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Abstract Screw and Lie group theory allows for user-friendly modeling of multibody sys-
tems (MBS), and at the same they give rise to computationally efficient recursive algo-
rithms. The inherent frame invariance of such formulations allows to use arbitrary reference
frames within the kinematics modeling (rather than obeying modeling conventions such as
the Denavit–Hartenberg convention) and to avoid introduction of joint frames. The com-
putational efficiency is owed to a representation of twists, accelerations, and wrenches that
minimizes the computational effort. This can be directly carried over to dynamics formula-
tions. In this paper, recursive O(n) Newton–Euler algorithms are derived for the four most
frequently used representations of twists, and their specific features are discussed. These for-
mulations are related to the corresponding algorithms that were presented in the literature.
Two forms of MBS motion equations are derived in closed form using the Lie group formu-
lation: the so-called Euler–Jourdain or “projection” equations, of which Kane’s equations
are a special case, and the Lagrange equations. The recursive kinematics formulations are
readily extended to higher orders in order to compute derivatives of the motions equations.
To this end, recursive formulations for the acceleration and jerk are derived. It is briefly
discussed how this can be employed for derivation of the linearized motion equations and
their time derivatives. The geometric modeling allows for direct application of Lie group
integration methods, which is briefly discussed.
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1 Introduction

The core task in computational multibody system (MBS) dynamics is to either construct the
equations of motion (EOM) explicitly that can be written for an unconstrained tree-topology
MBS in the form

M(q)q̈ + C(q̇,q)q̇ = Q(q̇,q, t) (1)

in a way that is easy to pursue, or to evaluate them for given (q̈, q̇,q) and t , respectively to
solve them, in a computationally efficient way for q(t). In continuation of [60], the aim of
this paper is to present established O(n) formulations in a common geometric setting and to
show that this setting allows for a flexible and user-friendly MBS modeling.

Screw and Lie group theory provides a geometric framework that allows for achieving
optimal computational performance and at the same time allows for an intuitive and flexible
modeling. In particular, it gives rise to a formulation of the MBS kinematics that does not
involve body-fixed joint frames. The kinematics modeling is indeed reflected in the formula-
tion used to evaluate the EOM. A central concept is the representation of velocities (twists)
as screws. Four different variants were recalled in [60]. In this paper, their application to
dynamics modeling is reviewed. A well-known approach, which exploits the fact that rigid-
body twists are screws, is the so-called “spatial vector” formulation introduced in [26, 29],
respectively the so-called “spatial operator algebra”, which was formalized in [73]. The lat-
ter is the basis for the O(n) forward dynamics algorithms introduced in [30, 37, 38, 44, 72,
74]. The fundamental operation underlying these formulations is the frame transformations
of screws, that is, twists and wrenches. The fact that the latter can be expressed in terms of
compact matrix operations gave rise to a matrix formulation for the MBS kinematic and dy-
namics [5, 42, 43, 83] using screw algebra. While these formulations make merely use of the
algebraic properties of screws (e.g. velocities, accelerations, wrenches), several algorithms
for generating the EOM of MBS with tree topology were reported, which also exploit the
fact that finite rigid body motions constitute the Lie group SE(3) whose Lie algebra se(3) is
isomorphic to the algebra of screws [15, 23, 24, 32, 33]. The central relation is the product of
exponentials (POE) introduced in [15]. The important feature of such a geometric Lie group
formulation is the frame invariance, which makes it independent from any modeling con-
vention like the Denavit–Hartenberg convention. This allows for direct processing of CAD
data and gives further rise to numerically advantageous Lie group time integration methods.
Yet there is no established Lie group algorithm for the generation respectively evaluation of
the EOM that takes full advantage of the freedom to chose different motion representations
enabled by the frame invariance.

This paper is organized as follows. Recursive relations for the acceleration and jerk, and
thus for the time derivatives of the Jacobians, are first derived in Sect. 2. The Newton–Euler
equations for the four different representations of twists introduced in [60] are then recalled
in Sect. 3. The corresponding recursive O(n) inverse dynamics algorithm for evaluating the
EOM are presented in Sect. 4. The body-fixed algorithm is similar to that in [2, 7, 30, 34,
35, 44, 45, 67, 68, 70, 71, 76], the hybrid formulation to that in [1, 6, 37, 38, 73, 74], and the
spatial formulation to that in [29]. Two versions of the EOM in closed form are presented
in Sect. 5. In Sect. 5.1, the Euler–Jourdain respectively “projection” equations [14, 84] are
presented that, together with the screw formulation of MBS kinematics, allow for an effi-
cient MBS modeling in terms of readily available geometric data. In Sect. 5.2, a closed form
of the Lagrangian EOM is presented using the Lie group approach. It should be noticed that
the presented formulations allow for modeling MBS without introduction of joint frames
while applying the recursive kinematics and dynamics algorithm that is deemed best suited.
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The significance of the Lie group formulation for the linearization of the EOM and the de-
termination of derivative of the EOM with respect to geometric design parameters and time
derivatives is discussed in Sect. 6. Finally, in Sect. 7 the application of Lie group integration
methods is briefly discussed. The kinematic relations presented in [60] are summarized in
Appendix A. The basic Lie group background can be found in [47, 63, 75].

