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Abstract The clearance joint is one of the important factors which influence system per-
formance and dynamic characteristics. Traditional studies are mainly focused on the planar
single degree of freedom (DOF) simple mechanism with one joint clearance, only few re-
searchers investigated mechanisms with more than one DOF considering more than one
clearance joint as an object, and few studies systematically analyzed nonlinear character-
istics of the clearance joints. This article is devoted to analyzing the effect of multiple
clearances and different friction models on the dynamic behavior of a planar multi-DOF
mechanism. The 2 DOFs nine bar planar mechanism is selected as the research object. The
dynamic model of the planar mechanism with two revolute clearances is built by considering
Lagrange equation. The influence of LuGre model and modified Coulomb friction model on
the dynamic response of the nine bar mechanism is studied. The effects of the number of
clearance joints, clearance values, driving speeds and friction coefficients on the dynamic
responses of the mechanism are analyzed. The chaos phenomenon existing in the clearance
revolute joints is identified by phase diagram, Poincaré map and largest Lyapunov exponent
(LLE). Bifurcation diagrams of revolute clearance joints with changing clearance values,
driving speeds and friction coefficients are also drawn. A virtual prototype model of 2 DOF
nine bar mechanism containing two revolute clearances is built by using ADAMS software
to verify the correctness of the numerical results. This research can provide theoretical basis
for grasping the dynamic behavior of the planar rigid-body mechanism with clearances and
identifying chaos of clearance joints.
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1 Instruction

With the development of the mechanical products built for heavy load, high speed and high
precision, the requirement for dynamic performance of mechanism is becoming higher and
higher [1, 2]. Due to the manufacturing tolerances, material deformations or wear, these
joints are not perfect and have some clearances. The clearance joint changes the movement
performance of the mechanical system, which causes a deviation between the actual move-
ment and the anticipated movement of the mechanism [3, 4]. In addition, the clearance of
the joint brings violent collisions between the elements of the motion pair, it makes me-
chanical system response chaotic and unpredictable instead of being periodic and regular
[5, 6]. Therefore, it is necessary to study the dynamic behavior of multi-link mechanism
with multiple clearances.

The effects of a joint clearance on the dynamic response of a mechanical system have
been studied by many researchers over the last few decades [7–10]. However, most previous
studies only focused on the planar 1-DOF simple mechanism with one revolute clearance.
Research on multi-link mechanisms with multiple clearances is rare. And comparative anal-
yses of the influence of LuGre model and modified Coulomb friction model on dynamic
response of mechanism are even scarcer. Bai et al. [11, 12] explored the dynamic behav-
ior of planar mechanical systems containing a clearance joint. The contact force model of
the clearance joint was built by adopting the novel nonlinear hybrid continuous contact
force model. Tan et al. [13] built the motion differential equations by using Newton–Euler
method. Then, the Baumgarte stabilization approach has been utilized to enhance numerical
stability. The influence of different clearance values on the dynamic response was also stud-
ied. Ma et al. [14] presented a general procedure for dynamic modeling and simulation of
a slider–crank mechanism considering multiple revolute clearances. The validity of the pro-
posed method has been confirmed through a comparison with ADAMS simulation results.
Megahed et al. [15] reported the effect of revolute joint clearances on the dynamic perfor-
mance of a slider–crank mechanism by using ADAMS. Muvengei et al. [16, 17] discussed
the behavior of a slider–crank mechanism containing multiple clearance joints. A stick–slip
friction force model was utilized in clearance joints. Gummer et al. [18] presented a method
to simulate the slider–crank mechanism with one clearance joint in RecurDyn. A detailed
research of already existing contact, damping and friction force model and different methods
of establishing revolute pair model in RecurDyn has been analyzed. Marques et al. [19] put
forward a new formulation to build spatial revolute joints with axial and radial clearances.
Equations of motion that govern the dynamic response of the slider–crank mechanism have
been established by using the Newton–Euler method. Marques et al. [20] presented an inves-
tigation on the dynamic response of a spatial four bar mechanism with spherical clearance
joints including friction, and studied the influence of various friction force models, clearance
values and friction coefficients. Wang et al. [21] researched the dynamic characteristics of
the slider–crank mechanism with clearance by adopting the novel nonlinear contact force
model, and the modified Coulomb friction model has been utilized to analyze the friction of
clearance joint. Reis et al. [22] introduced the development of the dynamics for the slider–
crank mechanism with a revolute joint clearance between the piston and pin. The dynamic
equations of the mechanism were obtained by using Lagrange method. The influence of
friction, contact and lubrication at the clearance elements was investigated in this research.
Geng et al. [23] proposed a new time-dependent reliability assessment methodology with
insufficient uncertainty information to quantify uncertainty influence of the clearances and
dimensions on the kinematic performance. Marques et al. [24] offered a general and com-
prehensive method to eliminate constraints violation at the position and velocity levels. The
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conservation of total energy and computational efficiency were studied and compared using
standard Lagrange multipliers’ method, Baumgarte stabilization method, augmented La-
grangian formulation, and so on. Bai et al. [25] presented a design optimization method
to reduce undesirable vibrations of the dual-axis driving mechanism containing clearances,
which was solved by a Generalized Reduced Gradient algorithm. Xu et al. [26] discussed
the influence of the clearance joint on the dynamic response of the 2 DOFs pick-and-place
planar mechanism.

