
Multibody Syst Dyn (2018) 42:169–195
DOI 10.1007/s11044-017-9588-1

Accelerating implicit integration in multi-body dynamics
using GPU computing

Jihyun Jung1 · Daesung Bae1

Received: 15 November 2016 / Accepted: 14 July 2017 / Published online: 7 August 2017
© Springer Science+Business Media B.V. 2017

Abstract A new direct linear equation solver is proposed for GPUs. The proposed solver is
applied to mechanical system analysis. In contrast to the DFS post-order traversal which is
widely used for conventional implementation of supernodal and multifrontal methods, the
BFS reverse-level order traversal has been adopted to obtain more parallelism and a more
adaptive control of data size. The proposed implementation allows solving large problems
efficiently on many kinds of GPUs. Separators are divided into smaller blocks to further
improve the parallel efficiency. Numerical experiments show that the proposed method takes
smaller factorization time than CHOLMOD in general and has better operational availability
than SPQR. Mechanical dynamic analysis has been carried out to show the efficiency of the
proposed method. The computing time, memory usage, and solution accuracy are compared
with those obtained from DSS included in MKL. The GPU has been accelerated about 2.5–
5.9 times during the numerical factorization step and approximately 1.9–4.7 times over the
whole analysis process, compared to an experimental CPU device.

Keywords Multi-body dynamics · Implicit integration · Nested dissection · Multifrontal
method · Supernodal method · GPU

1 Introduction

The availability of modern CAE Software has increased thanks to the improvement of Com-
puter System and Graphics Technology. Nowadays, CPUs for personal computers (PC) have
approximately 100 Gflop/s (Giga Floating-Point Operation per Second), and high perfor-
mance workstations achieve many hundreds Gflop/s. This figure was the performance of the
fastest supercomputer only 20 years ago [1]. High performance computers have made it pos-
sible to solve bigger mechanical systems and their linear equations. However, research has
shown that numerical factorization time increases explosively as the size of a linear equation
increases.

B D. Bae
dsbae@hanyang.ac.kr

1 Department of Mechanical Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s11044-017-9588-1&domain=pdf
mailto:dsbae@hanyang.ac.kr

170 J. Jung, D. Bae

The easiest way to resolve the increase of computing time is to replace the computer
system with more powerful CPUs. However, advances in CPU speeds are slowing down as
technological limits throttle higher performance. The CPU clock speed per core cannot be
faster than a specific speed related to power consumption and temperature limits, which is
called a clock limit. One way to eliminate the limits and improve the performance is to uti-
lize additional computing devices like GPUs. The origins of CPUs and GPUs are different.
The purposes of CPUs were to run an Operating System (OS) and to manage all programs
on the OS. In contrast, GPUs were to represent real-time screens and game pictures more
naturally and colorfully. Meanwhile, there have been a lot of attempts to graft the high com-
puting performance of GPUs onto numerical computations for general purposes [2]. GPUs
generally include hundreds or thousands of cores, which are highly suitable for data parallel
algorithms. The GPU devices are used to obtain solutions from the matrices since they have
a superior floating-point performance to CPUs.

There are two kinds of widely used methods to solve the linear equation Ax = b. One is
an iterative method [3]. It consists of matrix–vector and vector–vector operations and could
be applied to well-made sparse and dense BLAS routines. In addition, the parallelization
for the iterative method is quite effective. These advantages fit well on additional com-
puting devices, thus some researchers have studied a few kinds of iterative linear equation
solvers on GPUs [4, 5]. NVIDIA-CUDA provides some sparse routines to support an itera-
tive method by using cuSparse and cuBLAS Library [6]. ViennaCL was studied to research
the solution of large systems of equations by means of iterative methods using optional
pre-conditioners on various computing device like GPUs, MICs and CPUs [7]. These GPU-
based iterative solvers have already been widely used in various fields like electronics [8],
mechanics [9–11] and finance [12]. However, the indirect solvers become very slow when
the matrix condition number is very high [13]. Mechanical dynamics usually handles high-
stiffness problems, so the condition number of their matrices is extremely high. Therefore,
convergence of the iterative methods for the mechanical system dynamics is very slow and it
is not easy to find a proper pre-conditioner. These reasons have enforced us to use the direct
method in the field of the mechanical system dynamics.

The direct method [14] consists of a finite number of floating-point operations so that it
can always obtain an exact solution except for singular system matrices. In this research, a
newly proposed multifrontal implementation is presented to maximize utilization of a GPU
device. The method originated from carrying out assembly and Gaussian elimination of
element matrices at the same time in the area of a finite element method [15, 16]. It has
been widely studied and implemented in many large-scale finite element applications on
CPUs [17]. The algorithm is relatively complicated compared to the iterative method due to
reordering, fill-in and dynamic updatable sparse matrix structures. Also, it needs frequent
copies of data between host and GPU memory spaces. For these reasons, studies on the di-
rect method have been less active on GPUs especially. Davis applied CUDA acceleration to
CHOLMOD and SPQR algorithms as parts of SuiteSparse linear algebra package [18, 19].
The two algorithms from SuiteSparse, however, are not appropriate to be used for a me-
chanical dynamic field since the CHOLMOD is a set of routine only for sparse positive
definite matrices and the SPQR algorithm has a limitation of a matrix size. A lot of mechan-
ical system matrices failed to carry out a GPU computation using the SPQR algorithm due
to the lack of GPU memory size. Therefore, it was necessary to research and implement a
linear equation solver using a new direct method for GPUs. Our purpose of this research is
to implement a GPU-based direct linear equation solver and to optimize it to handle large
mechanical system matrices.

This paper is organized as follows. Section 2 briefly summarizes a detailed numerical
method for the equations of motion of constrained mechanical systems. Section 3 explains

Accelerating implicit integration using a GPU 171

traditional DFS-based and proposed BFS-based nested dissection reordering methods. Sec-
tion 4 presents supernodal and multifrontal methods first, and then introduces a proposed
numerical factorization method. Section 5 explains some features of a GPU device and how
the proposed implementation can be applied and optimized for a GPU. Sections 6 and 7
present how to determine an optimum maximum block size for the proposed implementa-
tion and discuss the results. The mechanical dynamic experiments have been carried out
using the proposed method with DSS routine included in MKL. The performance, memory
usage and solution accuracy are discussed. Conclusions are drawn in Sect. 8.

2 Equation of motion

2.1 Constrained mechanical system and integration methods

The constrained mechanical system is often represented as differential-algebraic equation
(DAE). A solution of DAE is more difficult than that of ordinary differential equation (ODE).
There are two methods to solve DAEs [20].

One method is to carry out an explicit numerical integration and to correct the integra-
tion variables so the variables of position, velocity, and acceleration level are satisfied. An
advantage of this method is that the system equations are small because the correction is
conducted sequentially. However, it also has a disadvantage. The time step for very stiff
problems tends to be very small.

The other is an implicit numerical integration method. It can overcome the disadvantage
of the explicit method. Kinematic constraints including their derivatives and equations of
motion are solved simultaneously. However, a disadvantage of the implicit method is that the
size of a system matrix is larger than that of the explicit method. This research investigates
the equation solver for the large matrices on many-core GPUs.