2 Acceleration, jerk, and partial derivatives of Jacobians

Besides the compact description of finite and instantaneous motions of a system of artic-
ulated bodies, a prominent feature of the screw theoretical approach is that it allows for
expressing the partial derivatives explicitly in terms geometric objects. Moreover, the an-
alytic formulation of the kinematics using the POE gives rise to compact expressions for
higher derivatives of the instantaneous joint screws, that is, of the Jacobian, which may be
relevant for sensitivity analysis and linearization of motion equations. In this section, re-
sults for the acceleration and jerk of a kinematic chain are presented for the body-fixed,
spatial, and hybrid representation. The corresponding relations for the mixed representation
are readily found from either one of these using the relations in Table 3 of [60].

2.1 Body fixed representation

Starting from (102), the body-fixed acceleration is V̇b
i = Jb

i q̈ + J̇b
i q̇ or, explicitly in terms of

the body-fixed instantaneous screw coordinates,

V̇b
i =

∑

j≤i

Jb
i,j q̈j +

∑

j≤i

∑

k≤i

∂

∂qk
Jb

i,j q̇j q̇k. (2)

Using the matrix form of (104), the partial derivatives of the instantaneous screw coordinates
are

∂

∂qk

Ĵb
i,j = ∂

∂qk

(
C−1

i Cj

)
A−1

j Ŷj Aj C−1
i Cj + C−1

i Cj A−1
j Ŷj Aj

∂

∂qk

(
C−1

j Ci

)
. (3)

This can be evaluated with help of the POE formula (94) as

∂

∂qk

(
C−1

i Cj

)

= ∂

∂qk

(
A−1

i exp(−Ŷiqi) · · · exp(−Ŷj+1qj+1)Aj

)

= −A−1
i exp(−Ŷiqi) · · · exp(−Ŷk+1qk+1)Ŷk exp(−Ŷkqk) · · · exp(−Ŷj+1qj+1)Aj

= −C−1
i CkA−1

k ŶkAkC−1
k Cj = −C−1

i CkA−1
k ŶkAkC−1

k CiC−1
i Cj

= −̂Jb
i,kC−1

i Cj , j ≤ k ≤ i, (4)

and in the same way, it follows that

∂

∂qk

(
C−1

j Ci

) = C−1
j Ci Ĵb

i,j , j ≤ k ≤ i. (5)
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Insertion into (3) yields ∂
∂qk

Ĵb
i,j = Ĵb

i,j Ĵb
i,k − Ĵb

i,k Ĵb
i,j , and noting (114), the final expression is

∂Jb
i,j

∂qk

= [
Jb

i,j ,Jb
i,k

]
, j < k ≤ i. (6)

Hence the partial derivative of the instantaneous joint screw Jb
i,j with respect to qk is simply

the screw product (115) of Jb
i,j and Jb

i,k . The final expression for the acceleration attains a
very compact form

V̇b
i =

∑

j≤i

Jb
i,j q̈j +

∑

j<k≤i

[
Jb

i,j ,Jb
i,k

]
q̇j q̇k. (7)

Indeed, the same result would be obtained using (104) in terms of Yi . This expression has
been derived, using different notations, for instance, in [15, 50, 63, 67].

Equation (7) can be summarized for all bodies i = 1, . . . , n using the system twist (112)
and system Jacobian (113). To this end, the derivative (6) is rewritten as

∂Jb
i,j

∂qk

= [
Jb

i,j ,Jb
i,k

] = AdCi,k

[
Jb

k,j ,
kXk

] = −AdCi,k
adkXk

Jb
k,j , j < k ≤ i, (8)

so that

J̇b
i,j =

∑

j<k≤i

[
Jb

i,j ,Jb
i,k

]
q̇k = −

∑

j<k≤i

AdCi,k
adkXk

Jb
k,j q̇k.