As is well known, chaos phenomenon often occurs at the clearance joint, which has an
important effect on the dynamic behavior of the system. Nevertheless, research identifying
chaotic phenomena of the clearance joints for a planar multi-link mechanism is rare. Bifur-
cation research of revolute clearance joints with different changing variables in a multiple
DOF complex mechanism containing a multiple clearance joint is even scarcer. In recent
years, scholars have carried on the discussion and research on the nonlinear characteristics
of the mechanism with clearances [27, 28]. Farahan et al. [29] researched the nonlinear dy-
namic behavior of the four bar mechanism containing clearance, which appears between
the connecting rod and rocking bar. Bifurcation analysis was conducted by changing the
clearance value corresponding to different crank speed. Rahmanian et al. [30] studied the
nonlinear dynamic behavior of the slider–crank mechanism system with revolute clearance,
which is a non-autonomous system. The Poincaré map is the criterion that is used to detect
chaos phenomenon. The influence of different clearance values on the bifurcation analysis
is investigated by looking at different velocity values of the driving component. Yaqubi et al.
[31] analyzed the characteristics of the slider–crank mechanism containing single and multi-
ple clearances. The nonlinear dynamic of the mechanical system was addressed by utilizing
bifurcation diagrams and Poincaré maps. The influence of friction on nonlinear dynamic
behavior of the mechanism has also been researched. Nan et al. [32] developed a nonlinear
model of the rotor-bearing with internal clearance between the rolling elements and races,
and carried out the nonlinear dynamic analysis. With the help of the bifurcation diagrams,
Poincare maps and shaft center trajectory, the effects of the rotating velocity, clearance val-
ues and stiffness on the dynamic behavior were researched.

Traditional studies are mainly focused on investigating the planar simple mechanism
with one revolute clearance by using modified Coulomb friction model; few researchers
studied 2 DOF planar multi-link mechanisms with multiple revolute clearances by using
both modified Coulomb friction and LuGre models, and few studies systematically ana-
lyzed nonlinear characteristics in the revolute clearance joints of planar multi-mechanism
by employing phase diagram, Poincaré map, LLE and bifurcation diagram. Thus, the main
goal of this paper is to study the effects of multiple revolute clearances and different friction
models (such as LuGre and modified Coulomb friction models) on the dynamics response
of a planar multi-DOF mechanism; we want to grasp the nonlinear characteristics of the
revolute clearance joints by using phase diagram, Poincaré map, LLE and bifurcation dia-
grams. A 2-DOF nine bar planar mechanism is selected as the research object. The dynamic
model of a 2 DOF nine bar planar mechanism with two revolute clearances is built by using
Lagrange equation. The influence of LuGre and modified Coulomb friction models on dy-
namic response of the nine bar mechanism is studied. The effects of the number of clearance
joints, clearance values, driving speeds and friction coefficients on the dynamic responses of
the mechanism are analyzed. The chaos phenomenon existing in revolute clearance joints is
identified by the phase diagram, Poincaré map and LLE in details. Bifurcation diagrams of
revolute clearance joints with changing clearance values, driving speeds and friction coeffi-
cients are also drawn. The arrangement of this paper is as follows. In Sect. 2, the joint clear-
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ance and contact force models are both established. In Sect. 3, the nonlinear dynamic model
nine bar mechanical system with two revolute clearance joints is built by using Lagrange
equation. In Sect. 4, the influence of LuGre and modified Coulomb friction models on dy-
namic response of the nine bar mechanism is studied. The effects of the number of clearance
joints, clearance values, driving speeds and friction coefficients on the dynamic response of
the mechanism are analyzed. In Sect. 5, the nonlinear characteristics of the clearance joints
are investigated systematically. Chaos phenomenon existing in the clearance joints is iden-
tified through the phase diagram, Poincaré map and LLE. Bifurcation diagrams obtained by
changing clearance values, driving speeds and friction coefficients are also drawn.

2 Modeling of the revolute joint with clearance

A planar revolute joint with clearance is depicted in Fig. 1. There are two different cases of
contact: When there is no contact between the bearing and shaft, the contact force becomes
zero. When a contact or impact occurs, the contact force will exist, and it can be divided
into the normal force Fn and tangential force Ft, as shown in Fig. 2. Both cases could be
expressed as follows: {

F = 0 if δ < 0,

F = Fn + Ft if δ ≥ 0,
(1)

where δ represents penetration depth. According to the contact condition, δ could be ex-
pressed as

δ = e − c (2)

where e is the eccentricity of the shaft center relative to the bearing center, its value is√
x2 + y2, x and y are vertical and horizontal displacement of shaft’s center relative to

Fig. 1 Revolute joint with
clearance

Fig. 2 Joint contact forces
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the bearing, respectively; c is the clearance size, its value is R1 − R2, where R1 and R2

respectively represent the radii of the bearing and shaft. When δ is less than 0, there is no
contact between the bearing and shaft, that is, we have a free flight mode. When δ is 0, the
shaft and bearing are in permanent contact, that is, in continuous contact mode. When δ is
greater than 0, there is contact between the shaft and bearing, that is, we have impact mode
[40].

2.1 The normal force model

Herz and Goldsmith contact force models are both pure elastic contact force models, which
do not consider energy loss. Kelvin–Voigt contact force model is suitable for contact situ-
ation with very small material damping. A contact force model put forward by Lankarani
and Nikravesh is suitable for general mechanical contact collisions with high coefficient of
restitution, especially when the energy dissipation is relatively small [41]. And as a nonlin-
ear viscoelastic model, the L–N model conforms to experimental results well, and applica-
tion of this model is more efficient when the restitution coefficient is close to unity. This
model is also straightforward for a numerical integration algorithm. In order to consider en-
ergy loss during the collision process, the Lankarani–Nikravesh model is used in this paper
[33–35]:

Fn = Kδn + Dδ̇ (3)

where K is a stiffness parameter, and D is a hysteresis damping coefficient; n is a con-
stant depending on material properties of contact surfaces; δ̇ represents penetration velocity,

δ̇ = xẋ+yẏ√
x2+y2

.

