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Abstract A continuous contact force model, which considers the influence of constant ex-
ternal forces, is presented for the dynamic analysis of a multibody system. In this model,
the Hertz contact law is applied to represent the nonlinear nature of contact, and a damping
force is derived for evaluating the energy loss during impact. Together with the restitution
coefficient, the external force influence factor defined in this paper is required for calculating
the hysteresis damping factor associated with damping force. Moreover, the expression of
hysteresis damping factor is deduced based on the energy-based method, which is adopted
frequently in literature, and then it is improved by a weighted combination method with an
exponential function due to the fact that the energy-based method has great errors when the
restitution coefficient is low. Meanwhile, the exponential function is obtained by fitting the
parametric surface of hysteresis damping factor gained from a numerical approach. Finally,
four contact force models, including the new model, are utilized to compare the dynamic
response of a special bouncing ball. The results illustrate that the described model is more
suitable for impact analysis in multibody dynamics. In addition, the external forces and the
energy loss are the main reasons for the multibody system to enter a steady contact state
from repeated impact state.
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1 Introduction

A multibody system is mainly considered as the combination of two parts, bodies and joints,
which restrict the relative motion between the components of the system. Due to clearances
at the joints, collision phenomena can frequently take place [1–4] and must be considered
for an accurate analysis of the dynamic behavior of a multibody mechanical system since
it has a significant influence on the response of the system [5–7]. Thus, a lot of researches
[8–12] for impact have been carried out over the last few decades.

The contact force model plays a key role in the dynamic analysis of contact-impact events
in multibody mechanical systems, which is obtained based on the neglect of external forces
reflected in the multibody system by supporting force, torque, inertial force, etc. These ex-
ternal forces can affect the collisions that occur in a multibody system and cannot be ignored
when this influence is large enough. In addition, the impact pair can eventually enter the sta-
ble contact state when the collision takes place; however, there is a lack of judgment for
this case. Therefore, it is necessary to carry out the investigation on the contact force model
considering external forces and the collision end state for the accurate analysis of multibody
dynamics.

As a crucial property of the contact force model, the damping characterized by the dis-
sipative energy from the system is classified as external or internal sources. Generally, the
external source in a mechanical system mainly includes friction forces between sliding sur-
faces in contact, whereas the internal damping is treated as the dissipative energy mecha-
nism of the contact material itself [13]. For the joint interfaces with roughness, the damping
is mainly caused by the external source under normal dynamic load [14, 15], and it usually
affected by the excitation frequency, contact pressure, friction, etc. [14, 16]. Meanwhile,
Rayleigh damping, which is a linear combination of the mass and stiffness damping, is ap-
plied frequently in the finite element analysis of this joint [13, 16]. However, the friction is
usually ignored during the contact-impact process between smooth surfaces, and the internal
damping is utilized to describe the dissipative energy during collision. This contact-impact
process has been analyzed by a collision tests between steel ball and cylindrical specimen
[17, 18], and the law of the energy loss is also validated for low-speed impact.

Focusing on the frictionless contact and low-speed collision in this paper, the internal
damping is used to model the contact force for the contact-impact analysis in multibody dy-
namics. This contact force model is based on the hypothesis of local deformation and can be
expressed as a continuous function of the relative deformation and the deformation velocity
between the contact surfaces of two bodies during collision. Several different continuous
contact force models have been published in the literature. A simple one is the Kelvin–Voigt
model, and Khulief and Shabana [19] applied it to the impact analysis in multibody system;
then more researches are carried out [20–23] based on this model. However, the Kelvin–
Voigt model is not very accurate since it does not consider the overall nonlinear nature of
contact, and it also cannot represent the energy transfer process during the impact process.
Instead, Hunt and Crossley [24] proposed a nonlinear contact force model written in the
terms of Hertz contact force and damping force. Due to the derivation method of the hys-
teresis damping factor, the Hunt and Crossley model and several other similar models, such
as the Lee and Wang model [25], the Lankarani and Nikravesh model [26], etc., are only
suitable for hard materials. Thus the models for both soft and hard materials are proposed,
for instance, the Gonthier et al. model [27], the Zhang and Sharf model [28], the Gharib and
Hurmuzlu model [29], the Flores et al. model [3], the Shiwu Hu and Xinglin Guo model [4],
etc. As simple methods applicable to solve the impact force, these nonlinear models are
widely applied to engineering problems.
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In general, the impact force is considered far greater than other forces, so that exter-
nal forces are often ignored in impact dynamic analysis; hence the important parameter of
contact force model, namely hysteresis damping factor, is derived in the light of the mo-
mentum theorem and the momentum conservation theorem. In fact, the equations of mo-
tion of a multibody mechanical system include the balance equations between contact force
and external forces (such as torque, supporting force, inertial force, etc.) [30–38]. In other
words, the impact contact force is affected by external forces during simulation. When this
influence is large enough, the errors of the dynamic response of collision system obtained
by these continuous model are obvious. Moreover, the repeated or sustained collision phe-
nomenon can frequently take place in multibody system, which can be concluded from the
dynamic analysis in [30, 33–35, 37, 38], so the accumulation of these errors can lead to the
distortion simulation in multibody dynamics.