2.2 Implicit integration for differential-algebraic equations

The equations of motion for a constrained mechanical system are described as

v − q̇ = 0, (1)

F(q,v,a,λλλ) = 0, (2)

ΦΦΦ(q, t) = 0, (3)

where q is the generalized coordinate vector in Euclidean space Rn, v is the generalized
velocity vector in Rn, a is the generalized acceleration vector in Rn, λλλ is the Lagrange mul-
tiplier vector for constraints in Rm, ΦΦΦ represents the position level constraint vector in Rm,
and the Jacobian ΦΦΦq ∈ Rm×n is assumed to have full row-rank. Successive differentiations
of Eq. (3) yield velocity and acceleration level constraints,

Φ̇ΦΦ(q,v, t) = ΦΦΦqv +ΦΦΦt =ΦΦΦqv − ννν = 0, (4)

Φ̈ΦΦ(q,v,a, t) = ΦΦΦqa + d

dt
(ΦΦΦq)v +ΦΦΦtt =ΦΦΦqa −γγγ = 0, (5)

where ννν = −ΦΦΦt and γγγ = −(d
dt

(ΦΦΦq)v + ΦΦΦtt). Equations (1) to (5) comprise a system of
over-determined differential-algebraic equations (ODAE). An algorithm based on backward

172 J. Jung, D. Bae

differentiation formulas (BDF) to solve ODAE is described as

H(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F(x)

Φ̈ΦΦ

Φ̇ΦΦ

ΦΦΦ

UT
1 (h′R1)

UT
2 (h′R2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F(q,v,a,λλλ)

ΦΦΦqa −γγγ

ΦΦΦqv − ννν

ΦΦΦ(q, t)

UT
1 (h′a − v − ζζζ 1)

UT
2 (h′v − q − ζζζ 2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (6)

where h′ = h
b0

, ζζζ 1 ≡ 1
b0

∑k

i=1 bivn−i and ζζζ 2 ≡ 1
b0

∑k

i=1 biqn−i in which k is the order of

integration, and the bi are BDF coefficients. x = [
λλλT aT vT qT

]T
and the columns of Ui ∈

Rn×(n−m) (i = 1,2) constitute bases for the parameter space of the position and velocity

level constraints. The matrices Ui are chosen so that
[ΦΦΦq

UT
i

]
has an inverse. Therefore, the

parameter space spanned by the columns of Ui and the subspace spanned by the columns of
ΦΦΦT

q constitute the entire space Rn.
Equation (6) can be solved since the number of equations and the unknowns are the same.

Newton’s numerical method can be applied to acquire the solution x,

Hi
x�xi = −Hi, (7)

xi+1 = xi + �xi. (8)

3 Nested dissection

Equation (7) is a typical linear equation Ax = b problem. It is necessary to factorize the
matrix A to obtain a solution x. Four steps are needed to obtain the x effectively: 1© define a
sparse matrix structure, 2© reorder the matrix to obtain a permuted vector and symbolically
factorize, 3© numerically factorize the matrix, and 4© acquire the solution with a right hand
side by for- and backward substitutions. Among the four steps, the third numerical factor-
ization step is usually the most time-consuming part. The reordering traversal in the second
step has considerable impact on the performance of the third step. Therefore, the traditional
nested dissection algorithm has been reviewed and then a new nested dissection algorithm
is proposed.

When there are some connections among nodes composing a mechanical FE model, the
data structure of the connections is defined as a graph (G). In the graph data structure, a
node is called vertex (V) and its connection is called edge (E) [21]. If there is a set of
vertices which can be divided into two sub-graphs with the relatively same size, the set
of vertices is called ‘separator’ and the division operation is defined as ‘graph bisection’
as shown in Fig. 1a. The graph bisection operation creates a typical binary-tree structure.
The bisected sub-graphs (G1, G2) are independent. However, each sub-graph depends on its
parent separator. When the graph bisection operations are applied recursively, it is defined as
‘nested dissection’ [22]. Figure 1b expresses a tree and a graph region of nested dissection
up to three depths as a representative model for this paper.

All sub-graphs including a root are called separator in this research. The highest one is
called a root separator and the lowest ones are called leaf separators. The separators in the
same depth are independent, while a separator and its higher depth separators have depen-
dency.

Accelerating implicit integration using a GPU 173

Fig. 1 Graph bisection and nested dissection

3.1 Traditional DFS-based nested dissection

The DFS post-order traversal has been traditionally used to obtain a binary tree for a graph.
The tree traversal of the DFS post-order is as follows [21].

(1) Move to a child separator until there is no lower child separator.
(2) Mark the separator and move to the other children separators of my parent.
(3) Move to and mark my parent separator if all children separators are visited.
(4) Repeat processes from (1) to (3) until there are no more unvisited separators.

The multilevel tree of Fig. 2a shows the visited numbers of Fig. 1b vertices, based on the
DFS traversal. Figure 2b depicts the region number of 2a, and Fig. 2c illustrates relations of
nodes from 2a and regions from 2b as a matrix form.

When visiting a certain separator, all connected descendents of the separator must be
already visited in the traversal. For example, the seventh separator in Fig. 2a has to be visited
after visiting the first to the sixth separators. This post-ordering improves memory locality
during numerical factorization [23]. The algorithm has been representatively implemented
at the ‘METIS_NodeND’ routine of METIS library [24].

3.2 Proposed BFS-based nested dissection

A proposed nested dissection in this research assigns the number based on the BFS reverse-
level order traversal. The tree traversal of the BFS reverse-level order follows the rules be-
low [21].

(1) Move to a child separator until there is no more child separator.
(2) Mark my separator and move to the other sibling separators.
(3) Move to and mark a parent separator when all sibling separators are visited.
(4) Repeat processes from (1) to (3) until there is no more unvisited separator.

The multilevel tree of Fig. 3a shows the visited numbers of Fig. 1b vertices, based on the
BFS traversal. Figure 3b depicts the region number of 3a, and Fig. 3c illustrates relations of
nodes from 3a and regions from 3b as a matrix form.

174 J. Jung, D. Bae

Fig. 2 Results of the DFS post-order traversal

Fig. 3 Results of the BFS reverse-level order

Since a separator is visited after its lower depth separators, it is guaranteed that its sibling
independent separators are located nearby. For example, all separators of the third depth in
Fig. 3a must be visited before one of the separators from the ninth to the twelfth ones which
belong to the second depth.

Although this rule has no effect on the number of non-zeros, compared to the traditional
DFS-based nested dissection, it allows better parallelism and flexible control of required
data size for an additional computing device. We developed this algorithm by recursively
calling ‘METIS_ComputeVertexSeparator’ routine in the METIS library [24]. The routine

Accelerating implicit integration using a GPU 175

Fig. 4 Data access pattern for left- and right-looking methods

provides vertex indices of the separator and the two sub-graphs whenever there is a call.
Therefore, it is not necessary to identify supernodes from a permuted sparse matrix as a
post-process.

4 Numerical factorization

This section reviews the conventional supernodal and multifrontal methods and presents the
benefits of the proposed method, based on the BFS traversal method.

4.1 The supernodal methods

The supernodal method commonly used to refer to left- and right-looking methods. The two
methods equally consist of two sorts of operations. One is to factorize the diagonal block of
a separator, and then for- and back-substitute the same row blocks of the separator, which is
defined as ‘variable factor’ in this research. The other is to update a parent separator from
its descendants, which is defined as ‘variable update’ in this research [25].

The left-looking methods start by applying variable updates from all descendant sepa-
rators in the elimination tree to a separator before factorizing the separator. It delays the
variable updates as much as possible. While right-looking methods factorize a local sep-
arator first, it performs the variable updates for ancestors of the local separator as fast as
possible. Figure 4 depicts left- and right-looking as perspectives of a tree and a matrix.

The supernodal methods build a computational structure by performing symbolic factor-
ization before actual numerical factorization. Since fixed memory location for the variable
updates are used, the supernodal methods use less memory than the multifrontal methods
do.