The stiffness parameter K is given by

K = 4

3π(σ1 + σ2)

(
R1R2

R2 + R1

) 1
2

(4)

where σ1 = (1 − ν2
1 )/(πE1), σ2 = (1 − ν2

2 )/(πE2), ν1, ν2 respectively represent Poisson’s
ratios of bearing and shaft; E1, E2 represent the elastic moduli of the bearing and shaft,
respectively. The radius is negative for the concave surfaces and positive for the convex
surface.

The hysteresis damping coefficient D is given as

D = 3K(1 − c2
e )δ

n

4δ̇(−)
(5)

where ce denotes the recovery coefficient, δ̇(−) is the initial impact velocity.

2.2 The tangential force model

An application of the original Coulomb’s friction law in a general purpose computational
program may lead to numerical difficulties because it is a highly nonlinear phenomenon
that may involve switching between sliding and stiction conditions. In order to avert such
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difficulties, Ambrosio presented a modification for the Coulomb’s friction law, which is used
in [36–38], namely

Ft = −cf cdFn

vt

|vt | (6)

where cf represents the friction coefficient, while cd represents the dynamic correction co-
efficient given by

cd =

⎧⎪⎪⎨
⎪⎪⎩

0, |vt | < v0,

|vt |−v0
v1−v0

, v0 ≤ |vt | ≤ v1,

1, |vt | > v1,

(7)

where v0 and v1 represent the limit values of a given velocity.
LuGre model was proposed by Canudas de Wit et al. and this model is capable of cap-

turing Stribeck and stiction effects [16, 17, 36]. Because the normal contact force could be
obtained from the contact force models as shown in Eq. (3), according to classical definition,
the friction can be expressed as

Ft = μFn. (8)

The instantaneous coefficient of friction μ is viewed as a function of tangential velocity
and an internal state z in the LuGre friction model, which is defined as

μ = σ̄0z + σ̄1ż + σ̄2vt (9)

where σ̄0 is bristle stiffness, σ̄1 is the microscopic damping coefficient, and σ̄2 is the viscous
friction coefficient.

The evolution differential equation for the average bristle deflection is

ż = dz

dt
= vt − σ̄0|vt |

μk + (μs − μk)e
−| vt

vs
|γ z (10)

where μk is the coefficient of kinetic friction, which is a measure of the Coulomb friction
force, and μs is the coefficient of static friction, which is a measure of the stiction friction
force.

3 Dynamic modeling of the nine bar mechanism with two revolute
clearances

A nine bar mechanism is composed of nine sections which are the frame, crank 1, link 2,
link 3, crank 4, rocking-bar 6, triangular panel 7, link 8, and slider 9. Link 5 is a part of the
frame. The mechanism has 2 DOF, cranks 1 and 4 are driven by two motors. A structure
diagram of the nine bar mechanism is shown in Fig. 3.

In the model, crank 1 and link 2 are connected by a clearance revolute joint which is
denoted by A, while another clearance revolute joint, denoted by B , is utilized to connect
crank 4 and link 3. Locally enlarged drawings of A and B correspond to A′ and B ′ in Fig. 3.
Motion pairs of the mechanism are composed of revolute pairs and translational pair; among
them, the number of revolute pairs is the largest. Due to the two cranks, which are driving
components, being directly driven by the motors, the clearances at A and B can better reflect
the effect of clearances on the dynamic behavior.
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Fig. 3 Nine bar mechanism with two clearances

3.1 Kinematic modeling of the nine bar mechanism with revolute clearances

When the mechanism has two revolute clearances, the closed equations are as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1 cos θ1 + L2 cos θ2 + x1 = L5 + L4 cos θ4 + L3 cos θ3 + x2,

L1 sin θ1 + L2 sin θ2 + y1 = L4 sin θ4 + L3 sin θ3 + y2,

L1 cos θ1 + x1 + L2 cos θ2 = L11 cos θ11 + L6 cos θ6 + L71 cos θ7,

L1 sin θ1 + y1 + L2 sin θ2 = L11 sin θ11 + L6 sin θ6 + L71 sin θ7,

L6 cos θ6 + L72 cos(θ7 + β) + L8 cos θ8 + S9 = S0,

L6 sin θ6 + L72 sin(θ7 + β) + L8 sin θ8 = 0.

(11)

According to the coordinate perturbation approach [39], all rotation angles of the mech-
anism and displacement of the slider with clearances can be regarded as having a small
disturbance value added to the normal value:{

θi = θi0 + 	θi

S9 = S90 + 	S9

(i = 2,3,6,7,8) (12)

where θi0 (i = 2,3,6,7,8) and S90 represent the rotation angle of each member and the
displacement of slider 9, when the mechanism is without clearances, respectively.

