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Abstract Dynamical modeling of complex systems may include multiple combinations of
serial and tree topologies, as well as closed kinematic chain systems. Simulating of such
systems is a costly task not only for run time but also for construction time when a model
description and constraints are introduced. This paper presents a systematic framework of
a construction time efficient modeling methodology for complex systems by introducing
a path defined directed graph vector (Pgraph) and the associated methodology based on
Linear Graph Theory (LGT). Updating of body coordinate frame vectors which can be a
challenge in complex topology systems is easily performed using the proposed method. This
technique is especially useful for systems changing topology, such as walking mechanisms
where bilateral and unilateral constraints are conditionally embedded. Although this is a
general methodology, to be combined with many dynamical modeling algorithms available
in the literature, here we demonstrate it using Spatial Operator Algebra (SOA), which is a
recursive algorithm based on the Newton–Euler formalism.

Keywords Multibody dynamics · Construction time efficiency · Linear graph theory ·
Constraint embedding · Complex topology · Serial chain · Tree chain · Closed-chain ·
Open-chain · Model description · Spatial operator algebra · Newton–Euler formalism ·
Recursive computational algorithm

1 Introduction

During the mechanical design phase of a multibody system to achieve a desired motion, bod-
ies are interconnected forming different topologies. Complex multibody systems are those
that include multiple combinations of serial and tree topologies, as well as closed-chain
systems. Simulating of such systems based on high fidelity modeling is a challenging and
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costly task not only for run time but also for construction time when a model description
and constraints are introduced. Nevertheless, obtaining accurate yet computationally effi-
cient models of multibody systems is crucial for model-based controller design processes.
Without a systematic framework, however, modeling and formulating multibody dynamics
can be too tedious depending on the complexity of the system.

Complex topology systems are likely to have a high number of degree of freedom.
A number of computationally efficient programs were developed in the last couple of
decades to analyze and simulate the dynamics of multibody systems dealing with a large size
mass matrix whose inverse is computed in O(n) complexity [1–3, 5, 6, 15, 18]. Almost all of
these programs include graph-theoretical approaches to the definition of the system topol-
ogy. Among them Linear Graph Theory (LGT) has become a fundamental tool for solving
complex systems. LGT is initially introduced by Euler to get the solution to the well-known
“Königsberg bridge” problem in 1736. Since then, this approach has been widely used for
modeling different physical systems. In 1977, Wittenburg [22] introduced a formulation to
obtain the equation of motion of a complex multibody system. Later, McPhee et al. [14]
stated that Wittenburg formulation can be considered in the scope of LGT. McPhee et al.
also combined LGT with virtual work and symbolic computing methods to model a wide
range of multibody systems [19–21]. In this regard, we want to emphasize Spatial Operator
Algebra (SOA) [7, 10–13, 16, 17] on which this paper is based. Jain has combined SOA
with LGT to develop methods for partitioning, aggregating and constraint embedding for
multibody systems [8, 9].

All of these studies are done with a particular approach with some focus on optimizing
run time. However, the construction time efficiency is one of the major current challenges
in multibody dynamics, especially in the case of event-dependent changes in constraints as
well as topology. Construction time also includes the effort it takes to set rules for updating
of body coordinate frame vectors, which can be error prone.

In terms of describing the connectivity of the bodies, one of the important works done
in this area was proposed by Featherstone [4], where undirected graphs describe the con-
nectivity of the bodies by a parent array. Although this method is useful for describing the
connectivity of the bodies, it uses also additional two arrays which represent the set of chil-
dren of related body and the set of joints on the path between related body and root.

In this paper, we propose the Pgraph method which is used for describing the connec-
tivity of the bodies and branches based on LGT. Among the significant advantages of this
method, obtaining spatial force and spatial velocity distributions as well as updating body
coordinate frames in a systematic way should be emphasized. Furthermore, Pgraph is used
to incorporate the constraint forces into the equation systematically.

In this paper, we utilize Spatial Operator Algebra (SOA) with a minor difference. Al-
though the original SOA uses an inboard numbering scheme where the numeration of the
bodies is done in increasing order from the tip to the base, we use an outboard numbering
scheme (from the base to the tip) to be compatible with common literature.

This paper is organized as follows. Section 2 is on the basics of Linear Graph Theory
(LGT), Sect. 3 provides the mathematical basis of SOA with LGT. Section 4 presents the
Pgraph method. in Sect. 5, simulation results are presented. Finally, concluding remarks are
given in Sect. 6.