4.2 The multifrontal methods

The computational sequence of the multifrontal method is determined by an assembly tree
structure. The actual computation is performed by combining adjacent columns using a su-
pernodal technology. The multifrontal method is based on continuous Gaussian elimination
of small dense matrices called a frontal matrix. The small dense matrices in a factorization
process act as a vertices of the assembly tree.

In Fig. 5a, the adjacent (1, 2), (3, 4), (5, 6) nodes are combined by a supernodal tech-
nology and they are defined as 1©, 2© and 3© separators, respectively. It also shows the

176 J. Jung, D. Bae

Fig. 5 A sample sparse matrix, its assembly tree and three memory spaces

corresponding frontal matrices and their relationships. A frontal matrix can be decomposed
into two blocks as shown in Fig. 5b. One is a factor block consisting of eliminating vari-
ables, and the other is a contribution block composed of updating variables in the frontal
matrix. Once conducting a numerical factorization of children frontal matrices, the updated
contribution blocks are merged into their parent frontal matrices [26]. Therefore, the frontal
factorization algorithm has a constraint that parent separators can be factorized out only af-
ter all children separators are factorized. For example, it is possible for the frontal matrices
for 1© and 2© separators in Fig. 5a to be factorized at the same time, and then the updated
contribution blocks can be merged into the parent separator 3©. Due to the constraint, it
requires additional temporal storage of stack structure to save the contribution blocks of
children separators during a frontal numerical factorization [25].

The multifrontal method requires three kinds of memory spaces during a numerical fac-
torization. The first space is used to store factored blocks; the second space is for saving
contribution blocks of a stack structure; the third space is needed to operate a current frontal
matrix [27]. The first space increases continuously during a factorization process and the
third space is reused throughout the process. The second space stores the stacked contribu-
tion blocks. Since the stack size depends on the structure of assembly trees, it is not easy
to estimate the exact size of the second space [25]. Figures 6a and 6b illustrate an assembly
tree along with its frontal matrices of Fig. 2a and the memory transition as proceeding with
the factorization steps. The multifrontal factorization steps are as follows,

(1) Create a space to save a frontal matrix for a current separator.
(2) Numerically factorize the current frontal matrix (see center of Fig. 6b) after merging

contribution blocks from children frontal matrices.
(3) Save the factored block in the factor saving space (see left side of Fig. 6b), the contri-

bution block in the stacked space (see right side of Fig. 6b) and then release the current
frontal matrix space.

Accelerating implicit integration using a GPU 177

(4) Repeat steps from (1) to (3) until completing the numerical factorization of the root
separator.

The memory size of factored blocks gradually increases as the numerical factorization
proceeds, whereas the memory size of contribution blocks fluctuates irregularly as shown in
Fig. 6c. The fluctuating memory usage often causes a failure of the numerical factorization
due to an excess of available memory space [28].

4.3 The proposed implementation of the multifrontal method

This research implements the multifrontal method with the BFS-based nested dissection.
The global frontal operation has been carried out so that it could have more parallel oppor-
tunities than multifrontal methods could. The multifrontal method involves one separator
with its straight children separators per a frontal matrix, but the proposed method is aimed
at all separators in both groups in a multilevel tree.

The variable factor and update operations are treated as one set operation in the conven-
tional implementation of the multifrontal methods. The proposed implementation method
divides the set of the variable factor and update operations into two independent operations.
Since all factor operations for all separators in the same depth are independent, they can
be carried out in parallel, depending on their available memory and processors. Similarly,
all update operations for ancestor separators can be done independently; they can be carried
out in parallel as well. The independent nature of the proposed implementation method gives
more flexible scheduling and parallelism.

Figure 7 illustrates an operational sequence of the proposed method for the multilevel
tree in Fig. 1b. The multilevel-tree separators of the first stage are divided into global factor
and contribution groups. If the third depth separators are members of a global factor group,
all upper separators are considered as those of a global contribution group. The update oper-
ations for the contribution group have to be done after carrying out variable factor operations
for the factor group such as multifrontal methods. After the variable factor and update op-
erations of the first stage, the separators of the third depth will not be involved in the rest of
operations anymore. Therefore, the separators of the second depth become the next factor
group and similar processes will be repeated as the second stage. This process will continue
until reaching the root depth.

The frontal matrices of Fig. 8a are the same as those of frontal matrices of Fig. 6a.
The only difference is the multifrontal factorization sequence. The form of the assembled
blocks in Fig. 8b is almost identical to the factor and contribution blocks in Fig. 5b. The
operation sequence of the proposed method is exactly the same as the BFS reverse-level
order traversal in Fig. 3a. As a result, if a symbolic factorization is performed before an
actual numerical factorization, it is possible to predict the necessary block data size and the
locations including fill-in blocks. Thus, the required memory allocation can be done only
once and it can be used until the completion of the factorization, as shown in Fig. 8c. This
feature is highly similar to that of the supernodal method. The accurate prediction of the
required data size makes it possible to discontinuing a numerical factorization due to a lack
of host memory size. It could be a problem when the memory for the contribution blocks
fluctuates irregularly [28] in the conventional implementation of the multifrontal methods.

Separators in a global contribution group need descendent separators that have been al-
ready factorized in order to carry out variable update operations. Since the connectivity
between variable factor and update operations has been divided, every separator of a global
contribution group can independently refer to their connecting descendant separators. As a

178 J. Jung, D. Bae

Fig. 6 Assembly tree and its memory transition using the original method

Accelerating implicit integration using a GPU 179

Fig. 7 A proposed numerical factorization process

result, it brings more parallel opportunities by comparison with supernodal or multifrontal
methods. Figure 9a shows an independent feature of each variable operation at the first stage.

The independent feature looks as if this method were an either left- or right-looking
methods. The proposed method does not belong to the two methods because the separators
in each variable operation are independent. Figure 9b compares the proposed method with
supernodal methods.

The proposed method also makes it possible to adjust required data size adaptively. GPU
devices have different memory sizes. Therefore, it is necessary to adjust an operational re-
gion to limit the data size for a GPU device during a numerical factorization. This research
proposes to set priorities on sibling and depth directions to adjust the operational regions.
Figure 10 describes the concept of deciding priorities on two directions.

The priority of the sibling direction allows controlling the size of a global factor group to
be handled at a time, depending on the available memory size. Since the global contribution
group is automatically determined by the factor group size, the computational algorithm is
highly flexible. The priority of the depth direction controls only the size of a global contribu-
tion group. Therefore, the depth priority strategy is less effective in controlling the data size
than the sibling direction is. The sibling direction is attempted first, and then the depth di-
rection is followed for fine tuning in the actual implementation. The two priority strategies
allow the proposed implementation to be highly adaptive for diverse GPU memory sizes.
The same method can be implemented with the DFS-based nested dissection. However, it
is not as efficient as the BFS method because the DFS-based method must visit a lot of
other separators to identify the same depth, while it is important to seek sibling separators
as fast as possible in the proposed strategies. The outstanding prediction and adjustability
features of the proposed implementation method make scatter maps inside a GPU device
unnecessary [18].

5 Implementation for a GPU device

This section reviews the features of a GPU and a CPU. Both the original and the proposed
multifrontal methods are considered for their implementations on a GPU device. The advan-
tages of the proposed implementation are presented. In addition, optimization strategies are
presented to maximize the performance on a GPU device.