Noticing that adkXk
Jb

k,k = 0, the time derivative of the body-fixed system Jacobian factors as

J̇b(q, q̇) = −Ab(q)ab(q̇)Ab(q)Xb = −Ab(q)ab(q̇)Jb(q) (9)

with Ab defined in (24) of [60] and with

ab(q̇) := diag(q̇1ad1X1
, . . . , q̇nadnXn ). (10)

Hence the system acceleration is given in compact matrix form as

V̇b = Jbq̈ − AbabJbq̇ = Jbq̈ − AbabVb. (11)

Remark 1 (Overall inverse kinematics solution) Relation (11) gives rise to a solution of the
inverse kinematics problem on acceleration level, that is, the generalized accelerations for
given configurations, twists, and accelerations of the bodies. The unique solution is

q̈ = ((
Xb

)T
Xb

)−1(
Xb

)T ((
I − Db

)
V̇b + abVb

)
, (12)

which is indeed the time derivative of (26) in [60]. In components, this gives the acceleration
of the individual joints as q̈i = iXT

i (V̇b
i − AdCi,i−1 V̇b

i−1 + q̇i[iXi ,Vb
i ])/‖iXi‖2.

A further time derivative of the twist yields the jerk of a body, which requires a fur-
ther partial derivative of the Jacobian. Starting from (6) and using the Jacobi identity (117)
and the bilinearity ∂

∂qk
[Jb

i,j ,Jb
i,k] =[ ∂

∂qk
Jb

i,j ,Jb
i,k]+[Jb

i,j ,
∂

∂qk
Jb

i,k], the nonzero second partial
derivative is found as

∂2Jb
i,j

∂qk∂qr

=
{ [[Jb

i,j ,Jb
i,k],Jb

i,r ], j < k ≤ r ≤ i,

[[Jb
i,j ,Jb

i,r ],Jb
i,k], j < r < k ≤ i.

(13)
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This gives rise to an explicit form for the body-fixed jerk:

V̈b
i =

∑

j≤i

Jb
i,j

...
q j + 2

∑

j<k≤i

[
Jb

i,j ,Jb
i,k

]
q̈j q̇k

+
∑

j<k≤i

[
Jb

i,j ,Jb
i,k

]
q̇j q̈k + 2

∑

j<k≤r≤i

[[
Jb

i,j ,Jb
i,k

]
,Jb

i,r

]
q̇j q̇kq̇r . (14)

Thus only computationally simple nested screw products are required to compute the terms
that are quadratic and cubic in q̈j , q̇k . The same applies to higher derivatives (which, for
instance, are required for motion planning). The explicit form of the νth-order partial deriva-
tive was presented in [55]:

∂νJb
i,j

∂qα1∂qα2 · · · ∂qαν

= [
. . .

[[[
Jb

i,j ,J
b
i,β1

]
,Jb

i,β2

]
,Jb

i,β3

]
. . . ,Jb

i,βν

]
, j < β1 ≤ β2 ≤ · · · ≤ βν ≤ i,

(15)
where β1 ≤ β2 ≤ · · · ≤ βν is the ordered sequence of the indices α1, . . . , αν . Clearly, the
closed-form expressions become very involved. Their explicit determination can be avoided
by recursive evaluation [55].

2.2 Spatial representation

Proceeding in the same way as for (3), the partial derivative of the spatial Jacobian is ob-
tained as

∂Js
j

∂qk

= [
Js

k,Js
j

]
, k < j . (16)

Since the spatial representation Js
j is intrinsic to the joint j , rather than related to a body as

is (104), the time derivative can be expressed as

J̇s
j =

∑

k≤j

[
Js

k,Js
j

]
q̇k =

[∑

k≤j

Js
k,Js

j

]
q̇k = [

Vs
j ,Js

j

]
. (17)

This relation reconfirms the special properties of spatial twists that are advantageous for
recursive implementations. It may be considered as an extension of Euler’s formula for the
time derivative of vectors resolved in moving frames to screws. For this reason, Feather-
stone [27, 29] termed the Lie bracket the “spatial cross product”. The spatial acceleration is
therewith

V̇s
i =

∑

j≤i

Js
j q̈j +

∑

k<j≤i

[
Js

k,Js
j

]
q̇j q̇k =

∑

j≤i

(
Js

j q̈j + [
Vs

j ,Js
j

]
q̇j

)
. (18)

In matrix form the overall spatial acceleration can be summarized as

V̇s = Jsq̈ + LbsJsq̇ = Jsq̈ + LbsVs (19)

with

bs
(
Vs

) := diag(adVs
1
, . . . ,adVs

n
) (20)

and L being the lower triangular block identity matrix. A solution for q̈ similar to (11) exists.
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The second partial derivative of the spatial Jacobian is

∂2Js
i

∂qkqj

=
{ [Js

k,[Js
j ,Js

i ]], k < j < i,

[Js
j ,[Js

k,Js
i ]], j ≤ k < i.