The purpose of this paper is to develop the contact force model of impact system where
external forces cannot be ignored. This study begins with a description of the collision dy-
namic response under the influence of constant external forces, and then proposes an influ-
ence factor of external forces and the judgment criterion of impact end state for the follow-
ing derivation and analysis. In fact, an important boundary condition, the separation velocity,
which is used to deduce the hysteresis damping factor, cannot be derived due to the influence
of external forces, and therefore a numerical approach is utilized to obtain the parametric
surface of this factor. Based on this, a contact force model under constant external forces is
established by the methodology shown in [3, 4] and the fitting method. Furthermore, the ad-
vantages and limitations of this model are analyzed with a simulation of a special bouncing
ball problem.

2 Description of the impact under constant external forces

A direct central impact model under constant external forces Fi and Fj in the direction of
normal contact force is considered for the impact analysis between two smooth (frictionless)
spheres, as shown in Fig. 1, where the masses of two spheres are mi and mj , respectively.
The equivalent external force of these external forces can be evaluated by

Fe = mea, (1)

where me = mimj/(mi + mj) is the equivalent mass of these two spheres, and a =
Fi/mi − Fj/mj denotes the relative acceleration under these constant external forces. As
Fig. 1 shows, three effects of external forces may occur, including a > 0, a = 0, and a < 0,
which indicate strengthening impact, no influence, and weakening collision, respectively. In
this paper, the case of a ≥ 0 is analyzed, and the other situation can be discussed by the
same method presented in this study.

Under the condition a > 0, the collision process between these bodies can be separated
as two phases, namely the compression and restitution phases. When these two bodies come
in contact with initial velocities v̇

(−)
i and v̇

(+)
j , deformation takes place in the local contact

area, and this denotes the start of the first phase. From this time, the contact force between
these colliding bodies begins to increase but is smaller than the equivalent external force Fe ,
so that the relative acceleration is greater than zero, and the deformation velocity continues
to accelerate until to ta , as shown in Fig. 2. At this moment, the contact force is equal to
the equivalent external force, and the deformation acceleration is reduced to zero, whereas
the deformation velocity and the deformation are increased to δ̇max and δa , respectively.
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Fig. 1 Impact process between two solid spheres under constant external forces

Fig. 2 Dynamic response of a collision under constant external forces

After the instant of time ta , the deformation continues to increase due to the conversion
of relative kinetic energy to elastic strain energy. Therefore, the deformation acceleration
begins to be negative and decreases continuously, whereas the deformation velocity keeps
decreasing until to the final instant of compression phase tm, and the deformation is increased
to the maximum value δm. At this time, the deformation acceleration and the deformation
velocity are reduced to δ̈min and zero, respectively. In turn, the inverse process, known as the
restitution phase, starts and lasts to the end of impact. Moreover, the collision pair may not
be separated at the end of impact due to the effect of external forces, and this is discussed in
Sect. 3.

3 Influence assessment of constant external forces on collision

As analyzed before, the external forces have effect on the dynamic response of collision;
however, there is a lack of quantitative indicator to measure the role of external force. In
this section, an influence factor is proposed to further discuss this influence based on the
Hertz contact law. Moreover, the termination of collision, which is usually judged to occur
when these two bodies separate, is analyzed according to the energy loss during impact.
Then, a judgment criterion is also proposed for this end state. It should be noted that the
influence factor and the judgment criterion are important and fundamental conditions for the
numerical computation of hysteresis damping factor, the derivation of contact force model,
and the comparative analysis of different contact force model in this paper.
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3.1 Influence factor of external forces

The classical force model for the contact between two spheres is the Hertz contact force

