
Multibody Syst Dyn (2018) 44:313–334
https://doi.org/10.1007/s11044-018-09633-5

Online prediction model for wheel wear considering
track flexibility

Gongquan Tao1 · Dexiang Ren1 · Linfeng Wang2 ·
Zefeng Wen1 · Xuesong Jin1

Received: 28 November 2017 / Accepted: 23 May 2018 / Published online: 9 July 2018
© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract The objective of this study is to develop a new online model for wheel wear that
takes into account the track flexibility. The proposed model consists of two parts that in-
teract with each other, namely, (a) a locomotive/track coupled dynamics model considering
the track flexibility, which is validated by field measurement results, and (b) a model for
the wear estimation. The wheel wear prediction model can be employed in online solu-
tions rather than in post-processing. The effect of including the track flexibility on the wear
estimation is investigated by comparing the results with those obtained for a rigid track.
Moreover, the effect of the wheel profile updating strategy on the wheel wear is also ex-
amined. The simulation results indicate that the track flexibility cannot be neglected for the
wheel wear prediction. The wear predicted with the rigid track model is generally larger than
that predicted with the flexible track model. The strategy of maintaining unchanged wheel
profiles during the dynamic simulation coincides with the online updating strategy in terms
of the predicted wear.

Keywords Electric locomotive · Wheel wear · Track flexibility · Online simulation

1 Introduction

Wheel/rail wear, which can modify the wheel/rail profile, is an important problem in the rail-
way industry. The evolution of the wheel/rail wear profile can deteriorate the vehicle/track
dynamic performance. To ensure a consistent dynamic behavior and safety of a train during
operation, the wear profiles must be periodically re-profiled by turning the wheels or grind-
ing the rails. However, the method to determine or optimize the maintenance interval, which
has a significant effect on the lifetime of the wheels and rails and maintenance costs, is a key
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issue in this regard. Therefore, it is extremely important to develop a reliable wear model to
predict the evolution of the wheel/rail profiles with the wear.

In the past three decades, numerous papers have reported the investigation of the
wheel/rail wear phenomenon, and different wear estimation methodologies have been pro-
posed. Jendel [1] developed a wear prediction tool based on a load collective concept to
calculate the wheel wear of the vehicles operating in a commuter rail network in Stockholm.
This tool consists of a vehicle model, a railway network definition, and the Archard wear
model with the associated wear maps. The vehicle dynamics model is implemented with the
GENSYS software. The contact between the wheel and rail is derived based on the Hertz
theory and simplified theory of Kalker (FASTSIM algorithm) applied in the normal and tan-
gential directions, respectively. However, the elastic contribution to the creep is neglected.
Braghin et al. [2] presented a fast and reliable wear prediction model. In their model, the
wear function developed by the University of Sheffield [3, 4] (known as the USFD wear
function) was used. Ding et al. [5] proposed a wheel wear model to predict the evolution
of the wheel profile shape of heavy-haul freight cars. The semi-Hertzian method [6] and
FASTSIM algorithm were used to solve the normal and tangential contact problems, respec-
tively. The wheel wear function proposed by Zobory [7] was used to evaluate the material
loss caused by the wear. A powerful wear prediction model was developed and validated by
the University of Florence [8–12]. It can be used to evaluate the evolution of both the wheel
and rail profiles under wear. The Shen–Hedrick–Elkins theory [13] was used to evaluate the
wheel/rail creep force in a dynamic simulation, whereas the simplified theory of Kalker [14]
implemented in FASTSIM was employed to solve the local contact problem during wear
prediction. Pombo et al. [15] developed a wheel wear computational tool to study the effects
of the primary suspension stiffness, rail cant, track/braking forces, and vehicle velocity on
the wear progression. This tool implements a dynamic simulation of railway vehicles using
VAMPIRE and a post-processing module to predict the wheel wear. Vollebregt et al. [16]
demonstrated that the difference of calculated creep forces is obvious by using different
rolling contact algorithms, particularly in the case of large-spin creepage, which represents
a wheel flange root or wheel flange contact with the rail gauge corner. This situation usually
occurs when a train operates on tight curved tracks. Zhang et al. [17] developed an online
wheel wear model based on a combination of a multi-body dynamic model and Archard
wear theory by performing a SIMPACK and MATLAB/Simulink co-simulation to assess
the HXN5 locomotive wheel wear. However, the wheel profile remained unchanged dur-
ing the simulation. Li et al. [18] proposed a novel model to simulate the wheel wear. In
this model, the coupling dynamics of a railway vehicle and track was used to predict the
dynamic response. The vehicle was modeled as a multi-body system with 35 degrees of
freedom (DOFs). The track was a flexible three-layer model consisting of rails, sleepers,
and a ballast bed. The rails were modeled as Euler beams discretely supported by sleepers.
The Shen–Hedrick–Elkins model was adopted to solve the tangential contact problem in dy-
namic simulations. The necessary quantities for the wear prediction were collected after per-
forming a dynamic simulation. Subsequently, they were taken as inputs in post-processing
to estimate the wheel wear, where the modified CONTACT code of Kalker [19] was used
to recalculate the tangential contact, whereas the Archard wear model was used in the lo-
cal wear calculation. Jin et al. [20] suggested a rail wear prediction method. The proposed
model considered a combination of the non-Hertzian rolling contact theory of Kalker, a rail
material wear model, the coupling dynamics of a vehicle and track, and a three-dimensional
contact geometry analysis of the wheel–rail pair. The rail wear was also calculated offline.
The effect of the rail flexibility on the wheel wear prediction was investigated by Aceituno
et al. [21]. The rails were modeled using a finite element floating frame as the reference
approach and modal reduction techniques, whereas the subrail foundation was ignored.
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In the above literature, either the track flexibility was ignored, or the wear estimation
was achieved in the post process rather than in the online solution. With increasing train
speed and axle load, the dynamic interaction between the vehicle and track is intensified.
Some previous research work indicated that the track flexibility cannot be neglected; this
has a significant effect on the wheel/rail contact behavior [22–24], such as wheel/rail con-
tact positions, creepages, spin, and creep forces. These quantities are closely related with
the wear estimation. Moreover, a fast, simple contact algorithm in the dynamic simulation
and a rigorous model in the wear estimation were employed in numerous wear prediction
models. The use of different contact models in the dynamics simulation and wear estimation
could not ensure that the contact forces used in the wear calculation satisfied the equilibrium
equations in the dynamic simulation.

