

0 Ground 1.00 1.0/1.0/1.0 0.0/0.0/0.0 0.0/0.0/0.0

1 Body 1 0.10 3.0 × 10−3/3.0 × 10−2/3.0 × 10−2 0.3/0.0/0.0 0.0/0.0/0.0

2 Body 2 0.04 1.2 × 10−3/1.2 × 10−2/1.2 × 10−2 0.9/0.0/0.0 0.0/0.0/0.0

3 Body 3 0.02 0.6 × 10−3/0.6 × 10−2/0.6 × 10−2 1.5/0.0/0.0 −0.383/0.0/0.0

The mass and the inertia properties of the bodies that compose the triple-pendulum mech-
anism are defined in Table 3. The reference numbers in the first column of the table identify
the bodies in the model shown in Fig. 14. The Cartesian coordinates that define the initial
position of the center of mass of each body are also defined in Table 3, together with the
Euler parameters that express the orientation of the body-fixed frames (ξ , η, ζ ) with respect
to the global reference frame (x, y, z).

Two scenarios are considered to demonstrate the joint motion limits methodology. Both
consider all joints modelled by using kinematic constraints in which limits in the relative
motion between the joined bodies are included. Limits of θc1 = θc2 = 45◦ are imposed on
the rotation range of the revolute joint connecting bodies 2 and 3, as shown in Fig. 14. The
triple pendulum has a revolute joints between bodies 0 and 1 and a cylindrical joint, between
bodies 1 and 3 with relative translation limits δc1 = δc2 = 0.25 m, as represented in Fig. 14.

In the first scenario the penalization force is described by the Lankarani and Nikravesh
model (1994) being K = 1.0 × 105, n = 1.5 and e = 0.75 for the translational joint stops of
the cylindrical joint and K = 1.0 × 103 for the rotation joint stops. In the second scenario
a modified Kelvin–Voigt viscoelastic contact model [16, 19] is used in both joint stops,
formulated as,

fnormal =

⎧⎪⎨
⎪⎩

Kδce δ̇ ≤ 0

Kδ[ce + (1 − ce)(3r2 − 2r3)] 0 < δ̇ < v0

Kδ δ̇ ≥ v0

(54)

with the ratio between the penetration velocity and the penetration velocity tolerance being
r = δ̇/v0. In this case the penalty stiffness K is equal to that in the first scenario, the co-
efficient of restitution is ce = 0.01 and the penetration velocity tolerance is v0 = 0.1 m/s.
Note that the modified Kelvin–Voigt normal contact force model includes the penetration
velocity tolerance to smooth the discontinuity in the contact force in the transition between
compression and restitution.

The dynamic analyses are carried out for 4 s simulation time. Snapshots representative
of the motion of the triple pendulum are depicted in Fig. 15.

The behavior of the joint stops and contact forces that develop are of interest to under-
stand of the methodology proposed here. The time history of the relative translation between
bodies 1 and 2, the corresponding joint stops contact forces, and the relative rotation be-
tween bodies 2 and 3, and respective joint stops moments, are depicted in Fig. 16, using the
Lankarani and Nikravesh contact force, and in Fig. 17, using the Kelvin–Voigt contact force
model.

As expected the contact with the end stops in the pendulum model in which the Lankarani
and Nikravesh contact force model is used have a lower energy dissipation and do not present
any residual deformation. Therefore, the bodies rebound from contact when a joint stop is
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Fig. 15 Kinematics of the triple pendulum, using the Lankarani and Nikravesh contact force model, with
joint stops in key positions: (a) Sequence of snapshots; (b) Forward swing (1st); (c) Backward swing (1st)

Fig. 16 Relative translation between bodies 1 and 2, with the corresponding joint stops contact forces, rela-
tive orientation between bodies 2 and 3, with the joint stops moments, in which the joint limit forces/moments
use the Lankarani and Nikravesh force model

reached, eventually leading the joint displacement, or rotation, to be such that soon after the
contact takes place with the joint stop in the other side of the joint.