180 J. Jung, D. Bae

Fig. 8 Multifrontal factorization process using the proposed method

5.1 Characteristic of a GPU device

The hardware specifications used for this research are shown in Table 1.
The memory size of a GPU is smaller than that of a host side in most systems. The exper-

imental computer system has 128 GB of memory while the GPU device contains only 6 GB.
This difference between the host and the GPU memory size requires frequent data trans-
fers. Moreover, the speed of PCI-Express link (12 GB/s) between CPU and GPU is much
slower than that of inside communication in each computing device (CPU: 43.6 GB/s, GPU:
336 GB/s). Thus, the slow link speed has to be considered in maximizing the performance
of the GPU.

Accelerating implicit integration using a GPU 181

Fig. 9 Factorization process on the first stage and comparison with supernodal method

Table 1 Hardware specifications

Item Name

CPU Intel Xeon E5-2609v2 2.5 GHz 4 cores

Memory Samsung PC3-12800 16 GB × 8

Motherboard ASUS Z9PE-D16

GPU NVIDIA GeForce GTX TITAN BLACK D5 6 GB HYBRID

The experimental GPU device, NVIDIA GeForce GTX TITAN BLACK, has Kepler
GK110 architecture. A fully enabled Kepler GK110 consists of 15 SMX units. Each SMX
unit includes 64 cores for double precision. Because mechanical dynamics solutions require
considerably more precise solutions, the double precision data type is used for this research.
Therefore, there are total 960 cores for double precision operations in the experimental GPU
device [29]. Theoretical performance of a computing device can be estimated by multiply-
ing the number of cores, core clock speed, SIMD and FMA. The theoretical value of the
experimental CPU has 80 Gflop/s and the GPU is 1931.52 Gflop/s.

5.2 Application of a GPU device

The linear equation solver for a sparse matrix was divided into four steps of defining matrix
structure, reordering or analyzing, numerical factorization and solving. The numerical fac-
torization is the most time-consuming step among the 4 steps. A GPU device can be used to
assist the numerical factorization step in this research, as shown in Fig. 11.

As a view of memory management, it has been presented that the multifrontal method
needs a flexible stack structure during runtime. Since the stack structure is required to have

182 J. Jung, D. Bae

Fig. 10 Two kinds of priorities to adjust operating regions

Fig. 11 Roles of CPU and GPU devices for linear equation solver

frequent memory operations for contribution blocks, the parallel efficiency on GPUs of the
conventional multifrontal method is poor. In addition, the fluctuating memory usage may
cause a GPU computation failure. Because of these drawbacks, the multifrontal method is
not suitable for programming on GPUs. SPQR in SuiteSparse introduces a way to conduct
an assembly and computation of each frontal matrix in a GPU device. In case of handling a
very large frontal matrix, the library splits the trees into sub-trees within the GPU memory
size. However, this attempt is sometimes not enough to prevent a failure from exceeding
device memory size [19].

As a view of parallel execution, it is necessary to understand principles of a parallel
methodology of a GPU device. Once tasks are added into each stream queue, the GMU

Accelerating implicit integration using a GPU 183

Fig. 12 An actual workflow of the proposed implementation in Fig. 8b

(Grid Management Unit) newly introduced in Kepler GK110 architecture of a GeForce TI-
TAN BLACK manages and prioritizes tasks to be executed. The GMU communicates with
a CWD (CUDA Work Distributor) via a bidirectional link and also has a directional connec-
tion with SMX units to launch additional tasks via Dynamic Parallelism on the GPU [29].

Figure 12 expresses a workflow of Kepler architecture and the sequence of queuing tasks
with respect to variable operations for all depths in Fig. 8b. The proposed method consists
of a set of variable factor and update operations. All independent separators associated with
the same depth are added to each stream queue and synchronize them until all operations
are finalized. Once variable factor operations are completed and synchronized, all ascendant
separators are scheduled to conduct variable update operations by referring prior separators
already stored in the GPU device. This process will be repeated until reaching a root sep-
arator. Since there is no data dependency among the variable factors for the same depth, it
is possible to parallelize the variable factor operations for all separators of the same depth.
However, the computing time of the variable factors is generally even less than that of the
variable updates. Therefore, it is very important to well-parallelize the variable update oper-
ations to obtain a good parallel performance.

184 J. Jung, D. Bae

Update operation for a separator must receive data from their descendant separators
which are already factorized at the previous variable factor operation and already has resided
inside a GPU device. Besides, the variable update operations are independent of all separa-
tors.

Since the GPU has only a limited memory space, two cases must be considered depend-
ing on the required data size. The first case is when the required data size is equal to or less
than an available GPU memory size. In this case, all data can be transferred from the CPU
to the GPU at once at the beginning and the results can be transferred back at the end, which
is called ‘FULL’ version in this research. The second case is when the required data size is
bigger than the GPU memory size. The whole data cannot be transferred at once, so that the
data must be divided into data smaller than an available GPU memory size. Only a part of all
possible separators for variable factors and their associated ascendant separators for variable
updates are handled at each time, which is called ‘PARTIAL’ version in this research.

The version type is decided right after a required data size is estimated from a symbolic
factorization. The ‘PARTIAL’ version uses the two priority strategies in deciding partial
operational separators. And then, computing commands are created just once and saved at
the host memory space. If there is enough GPU memory space, the proposed implementation
needs two operational synchronizations per one depth. Thus, it is required to synchronize the
computing commands at least twice the number of deepest multi-tree depth during numerical
factorization process. The number of actual synchronizations may increase in accordance
with GPU memory size.

5.3 Optimization of a GPU device

The ‘FULL’ and ‘PARTIAL’ versions are presented in the previous section. This section
presents how to implement the ‘PARTIAL’ version effectively. The ‘PARTIAL’ version re-
quires frequent data exchanges to synchronize data. Since the variable factor and update
operations are dependent of each other, any other numerical operation cannot be conducted
while transferring data to GPU device. The PCI-Express link speed is very slow, compared
to those of inside communications.

In order to overcome the slow transfer speed in using a GPU, the multi-streams of CUDA
are applied. The main feature of the multi-streams is to divide large data to be transferred to
some smaller data units. If a set of transfer task of a small data unit and its operation task are
added to each stream, a GPU device executes transfer and operation tasks simultaneously
from different streams in hardware level [30]. This makes it possible to compute huge data
while minimizing time loss caused by slow transfer speed of PCI-Express link and to assign
tasks continuously on GPUs with restricted memory space. One stream is equivalent to one
separator in this research. Figure 13 explains a principle of multi-streams and its application
for the proposed multifrontal method.

Note that it is recommended that the time to transfer data is almost equal to or smaller
than the computing time on GPUs. Otherwise, the computing performance may deteriorate
due to the waiting time. Therefore, the data size and its complexity of separators are very
important to have a good parallel performance on a GPU device. This will be discussed in
the next section.

6 Division of separators

A multilevel tree obtained by a nested dissection algorithm generally contains separators
with different sizes. The root separator is the largest one in numerous cases and the children

Accelerating implicit integration using a GPU 185

Fig. 13 Partial factorization of the proposed multifrontal method

separators tend to be smaller than their parent. The difference in separator sizes causes
an unbalanced overlapping between data transferring and computing time. This approach
is similar to ‘tile algorithm’ which is widely used across linear algebra libraries. The tile
algorithm shows outstanding computing performance on homogeneous multi-core CPUs
[31] and many-core GPUs [32] as well as heterogeneous systems [33, 34]. This section
presents the effects of the division of the separators and how to determine an optimum
maximum block size.