The objective of this study is to develop a new online wheel wear model by considering
the track flexibility. The proposed model consists of two submodels: a locomotive/track cou-
pled dynamics model and a model for the wear estimation. The two submodels interact with
each other. The three-dimensional (3D) coupled locomotive/track dynamics model includes
three subsystems: a locomotive, ballasted track, and wheel/rail contact. The track flexibility
is considered in the current model. The wheel wear estimation model proposed in this pa-
per can be employed in online solutions rather than in post-processing. The wheel wear is
estimated at each integrated time step. The wheel profile is updated per revolution, which
resembles an actual situation. The effect of the track flexibility on the wear estimation is
analyzed, and the results are compared with those obtained using a rigid track. The effect of
the wheel profile updating strategy on the wheel wear is also investigated. Some references
reported that the traction control strategies and contact conditions have a considerable effect
on the wheel/rail wear and curving behavior [25–27]. However, they are out of scope of the
current study.

2 Description of a new online wheel wear model

A new online wheel wear model taking into account the track flexibility is proposed. The
model consists of two parts that interact with each other, as shown in Fig. 1. In this model
(a) a locomotive/track coupled dynamics model and (b) a model for the wear estimation are
used. Based on the vertical and lateral vehicle/track coupled dynamics theory [28], a 3D
dynamics model of a locomotive coupled with a ballasted track is developed. The cou-
pled locomotive/track dynamics model includes three subsystems: a locomotive, track, and
wheel/rail contact. The flexibility of the components, such as the wheelset, bogie frame, and
car body, is ignored in the locomotive subsystem. The track flexibility is considered. The
rails are modeled as Timoshenko beams, the sleepers and ballast bed are assumed to be a
lumped mass. Equivalent springs and dampers are used to simulate the connections between
each part of the track. The wheel/rail contact model is the key subsystem that couples the
locomotive subsystem with the track subsystem at the wheel/rail interfaces. The nonlinear
Hertzian elastic contact theory is used to estimate the wheel–rail normal contact forces. The
simplified theory of Kalker implemented in FASTSIM [14] is used to calculate the tangential
wheel–rail creep forces and shear stress distribution. The local creep, shear stress distribu-
tion, contact patch dimension, and contact positions are output at each integration step of
the locomotive/track coupled dynamics simulation. Subsequently, these quantities are in-
put into the wear estimation model. The wear function considering the energy dissipated in
the wheel–rail contact patch with the worn material, developed by University of Sheffield
[3, 4], is used to evaluate the amount of material loss and material distribution along the
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Fig. 1 Scheme of the wheel wear prediction model

wheel profile. The wheel wear estimation model can be employed in online solutions rather
than in post-processing. The wheel wear is estimated at each integrated time step. The wheel
profiles are updated per revolution, which mimics an actual situation. The numerical noise
and short wavelength contributions are treated with a moving average filter. Then, a spline
smoothing is used to smooth the wear distribution and worn wheel profile before the next
step.

2.1 Locomotive/track coupled dynamics model

The coupled locomotive/track dynamics model includes three subsystems: a locomotive sub-
system, track subsystem, and wheel/rail contact subsystem. Each subsystem is described in
this section.