The velocity and acceleration models of the nine bar mechanism with revolute clearances
are as follows: {

θ̇i = θ̇i0 + 	θ̇i

Ṡ9 = Ṡ90 + 	Ṡ9

(i = 2,3,6,7,8), (13)

{
θ̈i = θ̈i0 + 	θ̈i

S̈9 = S̈90 + 	S̈9

(i = 2,3,6,7,8) (14)

where θ̇i0 (i = 2,3,6,7,8) and Ṡ90 represent the rotation angle velocity of each mem-
ber and the velocity of slider 9, when the mechanism is without clearances, respectively;
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θ̈i0 (i = 2,3,6,7,8) and S̈90 represent the rotation angle acceleration of each member and
the acceleration of slider 9, when the mechanism is without clearances, respectively.

3.2 Dynamic equation modeling of the nine bar mechanism with revolute
clearances

For each revolute clearance joint, two kinematic constraints will be removed, which are the
vertical and horizontal displacements of the shaft’s center. Therefore, when the mechanism
is complemented with two revolute clearances, the whole mechanism has 6 DOF.

According to Lagrange equation, the dynamic model of the nine bar mechanism with
clearances is given by

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk

+ ∂U

∂qk

= Qk (k = x1, y1, x2, y2,1,4) (15)

where T ,U,Qk represent the kinetic energy, potential energy and general force, respec-
tively; qk represents generalized coordinates. The corresponding variables are x1, y1, x2, y2,

θ1 and θ4.
The expression of the kinetic energy of the mechanism can be expressed as

T = 1

2

9∑
i=1

i �=1,4,5,6

miv
2
si + 1

2

9∑
i=1

i �=5,9

Ji θ̇
2
i . (16)

The potential energy of mechanism can be written as

U =
9∑

i=1
i �=5

migxsi (17)

where xsi represents the centroid coordinate in the X direction of component i.
The generalized force of the system can be expressed as

Qk =
9∑

i=1
i �=5

(
F̄i

∂ri

∂qk

+ M̄i

∂θi

∂qk

)
(18)

where F̄i is the external force and M̄i is the external torque acting on component i; ri is the
position vector of body i.

Equations (16), (17) and (18) are substituted into Eq. (15), and the second-order nonlinear
differential equations (see Eq. (19)) with variable coefficients are derived:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẍ1 = f1(t, x1, y1, x2, y2, ẋ1, ẏ1, ẋ2, ẏ2),

ÿ1 = f2(t, x1, y1, x2, y2, ẋ1, ẏ1, ẋ2, ẏ2),

ẍ2 = f3(t, x1, y1, x2, y2, ẋ1, ẏ1, ẋ2, ẏ2),

ÿ2 = f4(t, x1, y1, x2, y2, ẋ1, ẏ1, ẋ2, ẏ2).

(19)

Equation (19) derived in the previous section contains four second order nonlinear equa-
tions. According to Eq. (2), a negative value of the penetration depth δ means that there is no
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contact between the bearing and shaft. Otherwise, a positive value of the penetration depth δ

means that there is contact between the bearing and shaft [8]. Therefore, if δ(tn)δ(tn+1) ≤ 0,
δ(tn) < 0 and δ(tn+1) > 0, and contact occurs between the two discrete times, tn and tn+1,
and the penetration velocity at moment tn+1 is the initial impact velocity δ̇(−) [40]. It is sup-
posed that the shaft and bearing have been in contact mode for a long time, when the mode
of the shaft and bearing changes from the free flight mode to the impact mode at the be-
ginning of this long contact process, the collision speed at this moment is the initial impact
velocity δ̇(−). Since the equations of the system are complicated, it is almost impossible to
solve them analytically. Thus, in order to ensure the efficiency and accuracy of the calcula-
tion, the Runge–Kutta method is utilized which converts the four second-order differential
equations of motion into eight first order differential equations through MATLAB program-
ming. The core i7-4700 CPU is used for the simulation calculation. The integration step
length is 10−3 s. The relative error is set as 10−6.

4 Dynamic response of multi-link mechanism with two revolute
clearances

4.1 System parameters of the nine bar mechanism

The system parameters of the 2 DOF nine bar mechanism are depicted in Tables 1, 2 and 3.

4.2 The influence of different friction models on the dynamic response of the nine
bar mechanism

The driving speeds of the two cranks are set as ω1 = −2.5π(rad/s),ω4 = 2.5π(rad/s), the
clearances of joints A and are both set as 0.5 mm. In order to investigate the difference of
the friction models, the influence of the modified Coulomb friction and LuGre models on
the dynamic response of the nine bar mechanism is researched. The modified Coulomb’s

Table 1 Dimensions and mass properties for the 2 DOF nine bar mechanism

Component
length (m)

Crank 1 Link 2 Link 3 Crank 4 Link 5 Link 6 Triangular panel 7 Link 8 Slider 9

L1 L2 L3 L4 L5 L6 L71 L72 L73 L8

0.045 0.326 0.497 0.095 0.430 0.230 0.045 0.326 0.497 0.095 –

Ls1 Ls2 Ls3 Ls4 – Ls6 Ls7 Ls8

0.023 0.163 0.249 0.048 0.115 0.147 0.168

Mass (kg) 0.148 0.805 0.603 0.265 – 0.581 4.334 0.827 0.801

Table 2 Moments of inertia for the 2 DOF nine bar mechanism

Component Crank 1 Link 2 Link 3 Crank 4 Link 6 Triangular
panel 7

Link 8

Moment of
inertia
(kg m2)

2.382×10−4 8.001×10−3 1.337×10−2 1.210×10−3 1.212×10−2 3.802×10−3 8.663×10−3
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Table 3 Clearance joints and integration parameters