6.1 Experimental models

The flops of variable factors and updates as well as the ratio of them are important in de-
veloping an efficient computing algorithm. Table 2a summarizes some BLAS and LAPACK
routines used for the numerical factorization step and their approximate flops [35]. Several
sparse matrices are selected from University of Florida Sparse Matrix Market to show the
effects of the separator division. Though some of original sparse matrices are symmetric
and contain only a lower side, an upper side from the original lower side has been filled for
this experiment. Table 2b shows substantial flops of the proposed method without division
of separators for each model. Note that the variable update operation takes about 80–90%
of the total computation.

6.2 Effects of division

As a view of memory usage, division of separators acts as restraining the area of the arith-
metic operations. Large adjacent dense blocks usually intervene in a variable update opera-
tion with original separators. The same operation with divided separators presents that the
operational regions decline as well as the smaller blocks are involved in the operations.

Figure 14 shows the effects of the separators. A1 has two adjacent separators A5 and A7

in Fig. 14a. The variable update operation of A1 uhas two adjacent separators (A5, A7, A57

and A75) in blocked matrix. Meanwhile, the variable update of smaller separators from 1A1

to 4A1 in Fig. 14b updates only a small part of the same region.
As a view of parallel efficiency, the division of separator hides transfer time of required

data from host to devices more efficiently. Figure 15 shows how much efficiency can be

186 J. Jung, D. Bae

Table 2 BLAS, LAPACK routines and operation counts of various models

(a) Routine names and their number of operations

Oper. type Package/routine Floating-point operation count

Variable Factor LAPACK (dgetrf) A = LU mn2 − 1
3 n3 − 1

2 n2 + 5
6 n (where m and n are,

respectively, the row and column sizes in A)

LAPACK (dgetrs) AX = B nrhs(2n2 − n) (where n is the row size of A,
nrhs is the column size of B)

Variable Update BLAS (dgemm) (A × B) + C = C 2mnk (where m is the row size of C, n is the
column size of C and k is the column size
of B)

(b) Ratios of variable factor and update Gflops without division of separators

Model name Rows/cols Non-zeros Var. fac. (Gflops/%) Var. upt. (Gflops/%)

Trefethen_20000 20,000 554,466 369/13.37% 2,390/86.63%

consph 83,334 6,010,480 115/7.27% 1,464/92.73%

torso3 259,156 4,429,042 201/6.18% 3,047/93.82%

F1 343,791 26,837,113 191/7.57% 2,331/92.43%

audikw_1 943,695 77,651,847 4,767/7.78% 56,518/92.22%

Fault_639 638,802 28,614,564 6,629/5.84% 106,805/94.16%

improved by dividing the separators in parallel processing the numerical factorization. Fig-
ure 15a is a case of an original frontal matrix with coarse-grained blocks, and Fig. 15b is
a case of a divided frontal matrix into a specified size with fine-grained blocks. The un-
divided separators may create a small number of non-uniform variable update operations.
Meanwhile, the divided separators may create a larger number of uniform separators than
coarse-grained. The GPU computation always involves data copy between host and device.
The non-uniformed data sizes and their operations cause delays of GPU computing and
poor parallel performance. Figure 15c obtained from NVIDIA visual profiler (nvvp) illus-
trates two computational timelines with respect to Figs. 15a and 15b, respectively. The ocher
bars are data copy tasks from host to device and the blue bars describe matrix multiplica-
tion operations. The two timelines have the same flops and time-scale under a multi-streams
environment.

The bottom line is that since the overlapping time in coarse-grained frontal matrix is not
well-fitted, there will be a drop in parallel efficiency. The fine-grained timeline, however,
shows that most of computing and copy-task time are overlapped together. The variable
update operations take up most of the computing time; the division of separators is highly
important in GPU computation.

6.3 Optimum maximum block size

The previous section has shown that division of separators improves the parallel efficiency.
A block size must be decided to achieve the most efficient parallelism. The factorization
time, memory usage and flops have been measured to identify the effects of the maximum
block size. Table 4 shows the measured numerical values with numerical factorization type
for models in Table 2b when the block size is changed from 64 to 4096. And the same kinds
of results from other linear solver routines on CPU and GPU devices are also appended
to Table 4. The additional figures are obtained from GPU versions of CHOLMOD, SPQR

Accelerating implicit integration using a GPU 187

Fig. 14 Fill-ins before and after the division of separators into a few blocks

Table 3 Software specifications and reordering algorithms

(a) Detailed software specifications

Item Name

OS CentOS 7.0 x86_64

CUDA Version CUDA 7.5

C/C++ Compiler Intel C++ Compiler 15.0 Update 6

BLAS Library cuBLAS in CUDA 7.5

LAPACK Library Intel MKL version 11.2 Update 4

DSS Routine Intel MKL version 11.2 Update 4

SuiteSparse 4.5.3

(b) Reordering algorithms in each linear solver routine

Routine CHOLMOD SPQR DSS

Reorder AMD or METIS SPQR Default METIS

included in SuiteSparse and DSS in MKL [36]. The software specifications and reordering
algorithms for each linear solver routine are tabulated in Table 3.

The number of floating-point operations and the amount of peak memory tend to grow up
constantly as the maximum block size increases. The computing time, however, decreases
to a certain block size and increases again. The size for the minimum computing time has

188 J. Jung, D. Bae

Fig. 15 Improvement of parallel efficiency by division of separators

been found to be in the range of 512–1024. Other matrices have been numerically factorized
and have shown a similar behavior. Though the optimum block size of relatively smaller
matrices has been found to be 512, the time difference between 512 and 1024 is not big. As
a result, the optimum maximum block size is 1024 in this research. However, this block size
cannot be applied when a GPU does not have enough memory space to fully store two block
rows. In this case, the maximum block size must be reduced so that it does not exceed the
GPU memory space.

Although these research results named MFS (MultiFrontal Solver) do not always draw
the best performance, most numerical factorization times are similar to or faster than those
of CHOLMOD on the same experimental GPU device. Meanwhile, the SPQR sometimes
produces wrong consequences of NaN (Not a Number) or fails showing a ‘GPU memory
too small’ error message.

7 Numerical experiments

Dynamic analysis of three flexible mechanical models has been carried out for 1 second with
100 output step by using the proposed method with a GPU. Figure 16 shows experimental
model shapes and nodes to verify analysis results. Each node represents position of the
maximum Von Mises stress value among all nodes over the whole analysis process for each
model.

The first ‘Crank piston’ model is a part of engine components. The crank shaft rotates
about the ground. Each piston and the shaft are connected to connecting rods that are flexible
bodies. Piston translates with respect to the ground.

Accelerating implicit integration using a GPU 189

Ta
bl

e
4

C
ha

ng
es

of
tim

e,
m

em
or

y
us

ag
e

an
d

flo
ps

of
Ta

bl
e

2b
m

od
el

s

C
om

pu
tin

g
de

vi
ce

G
PU

C
PU

M
od

el
(f

ac
.t

yp
e)

It
em

M
FS

C
H

O
L

M
O

D
SP

Q
R

D
SS

64
12

8
25

6
51

2
10

24
20

48
40

96

T
re

fe
th

en
_2

00
00

(F
U

L
L

)
T

im
e

(s
ec

.)
41

.5
0

51
.4

9
20

.4
1

12
.7

2
11

.8
9

12
.1

9
14

.5
3

2.
93

30
.7

9
87

.0
7

M
em

.(
M

B
)

1,
89

3
1,

98
5

2,
08

8
2,

16
9

2,
22

3
2,

24
1

2,
25

0
9,

95
8

4,
65

7
1,

51
6

G
flo

ps
2,

20
1

2,
36

8
2,

49
3

2,
57

4
2,

64
6

2,
68

0
2,

72
6

2,
12

3
12

,1
97

1,
14

1

C
on

sp
h

(F
U

L
L

)
T

im
e

(s
ec

.)
19

.2
1

4.
46

2.
13

2.
09

2.
59

3.
64

4.
05

3.
30

25
.6

9
5.