Fn = kδ
3
2 , (2)

where δ indicates the local deformation, and k denotes the contact stiffness.
When two bodies are in contact, the contact force Fn starts to change the state of motion,

so that the force balance of these bodies can be expressed as

mi

dvi

dt
= Fi − Fn, mj

dvj

dt
= Fj + Fn, (3)

and the relative velocity between bodies is

δ̇ = vi − vj . (4)

From (2), (3), and (4), the dynamic equivalent equation of the impact system shown in
Fig. 1 can be written in the form

me

d2δ

dt2
+ kδ

3
2 = mea. (5)

Multiplying both sides of (5) by dδ [39] results in

1

2
med

[(
dδ

dt

)2]
+ kδ

3
2 dδ = meadδ. (6)

Then integrating three terms of (6), we derive the energy balance during collision process
as

1

2
me

(
δ̇(−)

)2 + meaδ = 2

5
kδ

5
2 + 1

2
meδ̇

2, (7)

where δ̇(−) = v̇
(−)
i − v̇

(−)
j denotes the initial relative velocity, and δ̇ represents the deforma-

tion velocity.
Equation (7) represents that the deformation is the absorbed energy by the contact force

from the initial relative kinetic energy and the work done by the equivalent external force in
the compression phase, and it reaches the maximum value δm when the deformation velocity
is reduced to zero. Thus, substituting δ̇ = 0 into (7) yields the relation between the initial
relative kinetic energy and the maximum elastic strain energy as follows:

1

2
me

(
δ̇(−)

)2 = 2

5
kδ

5
2
m − meaδm. (8)

Both sides of (7) are divided by the initial relative kinetic energy shown in (8); then the
relationship between the deformation velocity and the deformation is deduced as follows:

δ̇ = δ̇(−)

√√√√√1 −
2
5 kδ

5
2 − meaδ

2
5kδ

5
2
m − meaδm

. (9)
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Let ξ denote the influence factor of the equivalent external force given by

ξ = meaδm

1
2 me(δ̇(−))2 + meaδm

= 1
1
2me(δ̇(−))2/(meaδm) + 1

, (10)

where the value range of this factor ξ is taken as 0 ≤ ξ < 1 according to the condition a ≥ 0
shown in Sect. 2.

Substituting (10) into (8) and (9), respectively, results in

2

5
kδ

5
2
m = 1

2(1 − ξ)
me

(
δ̇(−)

)2
, (11)

δ̇ = δ̇(−)

√
1 − x

5
2 + ξ

1 − ξ

(
x − x

5
2
)
, (12)

where x is the ratio of δ and δm, and its value range is 0 ≤ x ≤ 1.
Equation (11) shows that the maximum elastic strain energy increases as ξ increases

when the initial relative velocity, contact stiffness, and equivalent mass are fixed. Mean-
while, (12) represents that the deformation velocity is also increased with the increase of
the influence factor ξ . It should be noted that this factor ξ is associated with the conditions
of contact stiffness k, equivalent mass me , relative acceleration a under constant external
forces, and initial relative velocity δ̇(−), which can be drawn from (8) and (10). In other
words, this factor ξ can reflect the comprehensive assessment of the influence of external
forces on collision. Hence, the influence factor ξ is used to estimate the influence of constant
external forces on the impact dynamic response.

3.2 Impact end state

The Hertz contact force model does not include the damping effect, and scholars have ex-
tended its application to include energy dissipation. A classical dissipative contact force
model proposed by Hunt and Crossley is

Fn = kδ
3
2 + μδ

3
2 δ̇, (13)

where μ is called the hysteresis damping factor, and the second term on the right side denotes
the damping force.

Considering the work done by damping force, the balance of energy shown in (8) can be
rewritten as

1

2
me

(
δ̇(−)

)2 + meaδm = 2

5
kδ

5
2
m +

∫ δm

0
μδ

3
2 δ̇ dδ, (14)

where the integral term represents the work done by damping force.
For the case of separation state right after impact, the energy balance during restitution

phase can be given by

2

5
kδ

5
2
m = 1

2
me

(
δ̇(+)

)2 + meaδm +
∫ δm

0
μδ

3
2 |δ̇|dδ, (15)

where δ̇(+) = v̇
(+)
i − v̇

(+)
j is the separation velocity at the end of impact. This expression

indicates that the maximum elastic strain energy has three different destinations in restitution
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phase, which are in turn the final relative kinetic energy, the work done by the equivalent
external force, and the work done by the damping force.