Designed parameter Parameter
values

Designed parameter Parameter values

Bearing radius R1(mm) 15 Microscopic damping coefficient
σ̄1 (Ns/m)

400

Restitution coefficient ce 0.9 Viscous friction coefficient σ̄2 0

Elastic modulus E1,E2(GPa) 200 Stribeck velocity vs 1% of maximum vt

Poisson ratio υ1, υ2 0.3 Gradient of friction decay γ 2

Integration step (s) 0.001 Kinetic friction coefficient μk 0.05

Bristle stiffness σ̄0 (N/m) 100000 Static friction coefficient μs 0.15

Fig. 4 Velocity of slider

Fig. 5 Acceleration of slider

friction law can solve numerical difficulties when the relative tangential velocity is in the
vicinity of zero. The LuGre law could capture variation of the friction force with slip ve-
locity, thus making it suitable for studies involving stick–slip motions. Besides, LuGre law
could be observed to capture Stribeck effect, which is a phenomenon related with the stick–
slip friction. The velocity and acceleration of the slider, driving torques of cranks, the shaft
center’s trajectory of clearance joints are also studied. From Figs. 4–9, it is shown that the
effects of LuGre and modified Coulomb friction models on the dynamic response for this
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Fig. 6 Driving torque of crank 1

Fig. 7 Driving torque of crank 4

Fig. 8 Shaft center’s trajectory
of revolute joint A

mechanism are slightly different, and the time point of collision is basically consistent. There
are some differences in the peak magnitude of the dynamic response: when LuGre model is
used, the peak magnitude of the dynamic response is higher than that of modified Coulomb
friction model. When the modified Coulomb friction model is utilized, the peak values of
the slider’s velocity and acceleration, contact force and driving torques of cranks 1 and 4
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Fig. 9 Shaft center’s trajectory
of revolute joint B

Fig. 10 Acceleration of slider

are −1.938 m/s, −213.5 m/s2, 1253 N, 74.55 N m and −197.7 N m, respectively. While
when LuGre model is utilized, the peak values of the slider’s velocity and acceleration, con-
tact force and driving torques of cranks 1 and 4 are −2.179 m/s, −380.9 m/s2, 2270 N,
−163.5 N m and 291.9 N m, respectively. When the modified Coulomb’s friction method
is used, it takes about 20.05 s to run one cycle. When the LuGre model method is used,
it takes about 37.29 s to run one cycle. When the LuGre model is adopted, the computa-
tion time is longer than that of the modified Coulomb’s friction method. When the modified
Coulomb’s friction model is used, the efficiency is slightly higher. This section is mainly
to make a comparative analysis of the two friction models, which provides a reference for
other researchers to study dynamics.

4.3 The influence of the number of clearance joints on the dynamic response

The following studies are based on the modified Coulomb friction model. In order to re-
search the effect of the number of clearance joints on the dynamic response, one clearance
joint (joint A) and two clearance joints (joint A and joint B) are both considered. The ac-
celeration of the slider, contact force of clearance joint A, the driving torques of the two
cranks and the shaft center’s trajectory of joint A are used to illustrate the influence of the
number of clearance joints on the dynamic response of the nine bar mechanism, as shown
in Figs. 10, 11, 12, 13 and 14. It is supposed that the driving speeds of cranks 1 and 4 are
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Fig. 11 Contact force of joint A

Fig. 12 Driving torque of
crank 1

Fig. 13 Driving torque of
crank 4

ω1 = −2π (rad/s) and ω4 = 2π (rad/s), respectively, the friction coefficient is cf = 0.01,
and the clearance value is c = 0.1 (mm).

As shown in Fig. 10, the two clearance joints have a greater effect on acceleration of the
slider than just one clearance joint. Multiple clearances can produce larger peaks and more
violent fluctuations on the slider’s acceleration. From the Figs. 11, 12 and 14, when only
one clearance at joint A is considered, the peak values of the contact force of joint A and
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Fig. 14 Shaft center’s trajectory
of revolute joint A

driving torque of crank 1 are larger than when two clearance joints are used. And the shaft
center’s trajectory of joint A is also more chaotic, when only one clearance is considered.
The reason is that multi-clearance has a certain coupling effect to reduce the vibration at
joint A. It is shown in Fig. 13 that two-clearances have a greater influence on the driving
torque of crank 4 than a single clearance at joint A. The main reason is that when only one
clearance is considered, joint B is an ideal pair of motion, whereas when two clearances
are considered, B is a clearance joint, so the effect of two clearance joints on the driving
torque of crank 4 is greater than with just one clearance joint. For the end effector of the
mechanism, the effect of multi-clearance joints on the dynamic response is larger than that
of a single clearance joint. When only one revolute clearance is considered, it takes about
14.66 s to run one cycle. When two revolute clearances are considered, it takes about 29.05
s to run one cycle. The calculation of multiple clearances is more complicated than that of a
single clearance. So the calculation of multiple clearances takes longer.

4.4 The influence of clearance value on the dynamic response

The effect of two different clearance values on the dynamic response is investigated. It
is supposed that the driving speeds of cranks 1 and 4 are ω1 = −2π (rad/s) and ω4 =
2π (rad/s), while the friction coefficient is cf = 0.01.