2 Basics of linear graph theory (LGT)

A graph consists of nodes and edges at least one of which is subject to multiple branches as
shown in Fig. 1. If the edges have directions, it is called a “directed graph” (digraph), where
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Fig. 1 A directed graph with
seven nodes

each edge defines parent/child relationship between sequential nodes. A root is the first node
and a tip is the last node. Therefore, the root has no parent, while the tip has no child.

Figure 1 demonstrates an example of a digraph with seven nodes. First node is the root
node, and fourth, fifth and seventh nodes are the tip nodes of the digraph. The parent node
of the j th node is denoted ρ(j). In this example, ρ(2) = 1, ρ(5) = 3, ρ(4) = 2 and so on.
In the so-called canonical tree structure type digraph, the index of a parent node is always
smaller than that of its child node. Two sequential nodes are defined as adjacent if they are
connected to each other by an edge. The adjacency matrix is an n × n matrix that shows the
connectivity of the nodes. The element in the ith row and the j th column of the adjacency
matrix is 1, if and only if the ith node is the child of the j th node. Otherwise, it is 0.

The adjacency matrix of a digraph, S, can be expressed as a sum of tensors in the follow-
ing form:

S =
n∑

j=2

∑

κ∈ρ(j)

ej eT
κ (1)

where ei is the ith column of the n × n identity matrix. For the digraph given in Fig. 1,
ei (i=1,2,...,7) vectors are defined as

e1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, e2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . . , e7 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Hence

S= e2eT
1 + e3eT

2 + e4eT
2 + e5eT

3 + e6eT
2 + e7eT

6 , (3)
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S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

The adjacency matrix, S, contains only one zero row corresponding to the root node and a
zero column for each tip node.

3 Spatial operator algebra (SOA) with linear graph theory (LGT)

A full distribution of forces and torques in multibody system can be achieved in a Newton–
Euler-based dynamical model. This makes Newton–Euler a better choice when coupling
forces and torques matter as in the case of a controller design based on a reaction force.
Most importantly, this has to be done in a computationally efficient and systematic way to
make the method applicable to complex systems.

Spatial Operator Algebra (SOA) [9, 10] is a computationally efficient recursive algorithm
to obtain systematic formulation of the dynamical model of multibody systems which may
include serial, tree and closed topologies. SOA is based on Newton–Euler formalism and the
full distribution of forces and torques in the multibody system is obtained with sparse opera-
tor matrices in a compact form. The algorithm is flexible for topology changes in multibody
systems and capable of dealing with constraints. Spatial Kernel Operator (SKOs) and Spatial
Propagation Operator (SPOs) represent the distribution of accelerations/forces throughout
the bodies of a multibody system. SOA originally uses an inboard numbering scheme where
the numeration of the bodies is done in increasing order from the tip to the base. For the sake
of being compatible with common literature, we adopt the outboard numbering scheme to
SOA as is done in [23].

Let us consider Fig. 2 for representing a multibody system including seven rigid bod-
ies connected by various type of joints in a tree topology structure. Within the scope of

Fig. 2 A multibody system
including seven rigid bodies
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Fig. 3 Defined vectors for
sequential bodies in a multibody
system

multibody system modeling, nodes and edges are replaced by body and joint notations, re-
spectively. In Fig. 2, the first body (B1), which is the one connected to ground by the first
joint (J1), is called the root body, B4, B5, B7 are the last bodies, which have no child body,
they are called tip bodies. If B2 has more than one child body it is called the separation body.

We use a six-dimensional manifold to represent angular and linear motion of a rigid body.
Therefore, a velocity vector in this manifold represents both angular and linear velocities
called the “spatial velocity” vector. Within the same manifold the “spatial force” vector is
also defined to represent a torque and force pair acting on the same point. The equation of
motion of a multibody system can be obtained recursively in a three-sweep algorithm;

– Compute the velocity propagations from the root to tips (outboard).
– Compute the force propagations from the tips to root (inboard).
– Compute the acceleration propagations from the root to tips (outboard).