(21)

Therewith the spatial representation of the jerk of body i is found as

V̈s
i =

∑

j≤i

(
Js

j

...
q j + 2

[
Vs

j ,Js
j

]
q̈j +

∑

k≤j

[
Js

kq̈k,Js
j

]
q̇j + [

Vs
j−1 + Vs

j − Vs
i ,

[
Vs

j ,Js
j

]]
q̇j

)

(22)

=
∑

j≤i

(
Js

j

...
q j + [[

Vs
j ,Js

j

]
,Vs

i − 2Vs
j

]
q̇j +

[∑

k≤j

Js
kq̈k + [

Vs
j ,Js

j

]
q̇j ,Js

j

]
q̇j

+ 2
[
Vs

j ,Js
j

]
q̈j

)
. (23)

The instantaneous joint screws (105) and thus their derivatives (16) and (21) are independent
of a particular body. The closed form of the νth-order partial derivative has been reported in
[54]:

∂νJs
i

∂qα1∂qα2 · · · ∂qαν

= [
Js

βν
,
[
Js

βν−1
,
[
Js

βν−2
, . . .

[
Js

β1
,Js

i

]
. . .

]]]
, βν ≤ βν−1 ≤ · · · ≤ β1 < i,

= adJs
βν

adJs
βν−1

adJs
βν−2

· · ·adJs
β1

Js
i , βν ≤ βν−1 ≤ · · · ≤ β1 < i,

=
[

Js
βν

,
∂ν−1Js

i

∂qβ1∂qβ2 · · · ∂qβν−1

]
, βν ≤ βν−1 < i, (24)

where again βν ≤ βν−1 ≤ · · · ≤ β1 is the ordered sequence of the indices α1, . . . , αν . The last
form in (24) allows for a recursive determination. Moreover, a recursive formulation for the
time derivative of spatial twists has been reported in [56]. Together with the very concise
form (17), this makes the spatial representation computationally very attractive.

2.3 Hybrid form

The results in Sect. 2.1 can be carried over to the hybrid twist using relation (107). As in

(119), denote by
v

Jh
i,k and

ω

Jh
i,k the screw coordinate vectors comprising respectively the linear

and angular parts of the column of the hybrid Jacobian, so that Jh
i,k = ω

Jh
i,k + v

Jh
i,k . Then

∂Jh
i,j

∂qk

= ∂AdRi

∂qk

Jb
i,j + AdRi

∂Jb
i,j

∂qk

= adω
Jh
i,k

AdRi
Jb

i,j + AdRi

[
Jb

i,j ,Jb
i,k

]

= [ω

Jh
i,k,Jh

i,j

] + [
Jh

i,j ,Jh
i,k

] = [
Jh

i,j ,Jh
i,k − ω

Jh
i,k

]
, (25)

and thus

∂Jh
i,j

∂qk

= [
Jh

i,j ,
v

Jh
i,k

] = −adv
Jh
i,k

Jh
ij , j ≤ k ≤ i. (26)
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The similarity to (6) is apparent. The difference is that the convective term due to the angular

motion is missing, which is why only
v

J appears. The time derivative of the hybrid Jacobian
can thus be expressed as

J̇h
i,j =

∑

k≤j

[
Jh

i,j ,
v

Jh
i,k

]
q̇k = [

Jh
i,j ,�

v

Vh
j−1,i

]
, (27)

where �Vh
j−1,i := Vh

i − Adri,j−1 Vh
j−1 is the relative hybrid twist of body j − 1 and i as

observed in the BFR on body i. A simpler relation is obtained by directly differentiating
(106):

J̇h
i,j = (adṙi,j

+ Adri,j−1 adωs
j
)0Xj

j

= Adri,j−1(adḋi,j
+ adωs

j
)0Xj

j = Adri,j−1(adVs
j
− adṙi

)0Xj

j . (28)

This yields the following explicit expressions for the hybrid acceleration:

V̇h
i =

∑

j≤i

Jh
j q̈j +

∑

j≤k≤i

[
Jh

i,j ,
v

Jh
i,k

]
q̇j q̇k =

∑

j≤i

(
Jh

j q̈j + [
Jh

i,j ,�
v

Vh
j−1,i

]
q̇j

)
(29)