Figure 15 shows the acceleration of the slider corresponding to the clearance values of
0.01 and 0.08 mm, respectively. From Fig. 15, when the mechanism contains clearances,
the slider’s acceleration fluctuates violently and has a great peak. With the increase of the
clearance value, the peak value of the acceleration increases from −20.39 to −22.97 m/s2,
which shows that clearances have a great influence on the acceleration of the slider. Fig-
ures 16 and 17 show variations of the input driving torques of the two cranks. It is shown
that collision causes an instant increase in the peak value of the driving torques. The time
point of the fluctuation of the input driving torque is consistent with the fluctuation time
point of the slider’s acceleration. The bigger the clearance size, the higher the peak value
of the driving torques caused by collision: the peak value of the driving torque of crank 1
increases from −14.22 to −14.94 N m, the peak value of the driving torque of crank 4 in-
creases from −19.41 to 33.79 N m. Figures 18 and 19 show the contact force of joints A

and B , respectively. It is show that the bigger the clearance value, the bigger the peak value
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Fig. 15 Acceleration of slider
for different clearance values

Fig. 16 Driving torque of
crank 1

Fig. 17 Driving torque of
crank 4

of the contact force caused by collision: the peak value of the contact force at joint A in-
creases from 176.3 to 186.1 N, the peak value of the contact force at joint B increases from
235.4 to 242.7 N. The larger the clearance size, the more unstable the mechanical system.

4.5 The influence of the driving speed of the crank on the dynamic response

The driving speed significantly influences the working efficiency, two different velocity pairs
ω1 = −π (rad/s),ω4 = π (rad/s) and ω1 = −2.5π (rad/s),ω4 = 2.5π (rad/s) are compared
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Fig. 18 Contact force of joint A

Fig. 19 Contact force of joint B

Fig. 20 Driving torque of crank 1: (a) ω1 = −π (rad/s), ω4 = π (rad/s), (b) ω1 = −2.5π (rad/s),
ω4 = 2.5π (rad/s)

in the dynamic performance of the mechanism. It is supposed that the clearance sizes at
joints A and B are both set as 0.1 mm, the friction coefficient is cf = 0.01. The influence of
different driving speeds on the driving torques of both the cranks and shaft center’s trajectory
are analyzed.

Figures 20 and 21 show the variations of the driving torques of two cranks at two different
driving speeds. The bigger the driving speed, the higher the peak value of the crank driving
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Fig. 21 Driving torque of crank 4: (a) ω1 = −π (rad/s), ω4 = π (rad/s), (b) ω1 = −2.5π (rad/s),
ω4 = 2.5π (rad/s)

Fig. 22 Shaft center’s trajectory
of revolute joint A

torque. The peak value of the driving torque of crank 1 increases from −9.005 to 31.73 N m,
the peak value of the driving torque of crank 4 increases from −17.56 to 73.46 N m. Fig-
ures 22 and 23 show the variations of the shaft center’s trajectory of the clearance joints for
two different driving speeds. As shown in Figs. 22 and 23, with the increase of the driving
speed, the shaft center’s trajectory becomes more and more chaotic, and the collision phe-
nomenon is more serious. It is show that the penetration depth between the shaft and bearing
increases, and the impact between the shaft and bearing is becoming more serious, while the
driving speeds of cranks increase.

4.6 The influence of the friction coefficient on the dynamic response

It is supposed that the driving speeds of cranks 1 and 4 are ω1 = −2π (rad/s) and
ω4 = 2π (rad/s), respectively, the clearance values at A and B are both 0.02 mm, the fric-
tion coefficients are selected as 0.01 and 0.1, respectively. The effects of different friction
coefficients on the contact force and shaft center’s trajectory are studied.

The contact forces of revolute joints A and B are respectively shown in Figs. 24 and 25
for different friction coefficients. The greater the friction coefficient, the smaller the peak of
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Fig. 23 Shaft center’s trajectory
of revolute joint B

Fig. 24 Contact force of joint A

Fig. 25 Contact force of joint B

the collision force. The reason is that with the increase of the friction coefficient, the loss of
the energy will be increased, and the peak value of the collision force will be reduced. Shaft
center’s trajectories of revolute joints A and B are respectively shown in Figs. 26 and 27
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Fig. 26 Shaft center’s trajectory
of revolute joint A

Fig. 27 Shaft center’s trajectory
of revolute joint B

for different friction coefficients. As shown in Figs. 26 and 27, when the friction coefficient
gets larger, the confusion of center’s trajectory gradually decreases, and the stability of the
mechanism is enhanced. However, the shock and collision still exist between the bearing
and shaft.

5 Nonlinear characteristics of a multi-link mechanism with two revolute
clearances

5.1 Chaos identification

Chaotic motions always lead to lower motion precision and high-frequency vibration. These
behaviors always deteriorate the mechanism performance and reduce its life. The phase
diagram, Poincaré map and Lyapunov exponent of clearance joints are shown in Figs. 28, 29



336 X. Chen et al.

Fig. 28 Phase diagram of clearance for: (a) joint A in the x1 direction; (b) joint A in the y1 direction;
(c) joint B in the x2 direction; (d) joint B in the y2 direction

and 30. The periodic motion repeats the previous motion every other cycle, and its phase
diagram is a closed curve. The chaotic motion is aperiodic, so its phase diagram is not
a closed curve. When the Poincaré cross-section has only one isolated Poincaré mapping
point or a few discrete points, the motion of the system is periodic. When the Poincaré
cross-section has some patchy distribution of the point set, the system is in a chaos. As can
be seen from Fig. 28, the phase diagrams are chaotic, and there is no closed curve. As shown
in Fig. 29, the Poincaré mapping points are scattered and not duplicated. Therefore, it can
be judged that the clearance joint is in chaos.