81

M
em

.(
M

B
)

1,
67

5
1,

85
8

2,
09

4
2,

44
1

2,
84

0
3,

22
3

3,
31

2
10

,3
53

7,
52

1
1,

56
8

G
flo

ps
42

2
50

5
60

3
77

5
99

7
1,

45
5

1,
57

8
94

2
6,

96
0

26
0

to
rs

o3
(F

U
L

L
)

T
im

e
(s

ec
.)

25
.7

3
6.

82
4.

32
4.

29
5.

22
9.

33
9.

35
5.

60
55

.7
4

10
.1

4

M
em

.(
M

B
)

3,
43

9
3,

91
1

4,
54

9
5,

34
8

6,
11

2
6,

80
7

7,
32

4
11

,8
19

12
,4

41
2,

30
8

G
flo

ps
55

0
63

0
79

3
1,

05
2

1,
40

3
1,

82
1

1,
85

3
1,

41
9

15
,7

45
36

4

F1
(P

A
R

T
IA

L
)

T
im

e
(s

ec
.)

33
.2

9
10

.2
7

9.
57

8.
83

9.
72

10
.2

9
10

.3
3

16
.0

3
21

.4
3a

11
.3

1

M
em

.(
M

B
)

4,
46

3
5,

12
6

5,
94

7
6,

92
1

7,
88

0
8,

21
9

8,
21

9
19

,0
73

13
,7

88
a

5,
06

2

G
flo

ps
82

2
1,

00
5

1,
24

9
1,

59
4

2,
04

8
2,

26
1

2,
26

1
5,

26
9

4,
94

4a
45

0

au
di

kw
_1

(P
A

R
T

IA
L

)
T

im
e

(s
ec

.)
1,

13
3.

39
23

4.
52

10
7.

94
71

.9
3

69
.2

1
85

.9
0

11
3.

08
15

3.
61

di
sa

bl
ed

b
26

4.
58

M
em

.(
M

B
)

26
,8

06
30

,0
95

33
,8

50
38

,3
45

45
,0

79
53

,2
18

61
,7

58
77

,0
34

26
,3

61

G
flo

ps
16

,1
05

18
,8

66
21

,6
29

24
,9

67
31

,4
84

42
,5

44
56

,4
65

11
9,

09
1

12
,3

97

Fa
ul

t_
1

(P
A

R
T

IA
L

)
T

im
e

(s
ec

.)
1,

77
1.

73
37

0.
56

16
0.

86
94

.2
6

82
.8

7
10

1.
83

13
5.

64
85

.7
9

di
sa

bl
ed

b
36

1.
62

M
em

.(
M

B
)

26
,6

73
30

,5
51

34
,9

29
38

,9
97

44
,6

65
52

,6
64

61
,6

35
41

,6
98

20
,6

38

G
flo

ps
25

,6
02

30
,7

61
36

,8
35

41
,8

47
49

,3
78

63
,8

28
84

,9
99

56
,5

27
17

,4
94

a T
he

so
lu

tio
n

is
no

ta
nu

m
be

r.

b
G

PU
m

em
or

y
to

o
sm

al
le

rr
or

.

190 J. Jung, D. Bae

Fig. 16 Three flexible mechanical models for dynamic analysis

The second ‘Suspension’ model is an ordinary double wishbone. Upper and lower control
arms rotate with respect to the ground. The upper shocks are fixed to the ground by bushing
elements. The upper and lower shocks are connected by a translational joint and spring. The
upper and lower control arms are connected by a knuckle which is connected by a revolute
joint to the tire. A rack body controls the steering motion of the knuckle. Horizontal motion
of the rack and vertical motion of tires are given for the dynamic analysis to observe the
knuckle kinematics and compliance characteristics. The lower control arm is modeled as a
flexible body.

The last ‘Bell crank’ model has a fixed center hole and there are two upper and lower
holes at the end of each arm. Dynamic forces are applied at two hole-faces in the opposite

Accelerating implicit integration using a GPU 191

Table 5 Dynamic analysis time and memory usage results for each model

Model/dimension Item DSS CPU MFS GPU Speed up

Time Rate Time Rate

(sec.) (%) (sec.) (%)

Crank piston Linear solver 1© Reorder 477 0.77 704 2.21 ×0.68

2© Factor. 50,121 80.70 19,382 60.80 ×2.59

3© Solving 4,517 7.27 4,815 15.10 ×0.94

rows, cols 4© Linear sum. 55,115 88.74 24,902 78.11 ×2.21

1,481,232 5© Remaining 6,994 11.26 6,978 21.89 ×1.00

non-zeros 6© Total (= 4©+ 5©) 62,109 100.00 31,880 100.00 ×1.95

403,713,416 Peak mem. (MB) 57,834 68,960 –

Suspension Linear solver 1© Reorder 260 0.78 405 2.41 ×0.64

2© Factor. 28,135 84.30 10,993 65.44 ×2.56

3© Solving 1,890 5.66 2,329 13.87 ×0.81

rows, cols 4© Linear sum. 30,285 90.75 13,728 81.72 ×2.21

883,885 5© Remaining 3,087 9.25 3,070 18.28 ×1.01

non-zeros 6© Total (= 4©+ 5©) 33,373 100.00 16,798 100.00 ×1.99

230,555,929 Peak mem. (MB) 34,654 45,245 –

Bell crank Linear solver 1© Reorder 157 0.37 235 2.62 ×0.67

2© Factor. 39,983 93.53 6,724 74.86 ×5.95

3© Solving 1,000 2.34 414 4.61 ×2.42

rows, cols 4© Linear sum. 41,140 96.24 7,373 82.08 ×5.58

778,650 5© Remaining 1,609 3.76 1,609 17.92 ×.00

non-zeros 6© Total (= 4©+ 5©) 42,749 100.00 8,982 100.00 ×4.76

192,946,566 Peak mem. (MB) 36,489 43,732 –

direction. Boundary condition is used to fasten the body. Standard elastic steel properties
are used for all bodies of the models except tires in the second model.

A variable step size has been used to numerically integrate Eq. (6) and the Hi
x matrix in

Eq. (7) must be generated and solved at every time step. There are numerical errors due to
finite-precision arithmetic and condition number of the linear system [25], and a dynamic
analysis accumulates the errors over time. Accurate solutions have a decisive effect on it-
erations of Newton’s numerical method as well as on overall dynamic analysis time. Thus,
the iterative refinement option is used to satisfy the accuracy requirement during the solving
phase. In order to verify an operational performance of the proposed implementation, DSS
is used. Except for the operating system, the same software specifications and reordering al-
gorithm in Table 3b are used again because the dynamic analysis software supports only the
Windows operation system. Therefore, CHOLMOD and SPQR routines cannot be involved
in this experiment. The number of linear solving steps is the same irrespective of the two
routines.

In Table 5, peak memory usage and detailed computing times with their proportions
are tabulated. The times are categorized into two parts of the linear equation solver times
including reordering, numerical factorization and solving phase and the remaining time for
reading input file, converting required data structure and generating system matrix at every
time step.