Figure 3 introduces the defined vectors for sequential bodies in a multibody system:

– hj and hκ are axis of rotation/translation vectors in 3D space,
– Oj and Oκ are the coordinate frame centers that are placed on bodies along the joints,
– Vj and Vκ are spatial velocity vectors at the coordinate frame centers,
– Vjc and Vκc are spatial velocity vectors at the mass centers,
– Fj and Fκ are spatial force vectors at the coordinate frame centers,
– �j,κ , is the link vector between the sequential parent and child body coordinate frames,
– �j,c and �κ,c are the link vectors between the body coordinate frames and body centers.

At this point of the paper, let us introduce a superscript–subscript notation. Let αc indicate
a variable, named α, which belongs to the body c. To express the dimension of a variable,
when necessary, we use left-subscript. If a variable αc is of dimension n×m, then we denote
it as n×mαc . If its dimension is b × b, we simply denote it as bαc .

In the presence of an one rotational degree of freedom joint between the sequential bod-
ies, the velocity propagation from the parent to child body can be written as

Vκ = φκ,j Vj + Hκ θ̇κ , (5)

6φκ,j =
[

3I 30
−�j,κ× 3I

]
, 6×1Vj =

[
ωj

vj

]
, 6×1Hκ =

[
hκ

0

]
, (6)

where φκ,j is a link propagation matrix. (�j,κ×) is the skew symmetric matrix of the link
vector between the body coordinate frames. Hκ is the axis of motion vector for a one degree
of freedom joint. θ̇κ is the time derivative of the joint variable. It should be noted that the
propagation equation can be written for a q degree of freedom joint, using 6×qHj . For a
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translational joint, all we have to do is to change Hκ in (5) as

Hκ =
[

0
hκ

]
. (7)

In order to obtain the dynamical model of a multibody system, we need acceleration
terms. To get the acceleration propagation between sequential bodies, we need to take the
time derivative of the velocity propagation given in (5) and use the j = ρ(κ) parent–child
relation as shown in Fig. 3. This yields

V̇κ = φκ,j V̇j + Hκ θ̈κ + aκ , (8)

where

aκ =
[

ωj × ωκ

ωj × (ωj × �j,κ )

]
. (9)

Although velocity and acceleration propagations are outboard; from the root body to a tip
body, force propagation is inboard; from the tip body towards the root body. Torque propa-
gation from child to parent body can be written as

τj = τκ + �j,κ × fκ + �j,c × v̇jmj + d

dt
(Ijωj ), (10)

where the first two terms come from the child body and the last two terms are due to change
in the parent body’s linear and angular momentum, respectively. Force propagation from
child to parent body can be written as

fj = fκ + mj

d

dt
(vj + ωj × �j,c), (11)

and (10) and (11) can be written in the matrix form

Fj = φT
κ,j Fκ + Mj V̇j + bj , (12)

where

Fκ =
[
τκ

fκ

]
, Mj =

[
Ij mj�j,c×

−mj�j,c× 3×3Imj

]
, bj =

[
ωj × Ijωj

mjωj × (ωj × �j,c)

]
.

Consider the multibody system shown in Fig. 2. In order to apply the propagations sys-
tematically on the branches of the digraph, an adjacency matrix is expanded to block the
weighted adjacency matrix to include the link propagation matrices. Adjacency matrices
have 1 or 0 scalar entries for the sequential nodes in a digraph, in the case of block weighted
adjacency matrices, 1 or 0 scalar entries are expanded to a 6 × 6 dimensional unit matrix or
zero matrix and SKO (Spatial Kernel Operator) is obtained by using the following equation:

εφ =
n∑

κ=2

∑

j∈ρ(κ)

eκφκ,j eT
j , (13)

where ei is a 6n × 6 dimensional matrix which contains all zero matrix entries except for
the ith block which is 6 × 6 dimensional unit matrix. For the system given in Fig. 2, the ei
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(i = 1,2, . . . ,7) matrices are defined as

e1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

6I
60
60
60
60
60

⎤

⎥⎥⎥⎥⎥⎥⎦
, e2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

60
6I
60
60
60
60

⎤

⎥⎥⎥⎥⎥⎥⎦
, . . . , e7 =

⎡

⎢⎢⎢⎢⎢⎢⎣

60
60
60
60
60
6I

⎤

⎥⎥⎥⎥⎥⎥⎦
. (14)

Therefore

εφ = e2φ2,1eT
1 + e3φ3,2eT

2 + e4φ4,2eT
2 + e5φ5,3eT

3 + e6φ6,2eT
2 + e7φ7,6eT

6 , (15)

εφ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
φ2,1 0 0 0 0 0 0

0 φ3,2 0 0 0 0 0
0 φ4,2 0 0 0 0 0
0 0 φ5,3 0 0 0 0
0 φ6,2 0 0 0 0 0
0 0 0 0 0 φ7,6 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The SPO matrix which includes n bodies is obtained using the lemma in [17],

Φ = (6nI − εφ)−1. (16)

Using the 6n× 6n dimensional Φ SPO matrix, all spatial velocities of the bodies in a multi-
body system can be obtained:

6n×1V = ΦHθ̇ , (17)

where

V =

⎡

⎢⎢⎢⎣

V1

V2
...