When the Kelvin–Voigt contact model is used, with a residual restitution coefficient
value, not only there is an appreciable energy dissipation during the contact but also there is
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Fig. 17 Relative translation between bodies 1 and 2, with corresponding joint stops contact forces, and
relative orientation between bodies 2 and 3, with respective joint stops moments, in which the joint limit
forces/moments use the Kelvin–Voigt force model

a residual deformation, as seen in Fig. 17 in which the contact deformation in the cylindrical
joint translation stops becomes permanent. For the rotation stops the same tendency for the
permanent deformation during contact exists. It is only due to the gravitational acceleration
that the body 3 tend to rotate with respect to body 2 bringing the joint out of contact with its
end stops. It is also observed that while for the model in which the Lankarani and Nikravesh
contact force is used the amplitude of the pendulum swing decreases slightly in each period,
for the model using the Kelvin–Voigt contact force the amplitude of the pendulum swings
decreases very quickly in each following period. Actually, for the scenario with the Kelvin–
Voigt contact with null restitution coefficient the swing amplitude decreases there are no
more contact events with any of the joint stops, remaining basically constant afterwards as
no more energy dissipative events take place. This behavior is shown in Fig. 18 in which
the angular velocity of body 1 is displayed together with the relative displacements and
orientations of bodies connected with joints with joint stops.

4 Conclusions

The work now presented proposes a common framework for the formulation of common
kinematic joints and mechanical joints with clearances and/or bushings, with or without
joint stops. This formulation is novel in the sense that it not only unifies the different vector
quantities required for the formulation of the joints as kinematic constraints or as contact
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Fig. 18 Response of the triple-pendulum model with the Kelvin–Voigt contact model, with a null restitution
coefficient, for a long simulation: Angular velocity of body 1; Relative translation between bodies 1 and 2;
Relative orientation between bodies 2 and 3

force elements but also because the input data for each type of approach is composed with
a common set of topological information. This approach leads to the ability to have mixed
descriptions of a joint in which some relative motions are prevented by kinematic constraints
while others are penalized by contact force elements, as for instance in the case of the joint
stops. The formulation is demonstrated by studying two mechanical systems, a spatial slider
crank and a triple pendulum, that include some of the features that can be represented by the
formulations proposed here. In the process of presenting the proposed formulation a new
model for contact detection of the pairs of cylindrical clearance joints is developed.
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The study of two demonstrative mechanisms allows verifying the use of clearance/
bushing joints with extremely small clearances have a kinematic behavior very similar to
that of the mechanisms modeled with perfect kinematic joints, as expected. The size of the
clearances and their contact mechanics becomes determinant in the mechanism behavior for
large clearance sizes but is almost unobservable for very small clearances, i.e., for clear-
ances generally associated with precision machining tolerances. The energy dissipation, not
existing in mechanisms with perfect kinematic joints, is represented in clearance/bushing
joints via the contact force models used. Actually, joints with larger clearances and with
contact models, even with contact models in which the energy dissipation is small, lead to a
behavior of the mechanism in which the continued motion is not possible without external
actions applied to the system, as shown in the case of the spatial slider crank demonstrates
in which the crank is unable to continue having a complete 360° rotation after some revo-
lutions. One of the aspects of the formulation of the clearance joints concerns the penalty
factor for the contact force law which is of primary importance. When the contact stiffness is
underestimated the differences in mechanical behavior between mechanisms with different
clearance sizes becomes difficult to appraise. Therefore, it is recommended to use penalty
factors that result from elastic contact theories, such as those based on Hertzian contact or
obtained via experimental identification.

In the process of testing the new formulations proposed here no evidence that the compu-
tational time required for the simulations increase when clearance/bushing joints are used in
the model instead of the perfect kinematic joints. In one hand the lower number of equations
used to describe the constrained equations of motion, as the number of constraint equations
decreases leads to lower computational times. On the other hand the contact models with
less energy dissipation, used here, introduce higher frequency contents in the dynamic re-
sponse that require a reduction on the variable time-step integrators, which lead to smaller
time steps and higher computational costs, while the lack of constraint violations associated
with these joints removes an important dynamic contribution to the increase of higher fre-
quencies in the system dynamic response, thus removing this contributions for the decrease
their time step in virtue of such violations. Future studies should be developed to clarify the
relative computational efficiency of either of the modeling approaches, i.e., the use of kine-
matic perfect joints versus the use of clearance/bushing joints in the models of multibody
systems.
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