Usually, the work done by the damping force during the impact process is considered as
the energy dissipation of collision; hence, subtracting (14) from (15) yields

1

2
me

(
δ̇(+)

)2 = 1

2
me

(
δ̇(−)

)2 − �E, (16)

where �E denotes the dissipated energy.
To obtain the separation velocity δ̇(+), the Newton model of restitution coefficient is

frequently used [3, 4, 24–29]. However, the momentum is not conserved when the impact
event considers the action of external forces, and thus the Newton model is not suitable for
the impact issue discussed in this paper. In fact, it is indicated in the literature [40] that
in addition to the energy model, which is called Stronge’s model, the Newton model and
Poisson models cannot obey the law of energy conservation when the energy is lost during
impact from sources other than friction. Therefore, this study employs the energy model to
analyze the separation velocity or the final relative kinetic energy.

The Stronge model is defined as the square root of the ratio ε of the elastic strain energy
released during restitution to the energy absorbed by deformation in compression [40]. In
terms of the work done by the normal force during the two phases, the restitution coefficient
is

ε2 = −Wr

Wc

, (17)

where Wc and Wr represent the works done by the contact force during the compression and
restitution phases, respectively. With the aid of (13), the work done by the contact force can
be expressed as

Wc =
∫ δm

0
Fn dδ = 2

5
kmδ

5
2
m +

∫ δm

0
μδ

3
2 δ̇ dδ, (18)

Wr =
∫ δo

δm

Fn dδ = −
(

2

5
kmδ

5
2
m − 2

5
kmδ

5
2
o

)
−

∫ δo

δm

μδ
3
2 |δ̇|dδ, (19)

where δo denotes the deformation at the end of impact.
According to (17) and (18), the energy loss can be given by

�E = (
1 − ε2

)
Wc = (

1 − ε2
)(2

5
kmδ

5
2 +

∫ δm

0
μδ

3
2 δ̇ dδ

)
, (20)

and then, substituting (14) into (20) yields the relation

�E = (
1 − ε2

)[1

2
me

(
δ̇(−)

)2 + meaδm

]
. (21)

The final relative kinetic energy and the initial relative kinetic energy are denoted as E+
r

and E−
r , respectively, so (16) can be rewritten in the simple form

E+
r = E−

r − �E. (22)

It should be highlighted that the energy loss shown in (21) is affected not only by the
initial relative velocity, but also by the equivalent external force. Hence the relative kinetic
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energy E+
r is larger than zero when the initial relative kinetic energy E−

r can satisfy the
energy loss, which means that the collision pair enters the separation state at the end of
impact. When E+

r is equal to zero (E+
r cannot be negative) and the impact pair still does

not separate, the collision pair enters the nonseparation state. The judgment criterion of the
impact end state can be described as follows:

(1) During the restitution phase, the separation state occurs when δ = 0 and E+
r > 0.

(2) During the restitution phase, the nonseparation state occurs when δ > 0 and E+
r = 0.

4 Numerical computation of hysteresis damping factor

The hysteresis damping factor μ shown in (13) is the key for modeling contact force and
can be written in a common form [4]:

μ = α
k

δ̇(−)
, (23)

where α is a factor associated with the coefficient of restitution when the external forces are
ignored.

For this factor, which must be determined, two main approaches are often utilized in the
literature, including the energy-based method [3, 4, 24, 26] and the regularized method [27,
28]. The Newton law of restitution, also known as the kinematical coefficient of restitution,
is used in these two methods. Based on this coefficient, an important boundary condition,
the separation velocity at the end of impact, can be calculated with the initial condition.
However, as mentioned before, only the Stronge model of restitution coefficient is suitable
for the impact analysis considering external forces. This means that the separation velocity
is not related to the initial approach velocity by a constant under the influence of external
forces, and the factor α is hard to be derived directly with these two methods. Hence we
propose a numerical method for α and then obtain the parametric surface of α.

4.1 Numerical method

To obtain a parametric surface of the factor α in the entire ranges of the restitution coefficient
and the external forces influence factor, we carry out a continuous contact analysis based on
the dynamic equivalent equation written in the form

meδ̈ + μδ
3
2 δ̇ + kδ

3
2 = mea. (24)

As an example, the values of me and k are taken as 5 kg and 5.4 × 109 N/m1.5, re-
spectively, and the initial approach velocity δ̇(−) is equal to 1 m/s. For the value range
of the influence factor, which is 0 ≤ ξ ≤ 0.99, the corresponding value of a is taken as
0 ≤ a ≤ 23 000 m/s2. In addition, the initial factor α is calculated by (25) [4], and the
restitution coefficient value is 0.01 ≤ ε ≤ 0.99. Then, the numerical computation process is
represented as shown in Fig. 3.