192 J. Jung, D. Bae

Fig. 17 A distribution of equivalent square matrix sizes and its Gflop/s

The GPU device is used only in the numerical factorization step, so that the device has
outstanding effects on the linear solver time while there is no effect in the other time. Al-
though there are considerable speed-ups in numerical factorization step, the total time im-
provement ratio cannot surpass each factorization speed-up rate due to the Amdahl law [37].
As a result, the aggregate time of the GPU is accelerated about 1.9 to 4.7 times, a little less
than 2.5 to 5.9 times for the factorization improvement, compared to that of the CPU.

The flops of variable update operation occupy most of the total numerical factorization.
Since the variable update consists of only matrix multiplication operations, it is important to
analyze the matrix multiplication to achieve the best computing performance. Many differ-
ent sizes of non-square matrices are involved in the variable update. Because it is difficult
to estimate the computing time for all kinds of matrices, all matrices must be converted into
computationally equivalent square matrices. Figure 17 depicts two kinds of data from one of
the sparse matrices generated during dynamic analysis. One depicts both a constant theoret-
ical peak and an experimental Gflop/s of square matrix multiplications in double precision
when the matrix size increases. The other shows the percentages of equivalent square matrix
sizes whose arithmetic operation numbers are from the Fig. 16 models.

Based on the square matrix size 128 in Fig. 17, the experimental models present differ-
ent tendencies. Below 128, the first and the second models have higher proportions than
the third model; however, the third model shows more percentages above 128, especially
512–1024. The experimental performance for matrix multiplication consistently grows un-
til 2048. Therefore, the outstanding computing performance of the GPU device is highly
affected by the ratios of larger equivalent square matrix sizes.

Meanwhile, the peak memory usage of the proposed method using a GPU device is
greater than that of MKL DSS on a CPU. The memory usage is affiliated with the block
size of separators as shown in Table 4. There is an inverse relationship between block size
and factorization time below a certain block size, or 1024. It is possible to reduce the mem-
ory usage by reducing the maximum block size, but the action certainly causes increase in
computing time for numerical factorization. This trend seems to be the nature of the experi-
mental GPU architecture. Table 6 summarizes the computing time and the memory usage of
one sparse matrix among the dynamic analysis according to the maximum block size from
64 to 1024.

Accelerating implicit integration using a GPU 193

Table 6 A correlation between memory usage and computing time for block size

Model Item DSS CPU MFS GPU (maximum block size)

64 128 256 512 1024

Crank piston Mem. (MB) 53,865 47,337 47,068 50,878 57,334 65,059

Time (sec.) 207.32 866.44 234.66 98.34 81.02 78.43

Suspension Mem. (MB) 32,720 30,815 31,438 33,788 37,837 43,097

Time (sec.) 136.74 618.68 166.78 70.28 53.75 53.47

Bell crank Mem. (MB) 34,661 32,965 30,616 32,719 36,586 41,886

Time (sec.) 351.11 1,091.38 262.63 94.62 69.78 56.81

Table 7 The scaled residual values for each solution type

Value type Acc. magnitude Von Mises stress

Crank piston 2.587883E-10 2.200535E-05

Suspension 3.325773E-07 7.547753E-08

Bell crank 1.775657E-08 1.900251E-11

It is also important to compare the solution accuracies of GPU and CPU. Von Mises
stress and acceleration magnitude values at the point shown in Fig. 17 are used to check the
solution accuracy. The scaled Infinity-norm values in Eq. (9) are compared with evaluation
of the accuracy. Table 7 shows that the norm values are almost identical, which verifies the
solution accuracy.

resscaled = ‖xcpu − xgpu‖∞
‖xcpu‖∞ + ‖xgpu‖∞

(9)

8 Conclusion

A new linear equation solver for a GPU has been implemented using a BFS-based reordering
and multifrontal methods. The proposed implementation is parallelized for an experimental
GPU. Since popular direct methods have several drawbacks to apply them to GPUs, a new
implementation is needed. In order to get over the drawbacks, a combination of the BFS-
based reordering method and multifrontal method is proposed. A global multifrontal opera-
tion is carried out from the deepest separators to a root of a multilevel tree. This sequence is
exactly the same as the BFS reverse-level order traversal. The BFS-based implementation is
more suitable for the GPU device than the DFS-based. It makes a host system easy to set pri-
orities of operational regions to fit the GPU memory size. The operation grouping of variable
factor and update gives separators more parallel opportunities. However, another difficulty
with the efficient parallel processing comes from the non-uniform size of separators. To
resolve the difficulty, large separators are divided into smaller blocks. An experimental ap-
proach is used to estimate the optimum maximum block size to be 512 or 1024. Dynamic
analysis of three mechanical models has been carried out to demonstrate the effectiveness
of the proposed method. The computing time and the memory usage on GPUs are compared
with those obtained from DSS routine included in the MKL on CPUs. It performs 1.9–4.7

194 J. Jung, D. Bae

times faster during the whole computing process. The important factor in deciding the per-
formance improvement on a GPU device is how many percentages of large block matrices
in variable update operations are involved. The proposed implementation and the DSS have
yielded the same level of accurate solutions. The proposed method will be extended for a
multi-GPU system.

References

1. TOP 500: http://www.top500.org/
2. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU computing. Proc. IEEE

96(5), 879–899 (2008). doi:10.1109/jproc.2008.917757
3. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003). doi:10.1137/1.

9780898718003
4. Lukash, M., Rupp, K., Selberherr, S.: Sparse approximate inverse preconditioners for iterative solvers

on GPUs. In: Proceedings of the 2012 Symposium on High Performance Computing (2012)
5. Serban, R., Melanz, D., Li, A., Stanciulescu, I., Jayakumar, P., Negrut, D.: GPU-based preconditioned

Newton–Krylov solver for flexible multibody dynamics. Int. J. Numer. Methods Eng. 102(9), 1585–1604
(2015). doi:10.1002/nme.4876

6. Naumov, M.: Incomplete-LU and Cholesky preconditioned iterative methods using CUSPARSE and
CUBLAS. Nvidia white paper (2011)

7. Wong, J., Kuhl, E., Darve, E.: A new sparse matrix vector multiplication graphics processing unit algo-
rithm designed for finite element problems. Int. J. Numer. Methods Eng. 102(12), 1784–1814 (2015).
doi:10.1002/nme.4865

8. Rodrigues, A.W.D.O., Guyomarch, F., Menach, Y.L., Dekeyser, J.L.: Parallel sparse matrix solver on the
GPU applied to simulation of electrical machines. arXiv:1010.4639 (2010)

9. Negrut, D., Tasora, A., Anitescu, M., Mazhar, H., Heyn, T., Pazouki, A.: Solving large multi-body
dynamics problems on the GPU. In: GPU Gems, vol. 4, pp. 269–280 (2011). doi:10.1016/b978-0-12-
385963-1.00020-4

10. Mazhar, H., Heyn, T., Negrut, D.: A scalable parallel method for large collision detection problems.
Multibody Syst. Dyn. 26(1), 37–55 (2011). doi:10.1007/s11044-011-9246-y

11. Negrut, D., Tasora, A., Mazhar, H., Heyn, T., Hahn, P.: Leveraging parallel computing in multibody
dynamics. Multibody Syst. Dyn. 27(1), 95–117 (2012). doi:10.1007/s11044-011-9262-y

12. Gaikwad, A., Toke, I.M.: Parallel iterative linear solvers on GPU: a financial engineering case. In: Eu-
romicro Conference on Parallel, Distributed and Network-based Processing, pp. 607–614 (2010). doi:10.
1109/pdp.2010.55

13. Scott, J.A., Hu, Y.: Experiences of sparse direct symmetric solvers. ACM Trans. Math. Softw. 33(3), 18
(2007). doi:10.1145/1268769.1268772