2.1.1 Locomotive subsystem

A high-power locomotive, widely used in China, is selected to be modeled in this study. The
locomotive has two bogies with two axles in a Bo–Bo configuration. The model consists of
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Fig. 2 Side elevation of the bogie

two identical units, Loco A and Loco B. Therefore, only one unit is considered here. Fig-
ure 2 shows the elevation of a bogie and suspension elements. This bogie has two stages
of suspensions. The primary suspensions are composed of two flexi-coil springs (each axle
box) to provide the vertical stiffness, a single longitudinal rod to provide the main longi-
tudinal stiffness and transmit the traction and braking force from the wheelset to the bogie
frame, and a nonlinear vertical damper. The secondary suspensions comprise six flexi-coil
springs (three for each side) to provide the longitudinal, lateral and vertical stiffness. Two
lateral nonlinear dampers are arranged at the end carriage of the bogie (see Fig. 2) to reduce
the lateral vibration of the car body. Meanwhile, they also can provide rotary torque to limit
the yaw motion of the bogie, which have similar function as the yaw damper. Two vertical
nonlinear dampers are arranged at each side of the bogie to reduce the vertical vibration from
the bogie to the car body. Additionally, the secondary suspensions also include a traction rod
to transmit the longitudinal force, and a nonlinear lateral bump stop to limit the lateral dis-
placement of the bogie. Each wheelset is equipped with an axle-hung motor. The wheelset,
bogie frame, and car body have six DOFs, i.e., the longitudinal, lateral, and vertical dis-
placements, and the roll, pitch, and yaw angle. However, only the vertical displacement and
pitch motion are considered for the motor. Therefore, the locomotive subsystem is modeled
as a 50 DOFs nonlinear multi-body system that includes 11 rigid components: a car body,
two bogie frames, four wheelsets, and four motors.

According to the D’Alembert’s principle, the motion equations of a locomotive subsys-
tem can be easily derived. These can be expressed in the form of second-order differential
equations in the time domain as

MẌ + CẊ + KX = FIN + FEXT, (1)

where X, Ẋ and Ẍ are the vectors of the displacements, velocities, and accelerations of the
locomotive subsystem, respectively; M is the mass matrix of the locomotive; C and K are the
damping and stiffness matrices of the suspension elements, respectively; FIN is the system
load vector representing the nonlinear wheel/rail contact forces; and FEXT represents the
external forces, including the gravity and forces resulting from the centripetal acceleration
during curve negotiation, as well as the traction and braking forces. The suspension elements
include linear and nonlinear elements. The damping and stiffness are not constant for the
nonlinear elements. The damping of the nonlinear dampers depends on the relative velocity
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Fig. 3 The nonlinear
characteristics of the dampers

Fig. 4 Serial spring–damper
force element used to represent a
damper

of the two ends of the element, and the stiffness of the lateral bump stop depends on the
relative displacement of its two ends. The damping and stiffness matrices C and K in (1)
vary with time for the terms of nonlinear suspension elements.

All the dampers, such as the vertical damper of the primary and secondary suspensions
and lateral dampers of the secondary suspensions, are modeled as serial spring–damper
force elements, and their nonlinear characteristics are considered (see Fig. 3). The distance
between two connect points (point A and B in Fig. 4) of the force element is assumed as l.
The initial length of the spring is l0, and its length is l1 after deformation. The damper length
is l2. The inertia of the damper is ignored. Spring force Fs and damper force Fd at point P
are equivalent. Therefore, the force element has the following relation:

l = l1 + l2, (2)

Fs = Fd, Fs = k(l1 − l0), Fd = cl̇2, (3)

where k is the rubber joint stiffness and c is the damping of the damper. The damping is
nonlinear, and its value depends on the velocity of the two connect points.

The first derivative of (2) can be written as

l̇ = l̇1 + l̇2. (4)

From (2)–(4), we can obtain the following first-order differential equation

cl̇2 + kl2 = k(l − l0). (5)

Equation (5) can be solved with the motion of equations of the locomotive subsystem.
The lateral bump stop installed on the secondary suspension is modeled using a bilinear

spring element. The force of the lateral bump stop is

FyST =
{

0, |�yST| < δ,

KST(|�yST| − δ), |�yST| ≥ δ,
(6)
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Table 1 Main parameters of the electric locomotive used in the simulation