Vn

⎤

⎥⎥⎥⎦ , 6n×nH =

⎡

⎢⎢⎢⎣

H1

H2

. . .

Hn

⎤

⎥⎥⎥⎦ .

The propagation matrix ΦT is employed to calculate the velocities of tip points of multi-
body system. For a system which has nt tip bodies, the propagation matrix ΦT is of dimen-
sion 6nt × 6n. For the system in Fig. 2, the iΦT matrix is given as

iΦT = [
60 60 60 φt,4 φt,5 60 φt,7

]
. (18)

Hence, tip point velocity of an open-chain is

VT = ΦT ΦHθ̇ = Jθ̇ , (19)

where J is the Jacobian operator defined as

J = ΦT ΦH. (20)

Spatial accelerations are obtained by taking the derivative of (17);

V̇ = ΦHθ̈ + a. (21)
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Spatial forces are distributed inboard (from tip towards to root node) as

F = ΦT
(
MV̇ + b + ΦT

T FT

)
, (22)

where

F =

⎡

⎢⎢⎢⎣

F1

F2
...

Fn

⎤

⎥⎥⎥⎦ , M =

⎡

⎢⎢⎢⎣

M1

M2

. . .

Mn

⎤

⎥⎥⎥⎦ , b =

⎡

⎢⎢⎢⎣

b1

b2
...

bn

⎤

⎥⎥⎥⎦ .

FT is for the 6nt × 1 dimensional external spatial forces that are applied to tip points.
Applied torques or forces are the projection of the body spatial forces along the axis of

motion at the joints. This is stated as

τ = HT F. (23)

Therefore, the inverse dynamics of a multibody system is obtained:

τ = Mθ̈ + C + JT FT , (24)

where

M = HT ΦT MΦH,

C = HT ΦT (MΦa + b).
(25)

M ∈ R
n×n is a generalized mass matrix for a multibody system, C ∈ R

n is the velocity
dependent vector includes Coriolis and gravity terms.

The equation of motion regarding the forward dynamics is obtained using (24).

θ̈ = M−1
(
τ − C − JT FT

)
(26)

4 Path defined directed graph vector (Pgraph) method

In the previous sections, the general concept of LGT (Linear Graph Theory) and canoni-
cal numeration of digraph were explained. Here we need to pay particular attention to (15)
which deals with the interconnection of the bodies in a given system. Without a systematic
approach, this equation needs to be manually implemented with a particular attention to con-
nectivity of the bodies. On top of this error prone tedious work, then it comes to updating of
coordinate frame vectors which may become a challenging task depending on the complex-
ity of the topology of the system. To avoid all of these problems, we introduce a systematic
approach under the name of Pgraph method. Pgraph is an automatic model configuration
generator for multibody systems to provide a simplified standard structure for modeling as
well as visualization with a significant advantage especially in construction time. Proposed
Pgraph algorithm is given by the flow chart in Fig. 4, where SBn is the separation body
number, TBn is the tip (terminal) body number, SBS is the last-in-first-out (LIFO) type sep-
aration body stack, jdof is the joint degree of freedom vector and dof(i) is the degree of
freedom between body i and its parent body.
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Fig. 4 Flow chart of Pgraph algorithm

The flow chart can be summarized in following steps.

1. Create an empty Pgraph and jdof vectors and assign the root body number to index i.
2. Add index number to Pgraph and determine the joint DoF between the body i and body

i − 1 (the first element of jdof represents the joint DoF between the root body and
ground).

3. If body i is a separation body then push the index i to SBS.
4. If body i is a tip body then go to Step 5, otherwise assign an untraversed child body

number to index i, and go to Step 2.
5. If the SBS is empty then go to Step 7, otherwise pull the index number from SBS and

assign it to i, add this index value to Pgraph and add zero element to jdof vector. If
separation body i has more than one untraversed child body push the index number to
SBS back again.