αinitial = 3(1 − ε)

2ε
. (25)
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Fig. 3 Computation process of factor α

Fig. 4 Parametric surface of α

4.2 Parametric surface of hysteresis damping factor

The results of the factor α are shown in Fig. 4, where ε illustrates the coefficient of restitu-
tion, and ξ denotes the influence factor of external forces. It appears that α is sensitive to the
influence of external forces when 0 < ε < 0.1 and 0 < ξ < 0.1. Moreover, the smaller the
restitution coefficient, the greater the factor α when the influence factor ξ is fixed, as shown
in Fig. 5, which is the curve of Sect. A in Fig. 4.

Figure 5 also illustrates that the curve in region I is close to the result of (26), whereas
the curve during region III is approximate to the value calculated by (25), and the region II
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Fig. 5 Factor curve of α when
ξ = 0.2

could be the mixed result of them. Therefore the expression of factor α considering external
forces can be obtained by combining these two equations when ξ = 0.2, and this approach
can be expanded to the entire domain of the influence factor ξ :

EXP = 1

β
e− (ε+τ )2

σ , (26)

where τ = 0.01, σ = 0.011, and β = 0.113 when ξ = 0.2.

5 Normal contact force

The numerical computation of the factor α would take a long time for collision, which is
not conducive to the simulation of multibody system, and thus an approximate function for
contact force is derived in this section. According to the energy-based method adopted for
(25) and the parametric surface, the expression of the factor α in region III is first derived.
Then, based on EXP shown in (26), the expression for region I is fitted with the parametric
surface. Finally, the approximate contact force model is given by the weighted combination
of these two expressions.

From (17)–(19) it is possible to obtain the following formulas:

ε2�Ec + �Er = (
1 − ε2 − λ

5
2
)2

5
kδ

5
2
m, (27)

�Ec = μ

∫ δm

0
δ

3
2 δ̇ dδ, (28)

�Er = μ

∫ δm

λδm

δ
3
2 |δ̇|dδ, (29)

where λ is the ratio of δo and δm. Substituting (12) into (28), the expression of �Ec is
rewritten as

�Ec = μδ
5
2
mδ̇(−)s1, (30)

where

s1 =
∫ 1

0
f (x, ξ) dx =

∫ 1

0
x

3
2

√
1 − x

5
2 + ξ

1 − ξ

(
x − x

5
2
)
dx, (31)
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Fig. 6 Relation of ξ and s

f (x, ξ) is the destiny function of s1, and the value range of the influence factor is 0 ≤ ξ < 1.
Based on the numerical approach, the value of s1 can be evaluated by the following

relation, and the compared result between (31) and (32) is plotted in Fig. 6:

s21 = 0.851
√

0.5s2, (32)

where

s2 =
∫ 1

0
x

3
2

[
1 − x

5
2 + ξ

1 − ξ

(
x − x

5
2
)]

dx. (33)

Integrating (33) and then substituting it into (32) yield

s21 = 0.851

√
7 − 4ξ

70(1 − ξ)
. (34)

In fact, s1 calculated by (31) has an error due to the neglect of damping force influence,
as shown in Fig. 7, where sa denotes the similar value considering damping force. Moreover,
this error would be obvious when the restitution coefficient is low, which is also shown in
the literature [3, 4]. To reduce this error, the expression of s1 is rewritten as

s1 = 0.851ηc

√
7 − 4ξ

70(1 − ξ)
, (35)

where the coefficient ηc is related to the restitution coefficient and the influence factor.
Hence, the energy loss during the compression phase can be given by

�Ec = 0.851μδ
5
2
mδ̇(−)ηc

√
7 − 4ξ

70(1 − ξ)
. (36)

Assuming that the energy loss during the compression and restitution phases performs a
similar function, equation (29) is rewritten as

�Er = 0.851μδ
5
2
mδ̇(−)ηr

√
7 − 4ξ

70(1 − ξ)

(
1 − λ

5
2
)
. (37)
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Fig. 7 Relation between x and
f (x, ξ)

Fig. 8 Fitting results of α

Combining (23), (27), (36), and (37), the factor α for region III can be evaluated by