Notation Parameter Value

Mc Car body mass (kg) 61882

Mt Bogie mass (kg) 4698.5

Mw Wheelset mass (kg) 3562

Mm Motor mass (kg) 1100.5

Icx Mass moment of inertia of car body about X axis (kg m2) 95970

Icy Mass moment of inertia of car body about Y axis (kg m2) 1539900

Icz Mass moment of inertia of car body about Z axis (kg m2) 1536740

Itx Mass moment of inertia of bogie frame about X axis (kg m2) 2260

Ity Mass moment of inertia of bogie frame about Y axis (kg m2) 8480

Itz Mass moment of inertia of bogie frame about Z axis (kg m2) 10360

Iwx Mass moment of inertia of wheelset about X axis (kg m2) 2064

Iwy Mass moment of inertia of wheelset about Y axis (kg m2) 573

Iwz Mass moment of inertia of wheelset about Z axis (kg m2) 2064

Imx Mass moment of inertia of motor about X axis (kg m2) 320

Imy Mass moment of inertia of motor about Y axis (kg m2) 350

Imz Mass moment of inertia of motor about Z axis (kg m2) 320

Kpx Primary suspension stiffness along X axis (MN/m) 40.83

Kpy Primary suspension stiffness along Y axis (MN/m) 4.83

Kpz Primary suspension stiffness along Z axis (MN/m) 2.91

Ksx Secondary suspension stiffness along X axis (MN/m) 0.6975

Ksy Secondary suspension stiffness along Y axis (MN/m) 0.6975

Ksz Secondary suspension stiffness along Z axis (MN/m) 1.671

Kmz Stiffness of motor suspend along Z axis (MN/m) 95

Ktx Traction rod stiffness along X axis (MN/m) 50

Kty Traction rod stiffness along Y axis (MN/m) 50

where KST is the contact stiffness when the car body contacts the bump stop, �yST is the
lateral relative displacement between the car body and bogie frame at the position of the
bump stop, and δ is the lateral clearance between the car body and bump stop in the bogie
frame.

The flexi-coil spring with primary and secondary suspensions, the longitudinal rod of
primary suspension, the traction rod for secondary suspensions and the motor suspender are
modeled as 3D linear spring force elements. The main parameters of the electric locomotive
used in the simulation are listed in Table 1.

2.1.2 Track subsystem

The track flexibility is considered in the current model. The rails are modeled as Timoshenko
beams, discretely supported by sleepers. Each sleeper is assumed to be a lumped mass, and
the lateral, vertical, and roll motions are considered. The ballast bed is treated as equivalent
rigid ballast bodies. Only the vertical motion of the ballast bed is considered. Equivalent
springs and dampers are employed as the connections between each part of the track.
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Using the modal superposition method and normalized shape function of a Timoshenko
beam, the fourth-order partial differential equations of the rails are converted into second-
order ordinary differential equations as follows [29, 30]:
(Lateral vibration)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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1
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2
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[
NW∑
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)
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sin

(
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)
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]
,
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(7)

(Vertical vibration)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(Torsional vibration)
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ρrIr0

(
kπ
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)2
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In (7)–(9), qyk(t ), qzk(t ), and qT k(t ) are the generalized coordinates of the lateral, vertical,
and rotational deformation of the rail, respectively, and wyk(t ) and wzk(t ) are the general-
ized coordinates of the deflection curve of the rail with respect to the z-axis and y-axis,
respectively. The material properties of the rail are determined by density ρr, shear modulus
Gr, and Young’s modulus Er; mr is the mass per unit longitudinal length. The geometry of
the cross-section of the rail is represented by area Ar, second moments of area Iry and Irz

around the y-axis and z-axis, respectively, and polar moment of inertia Ir0; κry and κrz are
the shear coefficients for the lateral and vertical bending, respectively, and GrKr is the rail
torsional stiffness. The calculation length of the rail is denoted by lr; Frsyj and Frszj are the
lateral and vertical forces between the rail and sleeper j , respectively. The wheel/rail forces
at wheel i in the lateral and vertical directions are represented by Fwryi and Fwrzi , respec-
tively; Mrsj and Mwri denote the equivalent moments acting on the rail; xsj and xwi denote
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Table 2 Main parameters of the ballasted track used in the simulation

Notation Parameter Value (per rail seat)

Er Elastic modulus of rail (N/m2) 2.059 × 1011

ρr Density of rail (kg/m3) 7.86 × 103

Ir0 Torsional inertia of rail (m4) 3.741 × 10−5

Iy Rail second moment of area about Y axis (m4) 3.217 × 10−5

Iz Rail second moment of area about Z axis (m4) 5.24 × 10−6

mr Rail mass per unit length (kg/m) 60.64

GrKr Rail torsional stiffness (N m/rad) 1.9587 × 105

κry Rail lateral bending shear coefficient 0.4057

κrz Rail vertical bending shear coefficient 0.5329

Ms Sleeper mass (half) (kg) 125.5

Kpv Fastener stiffness in vertical direction (N/m) 6.5 × 107

Kph Fastener stiffness in lateral direction (N/m) 2.0 × 107

Cpv Fastener damping in vertical direction (N s/m) 7.5 × 104

Cph Fastener damping in lateral direction (N s/m) 5.0 × 104

ls Sleeper spacing (m) 0.545

le Effective support length of half sleeper (m) 0.95

lb Sleeper width (m) 0.273

ρb Ballast density (kg/m3) 1.8 × 103

Eb Elastic modulus of ballast (Pa) 1.1 × 108

Cb Ballast damping (N s/m) 5.88 × 104

Kw Ballast shear stiffness (N/m) 7.84 × 107

Cw Ballast shear damping (N s/m) 8.0 × 104

α Ballast stress distribution angle (°) 35

hb Ballast thickness (m) 0.45

Ef Subgrade K30 modulus (Pa/m) 9.0 × 107

Cf Subgrade damping (N s/m) 3.115 × 104

the longitudinal positions of sleeper j and wheel I ; Nw and Ns are the number of wheelsets
and sleepers within the analyzed rail, respectively. Subscript j represents a sleeper j and i

for wheel i; NL, NV, and NT are the total numbers of shape functions.
It is easy to establish the equations of motion of the sleepers and ballast masses by ap-

plying the D’Alembert’s principle. For brevity, the differential equations of the sleeper and
ballast bodies are omitted in this paper. The main parameters of the track used in the simu-
lation are listed in Table 2 [23, 29].