6. Assign an untraversed child body number to index i, and go to Step 2.
7. End of the algorithm.
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Fig. 5 Example multibody systems to demonstrate Pgraph and jdof vectors

Pgraph may not be unique for the same multibody system, since one can choose the un-
traversed child of a separation body in Step 4. In this paper, left child priority has been
adopted. Two examples are presented in Fig. 5 to demonstrate Pgraph and jdof vec-
tors.

In Newton–Euler dynamics, creating a propagation matrix plays a vital role to define
the propagation of both spatial velocities and spatial forces in a multibody system. Once
Pgraph is obtained, (15) can now be constructed systematically as in the flow chart in Fig. 6.
This flowchart makes the implementation of the presented multibody dynamics algorithm
straightforward for computer programming.

During the run time of a simulation, axis of rotation and link vectors need to be updated.
However, updating body coordinate frames of a complex topology system can be a compli-
cated task depending on the complexity of the topology. Another important contribution of
the proposed Pgraph method is a systematic solution, introduced by the algorithm whose
flow chart is given in Fig. 7, to this problem.

Updating body coordinate frame algorithm, shown in Fig. 7, employs the following func-
tions:

– Rot(h,�θ)κ is the rotation matrix function based on Rodriguez formulation:
Rot(h,�θ)κ = I + (hκ×) sin�θκ + (hκ×)2(1 − cos�θκ).

– The find(Pgraph,Pgraph(κ)) function returns the index of the first place of the Pgraph(k)

element in Pgraph.
– P is a list structure containing the body indices that were inserted to it. F(P ), on the

other hand, is a function that returns the body coordinate frame vectors of the bodies
whose index numbers are in the P list.

Updating steps are demonstrated on a multibody system as an example in Fig. 8.
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Fig. 6 Flowchart for creating
SPO matrix

4.1 Model description interface and constraint embedding

When modeling of multibody systems we do not envision people to write the Pgraph.
Rather, we envision people to fill a simple table and let Pgraph and jdof vectors be cre-
ated automatically. After all, the Pgraph method is all about multibody system modeling
with short construction time.

The name of the body, the name of the parent body, DoF, and the constraint type are
the columns of this four column table. But, before this table, the first thing interface asks
is the total number of bodies in the model. Once the users enters this number, the four
column table gets automatically created with assumptions that the bodies are subject to
holonomic constraints, bodies are connected with a single DoF joint in the form of a se-
rial topology and the names of the bodies are sequential numbers starting from 1. Together
with this table, digraph representation of the system is displayed on the screen. All the
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Fig. 7 Flowchart for updating body coordinate frames

link vectors, axes of rotations, masses, and inertias are set at the default values. At this
point the user may change the name of the bodies using alphanumeric characters, select
a parent body from the body column (the first column) and change the number of DoF.
The user can click on the bodies on the digraph representation to open a properties win-
dow to set the initial values of the axes of rotations and link vectors, mass and inertia ma-
trix.

This interface is the foreground of the Pgraph method. At the background, Pgraph
method-based multibody modeling software (MMS) will do the actual numbering of the
bodies and the construction of the Pgraph and jdof vectors. Accordingly, MMS will obtain
the propagation matrix, Jacobian matrix, generalized mass matrix and others. Updating of
body coordinate frames will also be done using the Pgraph method.

This interface also provides a separate list so that a user can define the constraints.
The last column of the table is updated using this list of constraints. From the digraph
representation display, by clicking on the bodies, the user can define conditions on these
constraints. As closed kinematic chains, or closed topology systems, are particularly im-
portant in multibody dynamics from the force propagation point of view, dealing with
such a system, we need to define cut-joints to decompose the closed topology into se-
rial or tree topology system and then impose related constraints. Cut-joint motion con-
straints can represent both bilateral and unilateral constraints forces. Bilateral constraint
forces can be categorized mainly into holonomic and nonholonomic motion constraints
and they are constantly involved in the equation of motion. Unilateral constraint forces
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Fig. 8 Flowchart for updating body coordinate frames

can occur in the case of body to body contact, body to ground contact or joint limits and
these constraint forces are intermittently involved in the equation of motion. The main ap-
proaches for handling such constraints are soft contact, penalty and complementarity meth-
ods.