α = 0.47(1 − ε2 − λ
5
2 )√

7−4ξ

70(1−ξ)
[ηcε2 + ηr(1 − λ

5
2 )]

, (38)

where the coefficients of λ, ηc , and ηr must be determined.
It can be observed from Fig. 5 that the value of EXP is close to zero in region III, whereas

the result of multiplying (25) by the square of ε is also close to zero during region I, and
hence, the expression of α is assumed as

α = e− (ε+τ )2
σ (1 − ε)a

β
+ 0.47(1 − ε2 − λ

5
2 )εb√

7−4ξ

70(1−ξ)
[ηcε2 + ηr(1 − λ

5
2 )]

, (39)

where the coefficients of τ , σ , β , a, λ, b, ηc , and ηr can be obtained by fitting the parametric
surface of α. The fitting results are shown in Fig. 8, and the factor α is finally expressed as

α =

⎧⎪⎨
⎪⎩

e
− (ε+1−ξ0.05)2

0.1568ξ0.9
(1−ε)ε

0.4

Sξ(1.2ξ2+0.0165ξ−1.17+2.02)
+ 0.47(1−ε2−λ

5
2 )

Sε(εξ
1.3 +0.1ξ−0.97)[ε2+η(1−λ

5
2 )]

, 0 < ξ < 1,

3(1−ε)

2ε0.89 , ξ = 0,

(40)
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Fig. 9 Relation between the postrestitution and prerestitution coefficients: (a) ξ = 0; (b) ξ = 0.016;
(c) ξ = 0.227; (d) ξ = 0.429; (e) ξ = 0.665; (f) ξ = 0.91

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S =
√

7−4ξ

70(1−ξ)
,

η = ε0.86+2.6ξ+ξ3.5−1.5εξ ,

λ = 1 − ( ε

ξ0.59 )1+ξ0.3[1−ε(1−ξ)],

where ξ is obtained by solving (8) and (10), whereas the value of λ is taken as zero when
the expression of λ is less than zero. Finally, the normal contact force considering external
forces is expressed as

Fn = kδ
3
2

(
1 + α

δ̇

δ̇(−)

)
. (41)

The fitting curves shown in Fig. 8 also have errors, and its accuracy can be measured by
the difference between the prerestitution coefficient represented in (40) and the postresti-
tution coefficient obtained by (17) with a continuous contact analysis. This measurement
approach presented by Lankarani and Nikravesh [25] is also utilized in this paper, and the
plots of the post and prerestitution coefficient for five models are obtained. According to the
analysis of these plots in the full range of ξ , this paper sets three levels of the influence of
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Fig. 10 Special bouncing ball
example

constant external forces, including the small (0 ≤ ξ < 0.1), moderate (0.1 ≤ ξ < 0.5), and
large (0.5 ≤ ξ < 0.1) effects. Meanwhile, these plots related to the three levels are shown
in Fig. 9, in which the straight line represents the same value for post- and prerestitution
coefficients, used as a reference. From the plots of Fig. 9(a, b) it can be drawn that the er-
rors of the dissipated energy described by classical models are obvious during the range of
low restitution coefficient. Conversely, the described model has a better performance for the
entire range of restitution coefficient when ξ is small or equal to zero. Furthermore, these
errors are great when the influence factor is large enough, as shown in Fig. 9(c–f). This in-
dicates that the external forces should be considered carefully for the dynamic analysis of
the impact between softer material bodies. Meanwhile, it can also be observed from (25)
that α is just related to the coefficient of restitution; in other words, the classical contact
force models have fixed hysteresis damping factors when δ̇(−) and ε are constant while ξ is
variable. These fixed factors lead to an incorrect description of energy dissipation even if the
restitution coefficient closes to unity, as shown in Figs. 9(e, f), and the incorrect description
may cause wrong impact end state.

6 Application to a bouncing ball

Since collisions are often affected by external forces, we use a special bouncing ball as an
example for application in this paper and then analyze the specific influence of the constant
external forces on the contact-impact response, namely deformation, deformation velocity,
energy loss, and impact end state. As Fig. 10 shows, an elastic ball is acted by a constant
force F , and the gravity hits the ground perpendicularly at an initial velocity δ̇

(−)

0 of 0.5 m/s.
The mass m of the ball is 0.5 kg, whereas the radius R and the equivalent stiffness k are equal
to 0.08 m and 1.4 × 108 N/m1.5, respectively. When the ball collides with the ground, which
is considered to be rigid and stationary, the impact occurs, and the ball rebounds, and then
it jumps to a height. After that, the ball falls down until it collides with the ground again.
Finally, the ball rests on the ground after repeated collisions, jumps, and drops.