The “Tracking Window” model developed by Xiao et al. [31] is used to take into account
the effects of discrete support. The locomotive/track system is a large-scale dynamic system.
The motions of the system are described by nonlinear equations. They have to be solved by
numerical solution. In order to balance the calculation efficiency and accuracy, a simple fast
explicit integration method proposed by Zhai is employed [32].

2.1.3 Wheel/rail contact subsystem

The wheel/rail contact is a key part of the locomotive/track coupling dynamics model that
couples the locomotive subsystem with the ballasted track subsystem. The main purpose
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of the wheel/rail contact model is to determine the wheel/rail contact position and contact
forces between the wheel and rail interface. The contact point on the wheel and rail surface
is calculated based on an improved geometric calculation model of the wheel/rail contact
discussed in [19].

The wheel/rail normal contact forces are estimated by the Hertzian nonlinear elastic con-
tact theory, which is written as [33]

P (t) =
{

[ 1
G

δi(t)]3/2, δi(t) > 0,

0, δi(t) ≤ 0,
(10)

where δi(t) is the normal elastic compression deformation of the wheels and rails at the
contact points; G is the wheel/rail contact constant, and it is different for conical profiles
and worn-shaped profiles, which is written as [33]

G =
{

4.57R−0.149 × 10−8 (m/N2/3), for conical profile,

3.86R−0.115 × 10−8 (m/N2/3), for worn-shaped profile,
(11)

where R is the wheel radius (m).
With the purpose of developing a local online wheel wear prediction model, the simpli-

fied theory of Kalker [14] implemented in FASTSIM is employed to calculate the tangential
wheel/rail contact forces, tangential stresses, and local creep distribution within the contact
patch. In the FASTSIM algorithm, the tangential stress distribution is evaluated by the nu-
merical integration over the contact patch area from the leading edge to the trailing edge. In
the longitudinal integration region the tangential stresses are calculated as follows:{

px(x − �x,yi) = px(x, yi) − �px,

py(x − �x,yi) = py(x, yi) − �py,
(12)

where px and py are the longitudinal and lateral stresses, respectively; (x − �x,yi) and
(x, yi) are the particles in the current and previous integration step, respectively; �x is the
mesh length in the longitudinal directions so that px and py are equal to zero for a particle at
the leading edge; and �px and �py are the stress increments in the longitudinal and lateral
directions, respectively, and they are written as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
�px =

(
ξx

Lx

− ξηyi

Lϕ

)
�x,

�py =
[

ξy

Ly

+ ξη(2x − �x)

2Lϕ

]
�x,

(13)

where ξi for i= x, y, η are the longitudinal, lateral, and spin creepages, respectively; Li , i=
x, y, η, are the longitudinal, lateral and spin flexibility parameters, respectively.

The local stress magnitude at the current integration particle is

pt(x − �x,yi) =
√[

px(x − �x,yi)
]2 + [

py(x − �x,yi)
]2

. (14)

The traction bound in FASTSIM is determined by the parabolic normal traction and
friction coefficient

p3(x − �x,yi) = 2P

πab

(
1 − x2

i

a2
− y2

i

b2

)
. (15)
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Fig. 5 Wear rate as a function of
the wear index

If the local stress magnitude does not exceed the traction bound, which implies the par-
ticle is in the stick zone, the tangential stresses can be calculated with (12), and the corre-
sponding local creep is equal to zero. On the contrary, if the actual particle is in the slip
zone, the stress is reduced according to⎧⎪⎪⎪⎨

⎪⎪⎪⎩
pxs(x − �x,yi) = [

px(x, yi) − �px

]μp3(x − �x,yi)

pt (x − �x,yi)
,

pys(x − �x,yi) = [
py(x, yi) − �py

]μp3(x − �x,yi)

pt (x − �x,yi)
.

(16)

The local creep including the elastic contribution can be calculated according to [34]⎧⎪⎪⎨
⎪⎪⎩

ωx = Lx

�x

[
pxs(x − �x,yi) − px(x − �x,yi)

]
,

ωy = Ly

�x

[
pys(x − �x,yi) − py(x − �x,yi)

]
.