In the next section, simulations are performed for a cheetah-like multibody system in-
cluding open and closed topology subsystems depending on the gait cycle, which is divided
into swing, weight acceptance and stance phases. During the swing phase of the gait cy-
cle, the multibody system includes an open topology in the form of serial and tree struc-
tures. During the weight acceptance phase when the tip bodies are contacted with ground,
Coulomb friction and impact forces are introduced until the linear velocity at the contact
point becomes zero. Next is the stance phase where multibody system becomes of closed
topology due to the existence of closed kinematic chain, and ground contact forces are com-
puted using holonomic constraints. Since a sticky type ground is not considered here, it is
assumed that the ground cannot pull the foot. In other words, ground contact forces can only
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act in one direction, hence, they are unilateral. On the other hand, this force is only valid in
the, so called, ground friction cone. This means that in the case the applied force from foot
to ground is outside of the reversed of this cone, the ground friction force will remain on the
border of the cone, causing them not to be equal and opposite to each other. Consequently,
the foot will slide on the ground.

5 Simulations

Figure 9 shows the Pgraph and jdof vectors on 3D model of the quadruped and the parts of
the model are given in Table 1.

As a case study, only the stance phase of the gait cycle of quadruped is considered so
that simulation results can be compared with ADAMS software to verify. Simulation results
of the other phases are not suitable for comparing since ADAMS uses graphical contact
detection models, which is not in the scope of this paper. Constraint forces during the stance
phase of the gait cycle are defined for the tip points of the quadruped to keep them at zero

Fig. 9 3D CAD model of
quadruped

Table 1 Quadruped parts
Body number Parts Body number Parts

1 Torso 11 Left shoulder

2 Spine 12 Left forearm

3 Spine 13 Left front paw

4 Hip 14 Right shoulder

5 Left thigh 15 Right forearm

6 Left hind leg 16 Right front paw

7 Left back paw

8 Right thigh

9 Right hind leg

10 Right paw
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Fig. 10 Simulation frames
(0–0.25 s)

velocity by the following equation:

VT = J θ̇ = 0,

V̇T = J θ̈ + J̇ θ̇ = 0.
(27)

Multiplying the forward dynamics equation with J leads to

J θ̈ = JM−1
(
T − C − J T FT

)
. (28)

Plugging (28) into (27), the constraint forces can be solved:

0 = JM−1
(
T − C − J T FT

) + J̇ θ̇ ,

JM−1J T FT = JM−1(T − C) + J̇ θ̇ , (29)

FT = Ω−1
(
JM−1(T − C) + J̇ θ̇

)
,

where

Ω = JM−1J T .

The 3D CAD model of the quadruped robot shown in Fig. 9 is formed in the solid commer-
cial package CATIA v5 and it is imported to ADAMS software for analyzing and comparing



224 M.N. Yazar, S.M. Yesiloglu

Fig. 11 Angular accelerations of the bodies around z direction (Body 0–Body 8)

the dynamical simulation results. The maximum difference between the two results (the one
obtained using ADAMS and the one obtained using Pgraph-based MMS) is less than 4.0%
as shown in Figs. 11 and 12.

Simulation results including tip point forces are obtained for 0.25 seconds. Angular ac-
celerations of the bodies around z direction are shown in Figs. 11 and 12, comparing results
obtained using ADAMS and Pgraph-based multibody modeling software (MMS). Figure 10
displays the pictorial representation of the configuration of the system in 50 ms intervals.
Tip point forces for the left back paw are given in Fig. 13.
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Fig. 12 Angular accelerations of the bodies around z direction (Body 9–Body 16)

6 Conclusions

The presented method of a path defined digraph vector (Pgraph) is a novel approach for
the construction time efficient dynamical modeling of complex systems which may include
multiple combinations of serial and tree topologies, as well as closed kinematic chain sys-
tems. Propagation matrix for spatial velocity and spatial force that plays a pivotal role in
Newton–Euler-based multibody modeling can be obtained conveniently using the Pgraph
method. Similarly, systematic updating of body coordinate frame vectors, which can be a
challenge in complex topology systems, is easily performed using the proposed method.
Combining this technique with a model description interface and constraint embedding, the
construction time of complex multibody system modeling is greatly reduced. This technique
is especially useful for systems changing topology, such as a walking mechanisms where bi-
lateral and unilateral constraints are conditionally embedded.
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Fig. 13 Tip point reaction forces from the ground on left back paw
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