Wolf et al. proposed looking at the Lyapunov exponent, which can be estimated directly
based on the phase trajectory, plane and volume. This method is collectively called the Wolf
method and is widely applied in the study of chaos [42, 43].

The Wolf method is used to calculate LLE, setting time series data for z1, z2, z3, . . . , zn,
which correspond to the data of x1, y1, x2 and y2 obtained by solving the dynamic equations
(see Eq. (19)), its corresponding average period, embedding dimension m, time delay τ and
length N are all calculated, and then, its corresponding phase space could be express as:

Z(ti) = (
z(ti), z(ti + τ), . . . , z

(
ti + (m − 1)τ

))
(i = 1,2, . . . ,N).

Taking the initial point as Z(t0), and then taking any point Z0(t0) near the initial point
Z(t0), the distance between the two points is L = |Z(t0) − Z0(t0)|. If the value of L is more
than the specified value ε(ε > 0) at time point t1, that is, L′

0 = |Z(t1) − Z0(t0)| > ε, Z(t1)

is reserved, and then one finds a point Z1(t1) near point Z(t1), satisfying L1 = |Z(t1) −
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Fig. 29 Poincaré map of the clearance for: (a) joint A in the x1 direction; (b) joint A in the y1 direction;
(c) joint B in the x2 direction; (d) joint B in the y2 direction

Z1(t1)| < ε, and lets the angle between the two points be as small as possible, and then the
above processes are repeated again and again. When Z(t) reaches the end of time series N ,
the LLE could be obtained by

χ = 1

tM − t0

M∑
i=0

ln
L′

i

Li

where M is total number of iterations during the tracing evolution process, tM is the time
corresponding to the M th iteration, t0 is the initial time, L is the distance of the two adjacent
points in the phase space. All of these variables are determined by the time series data.

When the LLE is negative, the system is in periodic motion. When the LLE is positive,
the system has chaotic motion. As can be seen from Fig. 30, the LLEs in the x1, y1, x2 and
y2 directions of clearance joints are 0.6089, 0.1373, 0.5943 and 0.4645, respectively. Since
the LLEs in the four directions are all greater than 0, it can be also judged that the clearance
joints are both in chaos at this time.

5.2 The influence of different parameters on nonlinear characteristics of the nine
bar mechanism

Bifurcation diagrams with changing clearance values of clearance joints in the x1, y1, x2

and y2 directions are depicted in Figs. 31(a)–(d). With the increase of clearance value, the
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Fig. 30 Lyapunov exponent of clearance for: (a) joint A in the x1 direction; (b) joint A in the y1 direction;
(c) joint B in the x2 direction; (d) joint B in the y2 direction

impact between the shaft and bearing becomes more and more serious, which has a great in-
fluence on the dynamic performance of the mechanism. Moreover, it could be observed from
Figs. 31(a)–(d), clearance joints generally become more chaotic for the range of clearance
size from 0.01 to 0.1 mm. The reason is that, as the clearance value increases, the contact
force of the clearance joint increases, so that chaos phenomenon of the clearance joint is
magnified.

Bifurcation diagram with changing driving speed of clearance joints in the x1, y1, x2 and
y2 directions are shown in Figs. 32(a)–(d). The horizontal coordinates in Figs. 32(a)–(d)
are the driving speed of crank 4. The driving speeds of cranks 1 and 4 are equal in size
and opposite in direction. According to Figs. 32(a)–(d), it can be shown that, as the driving
speed of crank 4 increases from 0.1π (rad/s) to 1.7π (rad/s) while the driving speed of
crank 1 decreases from −0.1π (rad/s) to −1.7π (rad/s), the chaos phenomenon is relatively
weakened, and the mechanism is in a relatively stable motion state in this range. While the
driving speed of crank 4 increases from 1.72π (rad/s) to 3π (rad/s) (whereas the driving
speed of crank 1 decreases from −1.72π (rad/s) to −3π (rad/s)), the chaos phenomenon
of clearance joints is gradually increasing. It has a greater impact on the revolute clearance
joints, which makes the mechanism have poor stability.

Bifurcation diagram with changing friction coefficients of clearance joints in the x1, y1,
x2 and y2 direction are shown in Figs. 33(a)–(d). According to Figs. 33(a)–(d), with the
increase of friction coefficients, the chaos phenomenon of the clearance joints in the four
directions is gradually weakened, the bifurcation diagram tends to converge, and the motion
changes from chaotic to periodic. Thus, it can be concluded that the dynamic behavior will
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Fig. 31 Bifurcation diagram of clearance with changing clearance value for: (a) joint A in the x1 direction;
(b) joint A in the y1 direction; (c) joint B in the x2 direction; (d) joint B in the y2 direction

become more stable for the range of the friction coefficients from 0.01 to 0.25. The reason
is that, as the friction coefficient increases, more energy is dissipated and contact forces of
clearance joint are reduced. So, the mechanism becomes stable.

6 Virtual simulation results

In order to verify the correctness of the numerical results, the virtual prototype simulation of
2 DOF nine bar mechanism containing two revolute clearances was carried out by ADAMS
software. The clearance values of revolute clearances were both set to 0.5 mm, the driving
speed of cranks 1 and crank 4 were assumed to be −4π (rad/s) and 4π (rad/s), respectively.
The virtual simulation results of the slider’s displacement, velocity and acceleration are
shown in Figs. 34, 35 and 36. The virtual simulation results of the contact force of revolute
clearance joints are shown in Figs. 37 and 38.