14. Davis, T.A.: Direct Methods for Sparse Linear Systems. Fundamentals of Algorithms, vol. 2. SIAM,
Philadelphia (2006). doi:10.1137/1.9780898718881

15. Irons, B.M.: A frontal solution program for finite element analysis. Int. J. Numer. Methods Eng. 2(1),
5–32 (1970). doi:10.1002/nme.1620020104

16. Scott, J.A.: A parallel frontal solver for finite element applications. Int. J. Numer. Methods Eng. 50(5),
1131–1144 (2001). doi:10.1002/1097-0207(20010220)50:5<1131::aid-nme68>3.0.co;2-x

17. Reid, J.K., Scott, J.A.: An efficient out-of-core multifrontal solver for large-scale unsymmetric element
problems. Int. J. Numer. Methods Eng. 77(7), 901–921 (2009). doi:10.1002/nme.2437

18. Rennich, S.C., Stosic, D., Davis, T.A.: Accelerating sparse Cholesky factorization on GPUs. In: Proceed-
ings of the Fourth Workshop on Irregular Applications: Architectures and Algorithms, pp. 9–16. IEEE
Press, Piscataway (2014). doi:10.1109/IA3.2014.6

19. Yeralan, S.N., Davis, T.A., Ranka, S.: Algorithm 9xx: sparse QR factorization on the GPU. ACM Trans.
Math. Softw. (2015)

20. Bae, D.S., Kim, H.W., Yoo, H.H., Suh, M.S.: A decoupling solution method for implicit numerical
integration of constrained mechanical systems. Mech. Struct. Mach. 27(2), 129–141 (1999). doi:10.1080/
08905459908915692

21. Horowitz, E.: Fundamentals of Data Structures in C++. Galgotia Publications, New Delhi (2006)
22. Brainman, I., Toledo, S.: Nested-dissection orderings for sparse LU with partial pivoting. SIAM J. Matrix

Anal. Appl. 23(4), 998–1012 (2002). doi:10.1137/s0895479801385037
23. Davis, T.A., Hager, W.W.: Dynamic supernodes in sparse Cholesky update/downdate and triangular

solves. ACM Trans. Math. Softw. 35(4), 27 (2009). doi:10.1145/1462173.1462176

http://www.top500.org/
http://dx.doi.org/10.1109/jproc.2008.917757
http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1002/nme.4876
http://dx.doi.org/10.1002/nme.4865
http://arxiv.org/abs/arXiv:1010.4639
http://dx.doi.org/10.1016/b978-0-12-385963-1.00020-4
http://dx.doi.org/10.1016/b978-0-12-385963-1.00020-4
http://dx.doi.org/10.1007/s11044-011-9246-y
http://dx.doi.org/10.1007/s11044-011-9262-y
http://dx.doi.org/10.1109/pdp.2010.55
http://dx.doi.org/10.1109/pdp.2010.55
http://dx.doi.org/10.1145/1268769.1268772
http://dx.doi.org/10.1137/1.9780898718881
http://dx.doi.org/10.1002/nme.1620020104
http://dx.doi.org/10.1002/1097-0207(20010220)50:5<1131::aid-nme68>3.0.co;2-x
http://dx.doi.org/10.1002/nme.2437
http://dx.doi.org/10.1109/IA3.2014.6
http://dx.doi.org/10.1080/08905459908915692
http://dx.doi.org/10.1080/08905459908915692
http://dx.doi.org/10.1137/s0895479801385037
http://dx.doi.org/10.1145/1462173.1462176

Accelerating implicit integration using a GPU 195

24. Karypis, G., Kumar, V.: METIS—a software package for partitioning unstructured graphs, partitioning
meshes, and computing fill-reducing orderings of sparse matrices, version 5.1.0. University of Minnesota
(2013)

25. L’Excellent, J.Y.: Multifrontal methods: parallelism, memory usage and numerical aspects. Ecole Nor-
male Supérieure de Lyon-ENS LYON (2012)

26. Padua, D.: Encyclopedia of Parallel Computing. Springer, Berlin (2011). doi:10.1007/978-0-387-
09766-4

27. Guermouche, A., L’Excellent, J.Y., Utard, G.: On the memory usage of a parallel multifrontal solver. In:
Parallel and Distributed Processing Symposium, p. 8 (2003). doi:10.1109/ipdps.2003.1213187

28. Guermouche, A., L’Excellent, J.Y., Utard, G.: Analysis and improvments of the memory usage of a
multifrontal solver (2003)

29. NVIDIA Kepler GK110 architecture: http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-
GK110-Architecture-Whitepaper.pdf

30. Jung, J.H., Bae, D.S.: Optimization of operating and assembling mass properties of solid elements on
heterogeneous platforms using OpenCL framework. J. Mech. Sci. Technol. 29(7), 2631–2637 (2015).
doi:10.1007/s12206-015-0508-0

31. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear algebra algorithms for
multicore architectures. Parallel Comput. 35(1), 38–53 (2009). doi:10.1016/j.parco.2008.10.002

32. Wang, L., Wu, W., Xu, Z., Xiao, J., Yang, Y.: BLASX: a high performance level-3 BLAS library for
heterogeneous multi-GPU computing. In: Proceedings of the 2016 International Conference on Super-
computing, pp. 20:1–20:11. ACM, New York (2016). doi:10.1145/2925426.2926256

33. Kurzak, J., Nath, R., Du, P., Dongarra, J.: An implementation of the tile QR factorization for a GPU
and multiple CPUs. In: International Workshop on Applied Parallel Computing, pp. 248–257. Springer,
Berlin (2010). doi:10.1007/978-3-642-28145-7_25

34. Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra solvers for multicore with GPU ac-
celerators. In: Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1–8 (2010).
doi:10.1109/IPDPSW.2010.5470941

35. Anderson, E., Dongarra, J.J., Ostrouchov, S.: Lapack working note 41: installation guide for lapack.
University of Tennessee, Computer Science Department (1992)

36. Intel, Intel Math Kernel Library Reference Manual 11.3, 1575 (2015)
37. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities.

In: Proceedings of the Spring Joint Computer Conference, April 18–20, 1967, pp. 483–485. ACM, New
York (1967). doi:10.1109/N-SSC.2007.4785615

http://dx.doi.org/10.1007/978-0-387-09766-4
http://dx.doi.org/10.1007/978-0-387-09766-4
http://dx.doi.org/10.1109/ipdps.2003.1213187
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://dx.doi.org/10.1007/s12206-015-0508-0
http://dx.doi.org/10.1016/j.parco.2008.10.002
http://dx.doi.org/10.1145/2925426.2926256
http://dx.doi.org/10.1007/978-3-642-28145-7_25
http://dx.doi.org/10.1109/IPDPSW.2010.5470941
http://dx.doi.org/10.1109/N-SSC.2007.4785615

	Accelerating implicit integration in multi-body dynamics using GPU computing
	Abstract
	Introduction
	Equation of motion
	Constrained mechanical system and integration methods
	Implicit integration for differential-algebraic equations

	Nested dissection
	Traditional DFS-based nested dissection
	Proposed BFS-based nested dissection

	Numerical factorization
	The supernodal methods
	The multifrontal methods
	The proposed implementation of the multifrontal method

	Implementation for a GPU device
	Characteristic of a GPU device
	Application of a GPU device
	Optimization of a GPU device

	Division of separators
	Experimental models
	Effects of division
	Optimum maximum block size

	Numerical experiments
	Conclusion
	References