During the collision process, the response of the ball is obtained by the equivalent dy-
namic equation of impact system, in which the deformation δ between the ball and ground
is evaluated as

δ = R − y, (42)

where R represents the ball radius, and y denotes the ball center of mass. Additionally,
the ball motion between two adjacent collisions is solved by the Newtonian equations of
motion.
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Fig. 11 Kinematic results of a ball hits the ground: (a) Ball position; (b) Ball velocity

Fig. 12 Development of energy: (a) Total energy of the ball; (b) Accumulative error of energy loss per
collision

To evaluate the influence of the collision affected by constant external forces on the ball
motion, two cases of the ball motion are obtained under the same conditions of restitution
coefficient (0.8) and constant external force (5.1 N), and the results are plotted in Fig. 11.
The ball motion marked as “case A” is solved by the equivalent dynamic equation (24) and
Newtonian equations of motion, whereas (43) and the same Newtonian equations are used
for “case B”. In other words, the external forces consisting of the constant force F and
gravity are taken into account for the computation of each collision in case A; however, the
same computation does not consider the influence of external forces in case B. In addition,
the straight line shown in Fig. 11(a) indicates the ball position where the collisions start or
end.

meδ̈ + μδ
3
2 δ̇ + kδ

3
2 = 0. (43)

It appears that the difference of the ball motion between cases A and B increases firstly and
then decreases. This trend is also represented in Fig. 12(a), which illustrates the total energy
of the ball, including kinetic energy, elastic potential energy, gravity potential energy, and
the potential work done by constant force F . One step reduction of the total energy means
one collision, and �E10i and �E0i denote the energy loss of the ith collision in cases A
and B, respectively. It can be drawn from Fig. 11(a) and Fig. 12(a) that 10 collisions occur
in case A, whereas more collisions are needed for case B. In fact, these different responses
are caused by the accumulative error in the dissipative energy of each collision between
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Fig. 13 Relation of deformation and time in different models when ξ = 0.021: (a) ε = 0.3; (b) ε = 0.5;
(c) ε = 0.7; (d) ε = 0.9

cases A and B, as shown in Fig. 12(b). It can be observed that the first collision energy loss
calculated by (21) in case A is greater than in case B. Since the dissipative energy errors of
the next two collisions are also larger than zero, the accumulation of this error reaches the
maximum value right after the third collision. From the fourth collision, the initial approach
velocity of each impacts in case B is significantly greater than the same velocity in case A,
and thus the cumulative error of the energy loss is decreased constantly. Moreover, the more
collisions required in case B are due to the consumption of the cumulative error during the
first three impacts.

According to this analysis, the first collision has a large influence on the dynamic re-
sponse of the ball, so a detailed analysis of this collision is carried out. In the case studies
presented here, four different contact force models, including the Hunt and Crossley model,
the Flores et al. model, the Shiwu Hu and Xinglin Guo model, and the model described in
this paper, are utilized to obtain the impact response. Three values (0.1 N, 60 N, 495 N) of
the constant external force F , and four values (0.3, 0.5, 0.7, 0.9) of the restitution coefficient
are also considered in the four different contact force models. It is worth noting that the
influence factors of the three values of F are equal to 0.021, 0.233, and 0.799, respectively,
which represent the small, moderate, and large effects of constant external forces.

Figures 13, 16, and 19, respectively, show the deformation–time curves, velocity–time
curves, and hysteresis loop curves of the ball when the influence factor ξ is equal to 0.021.
It appears that the results obtained by the Flores et al. model, the Shiwu Hu and Xinglin
Guo model, and the model described in this paper are close to each other. Moreover, these
results are also similar to the same outcomes shown in [4], where the external forces are not
considered.