From Figs. 34–38, the results of Adams virtual simulation are slightly different from
those of MATLAB, which is mainly due to the different modeling and solving methods and
the integration error [44]. It can be seen from Figs. 34 and 35 that the clearances have little
influence on the slider’s displacement and velocity, and the vibration of these two curves is
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Fig. 32 Bifurcation diagram of clearance joints with changing driving speed for: (a) joint A in the x1 direc-
tion; (b) joint A in the y1 direction; (c) joint B in the x2 direction; (d) joint B in the y2 direction

not very intense. According to Figs. 36, 37 and 38, the clearances of the revolute joints have
a great influence on the slider’s acceleration and contact forces of revolute clearance joints.
Although the curves are slightly different, they have similar regularity and have near peak
value. Therefore, it can be proved that the theoretical model is correct.

7 Conclusions

The dynamic equation of a nine bar mechanism with two revolute clearances is built by
the Lagrange equation. By using MATLAB programming, motion differential equations are
solved by the Runge–Kutta method. The shaft center’s trajectory, contact forces of clear-
ance joints, input driving torques of the cranks and kinematics characteristics of the slider
are obtained. It can be indicated that the clearances reduce the dynamics stability of the
mechanism and lead to vibration.

The influence of LuGre and modified Coulomb friction models on the dynamic response
of the nine bar mechanism is compared. When LuGre model is used, the peak magnitude
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Fig. 33 Bifurcation diagram of clearance with changing friction coefficient for: (a) joint A in the x1 direc-
tion; (b) joint A in the y1 direction; (c) joint B in the x2 direction; (d) joint B in the y2 direction

of the dynamic response is higher than that of the modified Coulomb friction model. The
effects of the number of clearance joints, clearance values, driving speeds and friction co-
efficients on the mechanism behavior are investigated. With the increase of the number of
the clearance joints, the vibration and fluctuation of the end-effecter will become more vig-
orous. The bigger the joint clearance values and the driving speeds of the cranks, the higher
the amplitudes of acceleration of the slider, driving torques of cranks and the contact forces
of clearance joints caused by collision. And when the friction coefficient gets larger, the
fluctuation of the center’s trajectory gradually decreases, and the stability of the mechanism
is enhanced. The chaos phenomena of the clearance joints are also identified by phase dia-
grams, Poincaré maps and LLEs. Bifurcation diagrams of the clearance joints with changing
clearance values, friction coefficients and driving speeds of the cranks are also drawn. With
the increase of clearance values and driving speeds, the chaos phenomenon of the clearance
joints is gradually enhanced. With the increase of friction coefficients, the motion states of
clearance joints change from chaotic to periodic motion, and chaos phenomenon gradually
weakens. A virtual prototype model of 2 DOF nine bar mechanism containing two revolute
clearances is modeled by ADAMS software, and numerical calculation results are verified
by comparing them with virtual simulation results. The results prove that the theoretical
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Fig. 34 Displacement of slider

Fig. 35 Velocity of slider

Fig. 36 Acceleration of slider
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Fig. 37 Driving torque of
crank 1

Fig. 38 Driving torque of
crank 4

model is reasonable and correct. This paper has certain theoretical significance and practical
application value for the design and control of high reliability equipment.
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38. Erkaya, S., Doğan, S.: A comparative analysis of joint clearance effects on articulated and partly com-
pliant mechanisms. Nonlinear Dyn. 81(1–2), 1–19 (2015)

39. Hou, Y., Jing, G., Wang, Y., Zeng, D., Qiu, X.: Dynamic Response and Stability Analysis of a Parallel
Mechanism with Clearance in Revolute Joint, Mechanism and Machine Science. Springer, Singapore
(2017)

40. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems.
Multibody Syst. Dyn. 24(1), 103–122 (2010)

41. Wang, G.X., Liu, H.Z.: Research progress of joint effect model in multibody system dynamics. Chin. J.
Theor. Appl. Mech. 47(1), 31–50 (2015)

42. Wolf, A., Swift, J.B., Swinney, H.L., et al.: Determining Lyapunov exponents from a time series. Physica
16, 285–317 (1985)

43. Lv, J.H., Lu, J.A., Chen, S.H.: Chaotic Time Series Analysis and Its Application. Wuhan University
Press, Wuhan (2002)

44. Zhang, S.J.: Research on dynamic characteristics of lunar rover developable panel mechanism with joint
clearance. Yanshan University (2016)


	Dynamics analysis of planar multi-DOF mechanism with multiple revolute clearances and chaos identiﬁcation of revolute clearance joints
	Abstract
	Instruction
	Modeling of the revolute joint with clearance
	The normal force model
	The tangential force model

	Dynamic modeling of the nine bar mechanism with two revolute clearances
	Kinematic modeling of the nine bar mechanism with revolute clearances
	Dynamic equation modeling of the nine bar mechanism with revolute clearances

	Dynamic response of multi-link mechanism with two revolute clearances
	System parameters of the nine bar mechanism
	The inﬂuence of different friction models on the dynamic response of the nine bar mechanism
	The inﬂuence of the number of clearance joints on the dynamic response
	The inﬂuence of clearance value on the dynamic response
	The inﬂuence of the driving speed of the crank on the dynamic response
	The inﬂuence of the friction coefﬁcient on the dynamic response

	Nonlinear characteristics of a multi-link mechanism with two revolute clearances
	Chaos identiﬁcation
	The inﬂuence of different parameters on nonlinear characteristics of the nine bar mechanism

	Virtual simulation results
	Conclusions
	Acknowledgements
	Statement
	References