(17)

2.2 Wear model

The wear function considering the energy dissipated in the wheel/rail contact patch with a
worn material, developed by the University of Sheffield [3, 4], is used to evaluate the wheel
wear. Three wear regimes are defined in the wear function, i.e., mild wear, severe wear,
and catastrophic wear corresponding to K1, K2, and K3 regimes in Fig. 5. The analytical
expression for wear rate Kw (µg/m/mm2), which expresses the weight loss in the material
(µg) per distance rolled (m) per contact area (mm2), is given by the following equation [3, 4]:

Kw =

⎧⎪⎨
⎪⎩

5.3 × Iw, Iw < 10.4,

55.0, 10.4 ≤ Iw ≤ 77.2,

61.9 × Iw − 4778.7, Iw > 77.2,

(18)

where Iw (N/mm2) is the local frictional power in the contact patch and can be written as

Iw(x, y) = p(x, y) · γ (x, y) (19)

where p(x, y) and γ (x, y) are the traction stresses and local creep in each point (x, y) of
the contact patch particle, respectively.



324 G. Tao et al.

After estimating the wear rate, wear distribution δp(t)(x, y) in each point (x, y) of the
contact patch particle can be calculated as

δp(t)(x, y) = K(Iw)

ρ
�x, (20)

where ρ is the material density of the wheel material (expressed in kg/m3) and �x is the
length of the meshes of the contact patch in the longitudinal direction.

Then, all the wear contributions within contact patch are summed in the longitudinal
direction. The wear distribution at one cross-section is achieved as

δtot
p(t)(y) =

∫ +a(y)

−a(y)

δp(t)(x, y) dx. (21)

Lastly, the wear distribution during the dynamic simulation is summed to get

Wd(y) = 1

2πR

∫ Tend

Tstart

δtot
p(t)(y)v dt, (22)

where R is the nominal rolling radius, v is the vehicle speed, and Tstart and Tend are the
starting and the ending time of the simulation.

3 Simulation results

3.1 Validation of the locomotive/track dynamics model

The locomotive/track coupled dynamics model was validated by field measurement results.
The straight line running test was conducted at a loop railway line at the China Academy of
Railway Sciences. The track structure in the experimental section is a typical ballast track
widely used in China, conventionally the speed railway line. The rails are Chinese, 60 kg/m.
Type II concrete sleepers are used, and the rail cant is 1/40. The test speeds of 80, 100,
110, 120, and 132 km/h are tested. The main results such as the derailment coefficient, rate
of wheel load reduction, car body acceleration, and Sperling index from the dynamics per-
formance test are given here, and compared with those obtained from the locomotive/track
dynamics model. Owing to the lack in actual track irregularities at the test section, the track
random irregularity of China Railway mainlines [23] is used in the current study. Speed
ranges from 80 to 135 km/h with an interval of 5 km/h in the simulation are studied. The
track flexibility is considered during the model validation.

Figure 6(a) and (b) show the maximum values of the derailment coefficient and rate of
wheel load reduction, respectively. The derailment coefficient, namely Nadal coefficient,
defined as the ratio of the lateral force to the total vertical force on the same wheel (Q/P )
[35]. The rate of wheel load reduction (wheel unloading ratio) [33] is defined as the ratio
of the reduction in the vertical dynamical forces on both wheels of a wheelset to the total
vertical wheelset loading. It can be calculated as

Rwheel_unloading = P̄ − P

P̄
, (23)

where P is the vertical force and P̄ is the static vertical force. If P < P̄ , the wheel unloading
ratio will be calculated.
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Fig. 6 Comparison of the measured and simulated (a) coefficient of derailment and (b) rate of wheel load
reduction on a straight track

Fig. 7 Comparison of the measured and simulated (a) vertical and (b) lateral car body acceleration on a
straight track

The instrumented wheelset was used to measure the lateral and vertical wheel/rail forces
during the test. After obtaining the wheel/rail forces, the derailment coefficient and wheel
unloading ratio can be calculated through the wheel/rail forces. Both the measurement and
simulation results indicate that the derailment coefficient and rate of wheel load reduction
increase with speed. The derailment coefficients obtained from the simulations are slightly
larger than those of the measurement. Both the rates of wheel load reduction are in good
agreement.

The maximum car body acceleration and Sperling ride comfort index are chosen for the
comparison of the locomotive dynamic responses. The Sperling index could be calculated
with Sperling’s method based on the car body accelerations and weighted by frequencies
[36]. The comparison results are illustrated in Figs. 7 and 8. The results indicate that the ver-
tical car body acceleration and vertical Sperling index of the simulation are slightly smaller
than those of the measurement, whereas the lateral car body acceleration and lateral Sperling
index are in reasonable agreement for the simulation and measurement.

Time histories of the derailment coefficient during the locomotive curving negotiation
are also compared, as shown in Fig. 9. The instrumented wheelset was used to measure
the lateral and vertical wheel/rail forces. Then the coefficient of derailment can be obtained
through the wheel/rail forces. A low pass filter with 40 Hz was used to filter the results.
The curve radius is 300 m with a super-elevation of 140 mm. The locomotive speed is
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Fig. 8 Comparison of the measured and simulated (a) vertical and (b) lateral Sperling index on a straight
track

Fig. 9 Comparison of the (a) measured and (b) simulated coefficient of derailment on a curved track with a
radius of 300 m. The locomotive speed is 70 km/h

70 km/h. The locomotive speed, the radius of circular curved track and super-elevation in
the simulation coincided with the actual situation, while the length of each part of the curved
track of the test section was unknown. The simulated coefficient of derailment is in good
agreement with the measured one for both the inner and outer side wheel in the circular
curved track. The start position of the measured results may be at the circular curved track,
however, a complete curved track, including 50 m straight track, 60 m transition curve,
230 m circular curved track, 60 m transition curve and 30 m straight track, is considered in
the simulation. It can be seen from these figures that the time responses of the derailment
coefficient estimated by the locomotive/track coupled dynamics model agree well with the
field measurement results.