The same impact responses of the ball are plotted in Figs. 14, 17, and 20 when ξ = 0.233.
By analyzing the curves in Fig. 14 it can be observed that the deformations at the end of
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Fig. 14 Relation of deformation and time in different models when ξ = 0.233: (a) ε = 0.3; (b) ε = 0.5;
(c) ε = 0.7; (d) ε = 0.9

Fig. 15 Relation of deformation and time in different models when ξ = 0.799: (a) ε = 0.3; (b) ε = 0.5;
(c) ε = 0.7; (d) ε = 0.9
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Fig. 16 Relation of deformation velocity and time in different models when ξ = 0.021: (a) ε = 0.3;
(b) ε = 0.5; (c) ε = 0.7; (d) ε = 0.9

Fig. 17 Relation of deformation velocity and time in different models when ξ = 0.233: (a) ε = 0.3;
(b) ε = 0.5; (c) ε = 0.7; (d) ε = 0.9
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Fig. 18 Relation of deformation velocity and time in different models when ξ = 0.799: (a) ε = 0.3;
(b) ε = 0.5; (c) ε = 0.7; (d) ε = 0.9

Fig. 19 Relation of contact force and deformation in different models when ξ = 0.021: (a) ε = 0.3;
(b) ε = 0.5; (c) ε = 0.7; (d) ε = 0.9
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Fig. 20 Relation of contact force and deformation in different models when ξ = 0.233: (a) ε = 0.3;
(b) ε = 0.5; (c) ε = 0.7; (d) ε = 0.9

collision obtained by all models except the Hunt and Crossley model are greater than zero
when the restitution coefficient is equal to 0.3. This means that the ball enters nonseparation
state at the end of collision. Meanwhile, only the postimpact deformation obtained by the
described model in this paper exhibits the nonseparation state when ε = 0.5. It should be
noted that the nonseparation state results in the zero separation velocity and incomplete
hysteresis loop, as shown in Figs. 17 and 20. When the restitution coefficient is 0.7 or 0.9,
the Flores et al. model and the Shiwu Hu and Xinglin Guo model exhibit similar responses
compared to the case simulated with the model described in this paper.

Furthermore, the large influence of the constant external forces on the dynamic behavior
of the collision between the ball and ground are illustrated in Figs. 15, 18, and 21. Under
the condition of ξ = 0.799, most all the results obtained by the four models represent the
nonseparation state. All the responses obtained by the Hunt and Crossley model, the Flores
et al. model, and the Shiwu Hu and Xinglin Guo model have obvious errors compared to the
described models, even if the coefficient of restitution is close to unity.

In conclusion, the larger the value of influence factor or the smaller the restitution co-
efficient, the harder the ball separates from the ground. The influence of external forces on
collision can be ignored when the influence factor is small (0 ≤ ξ < 0.1) and the Flores et
al. model, the Shiwu Hu and Xinglin Guo model, and the model described in this paper
are suitable for soft and hard contacts. However, the external forces should be considered
carefully for soft contact when the influence of external forces is moderate (0.1 ≤ ξ < 0.5),
and all the models shown in this paper except the Hunt and Crossley model present the ap-
proximate response when the restitution coefficient is high or moderate. When the influence
factor is large (0.5 ≤ ξ < 1), the collision analysis for both soft and hard contact needs to
take the external forces into account carefully.
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Fig. 21 Relation of contact force and deformation in different models when ξ = 0.799: (a) ε = 0.3;
(b) ε = 0.5; (c) ε = 0.7; (d) ε = 0.9

7 Conclusions

In this paper, the issue of contact force model considering constant external forces is an-
alyzed for collision in multibody dynamics. As the basic problem, the collision evolution
associated with fundamental contact mechanics was discussed. Furthermore, the influence
of constant external forces on contact-impact event was also estimated, especially for the
impact end state. Based on the energy model of restitution coefficient and the judgment
criterion of impact end state defined in this paper, a numerical computation method for hys-
teresis damping factor was proposed due to the lack of an important boundary condition, and
then a parametric surface related to the hysteresis damping factor was obtained. Combining
the curve fitting method and the parametric surface, a contact force model was derived for
analyzing the dynamic response of impact system under external forces. In addition, the
advantages and limitations of the new model together with three classical models were an-
alyzed by comparing the post- and prerestitution coefficient. Finally, a simple problem was
utilized to analyze and compare four contact force models. The results indicate that the ex-
ternal forces and the energy loss are the main reasons for the multibody system to enter a
steady contact state from repeated impact state. The larger influence of external forces or
the smaller the restitution coefficient, the easier the occurrence of the nonseparation state.
The influence of the constant external forces can be divided into the small, moderate, and
large levels, which correspond to the values 0–0.1, 0.1–0.5 and 0.5–1 of ξ , respectively.
Except the small value of ξ , the constant external forces should be considered carefully for
collision. The described model is more suitable for impact analysis in multibody dynamics.
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