The wheel–rail profiles are the standard profiles in the simulation, which may have same
difference with the actual ones after wear. Moreover, the track irregularities and the friction
coefficient are hypothetical, and the traction/braking action are ignored. It is inevitable to
have some difference between the simulation and measurement results. The tendency of the
simulation results are coincided with the measured ones. Comparing the simulation results
with the field measurement results proves that the numerical simulation model developed
herein is reasonable.
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Table 3 Curved tracks with
small radii for Case 1 Radius (m) Super-elevation (mm) Speed (km/h) Total length (m)

300 142 60 1090

400 106 60 1090

600 71 60 1090

800 53 60 1090

Table 4 Curved tracks with
large radii for Case 2 Radius (m) Super-elevation (mm) Speed (km/h) Total length (m)

1000 76 80 1090

2000 38 80 1090

3000 25 80 1090

4000 19 80 1090

3.2 Effects of track flexibility on wheel wear

To investigate the effect of track flexibility and wheel profile updating strategy on the wheel
wear, two simulation cases are studied. For Cases 1 and 2, a series of idealized curved tracks
with small and large radii are designed and given in Tables 3 and 4, respectively. The tracks
considered in the present study consist of 50 m straight tracks, 80 m transition curve, 800 m
circular curved track, 80 m transition curve, and 80 m straight track. The total length of the
track is 1090 m. The operating speed of the locomotive is assumed to be constant during
the simulation. The traction and braking forces are ignored. The track random irregularity
of China Railway mainlines [23] is used in the current study.

In the classical vehicle dynamics model, the track flexibility is ignored. However, some
field measurement and numerical results indicate that the track flexibility has a significant
effect on the vehicle and track dynamic response [23], particularly for wheel/rail contact
forces, which are necessary for wheel wear prediction. The axle load of the electric locomo-
tive, modeled in this paper, is 25 tons. With increasing axle load, the dynamic interaction
between the locomotive and track cannot be neglected. In this section, the difference in
the wheel/rail interaction and wheel wear between the flexible track and rigid track will be
investigated in detail.

3.2.1 Wheel/rail interaction

Not only the locomotive dynamic response, but also the track dynamic response can be
considered in the locomotive/track coupling dynamics model developed herein. Figure 10
illustrates the time history of the lateral rail displacement and rail roll displacement under
the first wheelset during a curve negotiation simulated by the flexible track model. The curve
radius is 300 m, but the circular part is only 200 m, and the other parameters are the same
as those listed in Table 3. It can be seen from Fig. 10 that the high rail and low rail are
squeezed outward by the lateral wheel–rail forces in the process of curve negotiation, and
the maximum lateral displacement of the rail reaches 2.04 mm. The maximum dynamic rail
gauge widening is 2.37 mm in this case. Moreover, the rail roll displacement is also obvious,
and the maximum absolute value is about 5 mrad for the high rail. The rail roll motion is
equivalent to the change of rail cant. The rail cant in the simulation is 1/40, that means
the inclined angle of the high rail is about 25 mrad. At this situation, the rail roll motion
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Fig. 10 Time history of the (a) rail lateral displacement and (b) rail roll displacement during curve negotia-
tion

Fig. 11 Comparison of the longitudinal creep force of the leading wheelset of the first bogie between
the (a) flexible and (b) rigid track

is equivalent to the rail cant changes from 1/40 to 1/50 for the high rail. The variation in
the rail gauge and rail roll displacement will inevitably lead to a change in the wheel rail
contact geometry relationship, creepages, and creep forces. This effect is taken into account
in current locomotive/ track coupled model.

Figures 11 and 12 compare the longitudinal and lateral creep forces of the first wheelset
of a locomotive curving on flexible and rigid track models, respectively. The results indi-
cate that both longitudinal and lateral creep forces predicted with a flexible track model are
generally smaller than those with a rigid track model, which is in agreement with the conclu-
sions published in [23]. Figure 13 shows the wear numbers (T γ ) calculated with the flexible
track model and rigid track model. It can be seen from the results that there is a significant
difference between the two models. The wear number variation of the rigid model is larger
than that of the flexible model. Therefore, the wheel wear predicted by the two models may
have an obvious difference.

3.2.2 Wheel wear

Figures 14 and 15 compare the wear spreading of the leading wheelset on the curved tracks
with small and large radii, defined in Tables 3 and 4, respectively. The wear spreading shapes
predicted with the flexible and rigid track models are very similar, but the maximum wear
depth has some difference, particularly for the outer wheel of the curved tracks with a small
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Fig. 12 Comparison of the lateral creep force of the leading wheelset of the first bogie between the (a) flex-
ible and (b) rigid track model

Fig. 13 Comparison of the wear index of the leading wheelset of the first bogie between the (a) flexible and
(b) rigid track model

Fig. 14 Comparison between the flexible and rigid track models based on the leading wheelset wear depths
on curved tracks with small radii: (a) outer wheel and (b) inner wheel

radii. The maximum wear depth for a flexible track model is 12.8 µm for R300, whereas the
value is 16.2 µm for the rigid track model for the same case. The reason is that the creep
forces and creepages obtained by the rigid track model are larger than those by the flexible
track model, which results in the obvious difference in the frictional power. Finally, the wear
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Fig. 15 Comparison between the flexible and rigid track models based on the leading wheelset wear depths
on curved tracks with large radii: (a) outer wheel and (b) inner wheel

Fig. 16 Comparison between the flexible and rigid track models based on the wheel wear area: (a) first
wheelset, (b) second wheelset, (c) third wheelset, and (d) fourth wheelset

depths for the two models are different. In the flexible model, the track vibration is taken
into account, and it is closer to the actual situation.

To further compare the differences in the wheel wear predicted by the flexible and rigid
track models, the wear area is derived. The wear area is the region formed by the wear
spreading and the lateral axis. It can be obtained by integrating the wear depth at each lateral
position. Figure 16 shows the wear area of each wheel calculated with the flexible and rigid
track models. It can be found that the difference is relatively small for the leading wheelset
of each bogie, except for the outer wheel on R300 and R400 curved tracks. The wear areas
for the rigid track model are 6.24% and 2.69% larger than those for the flexible track model
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Fig. 17 Comparison of the leading wheelset wear depths on the curved tracks with small radii without and
with online updating: (a) outer wheel and (b) inner wheel

Fig. 18 Comparison of the leading wheelset wear depths on the curved tracks with large radii without and
with online updating: (a) outer wheel and (b) inner wheel

for the outer wheel on R300 and R400 curved tracks, respectively. The differences in the
trailing wheelset are more obvious than that of the leading wheelset. The wear area for the
rigid track model is larger than that for the flexible track model for each curved track. The
average increase is 4.5%.

3.3 Effects of the updating strategy on wheel wear

Two wheel profile updating strategies are considered in this paper. The first is that the wheel
profiles remain constant during the dynamic simulation, and the second one is that the wheel
profiles are updated per revolution. The simulation cases are the same as the previous sec-
tion. Figures 17 and 18 compare the wear spreading of the leading wheelset on the curved
tracks with small and large radii, respectively. The wear spreading for the two updating
strategies is almost the same, and the wear area of each wheel also has a minor difference,
as shown in Fig. 19. The simulation results indicate that the strategy of keeping the wheel
profiles unchanged during the dynamic simulation coincides with the online updating strat-
egy in terms of the predicted wear.

4 Conclusions

A new online prediction model for wheel wear considering the track flexibility is devel-
oped in this study. The model consists of two parts that interact with each other, namely,
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Fig. 19 Comparison of wheel wear area without and with online updating: (a) first wheelset, (b) second
wheelset, (c) third wheelset, and (d) fourth wheelset

(a) a locomotive/track coupled dynamics model considering the track flexibility, which is
validated by the field measurement results, and (b) a model for the wear estimation. Based
on the vertical and lateral vehicle/track coupled dynamics theory, a 3D dynamics model of
a locomotive coupled with a ballasted track is developed. The coupled locomotive/track dy-
namics model includes three subsystems: the locomotive, track, and wheel–rail contact. The
locomotive subsystem is modeled based on a multi-body dynamic theory. The flexibility of
all the components of the locomotive is ignored, but the track flexibility is considered in the
current model. The rails are modeled as Timoshenko beams discretely supported by sleep-
ers. Each sleeper is assumed to be a lumped mass, and the lateral, vertical, and roll motions
are considered. The ballast bed is considered equivalent to rigid ballast bodies. Only the ver-
tical motion of the ballast bed is considered. The normal and tangential wheel/rail contact
forces are calculated with the Hertzian theory and simplified theory of Kalker applied in
FASTSIM, respectively. The USFD wear function considering the energy dissipated in the
wheel/rail contact patch with a worn material is used to estimate the wheel wear. The wheel
wear prediction model can be employed in online solutions instead of in post-processing.
The effect of the track flexibility on the wear estimation is analyzed, and the results are
compared with those obtained from a rigid track. Moreover, the effect of the wheel profile
updating strategy on the wheel wear is also investigated. The simulation results indicate
that the track flexibility cannot be neglected for the wheel wear prediction. The wear pre-
dicted with the rigid track model is generally larger than that predicted with the flexible track
model. However, the strategy of keeping the wheel profiles unchanged during the dynamic
simulation coincides with the online updating strategy in terms of the predicted wear.
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