=
∑

j≤i

(
Jh

j q̈j + (adṙi,j
+ Adri,j

adωs
j
)0Xj

j q̇j

)
. (30)

For the second derivative, it is simplest to start from (28), and a straightforward calculation
yields

J̈h
i,j = (

adr̈i,j
+ 2adṙi,j

adωs
j
+ Adri,j

(adω̇s
j
+ adωs

j
adωs

j
)
)

0Xj

j . (31)

The jerk in hybrid representation can thus be written as

V̈h
i =

∑

j≤i

(
Jh

j

...
q j + 2adṙi,j

q̈j + (adr̈i,j
+ 2adṙi,j

adωs
j
)q̇j (32)

+ Adri,j

(
2adωs

j
q̈j + (adω̇s

j
+ adωs

j
adωs

j
)q̇j

)
0Xj

j

)
. (33)

These are the core relations in the so-called “spatial vector” formulation (i.e. using the hybrid
representation of twists) [30, 37, 38, 44, 72, 74]. In this context the Lie bracket, respectively
screw product (115) has been termed the “spatial cross product” [27, 29].

2.4 Mixed representation

With (101), employing the results for the mixed representation yields

J̇m
ij =

(
RT

i 0
0 I

)
J̇h

ij , V̇m
i =

(
RT

i 0
0 I

)
V̇h

i , V̈m
i =

(
RT

i 0
0 I

)
V̈h

i . (34)

3 Newton–Euler equations in various representations

3.1 Spatial representation

Consider a rigid body with body-fixed BFR Fb = {Ω; �eb,1, �eb,2, �eb,3} located at an arbitrary
point Ω . Denote the inertia matrix with respect to this BFR by Mb; see (41). The configu-
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ration of the BFR Fb is described by C = (R, r). The spatial inertia matrix expressed in the
IFR is then

Ms = Ad−T
C MbAd−1

C . (35)

The spatial canonical momentum coscrew �s = (Ls,Ps)T ∈ se∗(3), conjugate to the spatial
twist, is thus

�s = MsVs = Ad−T
C MbAd−1

C Vs = Ad−T
C �b. (36)

The momentum balance yields the Newton–Euler (NE) equations in spatial representation,
which attains the simple form

�̇
s = Ws, (37)

where Ws = (ts, fs)T is the applied wrench with spatial torque ts ≡ 0t0 and force fs ≡ 0f, both
measured and resolved in the IFR. The momentum balance equation (37) is the simplest
form possible, which is achieved by using the spatial representation of twist, wrench, and
momentum. Firstly, it does not involve any vectorial operation, for example, cross products.
Secondly, it is also numerically advantageous: any numerical discretization of the ODE (37)
easily preserves the spatial momentum in the absence of external wrenches. This has been
discussed already by Borri [12]. In this context the spatial formulation is called the fixed pole
equation. In a recent paper [31] the advantages of this form are exploited for geometrically
exact modeling of beams.

An explicit and compact form in terms of the spatial twist is found, introducing (36) and
using

Ṁs = −adT
Vs Ms − MsadVs (38)

along with adVs Vs = 0, as

Ws = MsV̇s − adT
Vs MsVs. (39)

Remark 2 Writing (39) as Ws = MsV̇s + CsVs (with Cs := −adT
Vs Ms) shows that Ṁs −

2Cs = adT
Vs Ms − MsadVs is skew symmetric. This property is called the skew symmetry of

the motion equations [63].

3.2 Body-fixed representation

Let Fc = {C; �ec,1, �ec,2, �ec,3} be a body-fixed frame located at the COM. Its configuration
is described by Cc = (Rc, rc). The body-fixed twist of the COM frame is denoted Vb

c =
(ωb

c,vb
c)

T with ω̃b
c = RT

c Ṙc,vb
c = RT

c ṙc. The inertia matrix with respect to this COM frame
is denoted

Mb
c =

(
Θc 0
0 mI

)
(40)

with the body mass m and the inertia tensor Θc expressed in the body-fixed COM frame Fc.
Let Sbc = (Rbc,

bdbc) ∈ SE(3) be the transformation from the COM frame Fc to the BFR Fb.
Here bdbc is the position vector from the BFR to the COM resolved in the BFR. Then the
configuration of Fc is given in terms of that of the BFR by Cc = CSbc. The inertia matrix
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with respect to the general BFR Fb is

Mb = Ad−T
Sbc

Mb
cAd−1

Sbc

=
(

Θb mbd̃bc

−mbd̃bc mI

)
(41)

with Θb = RbcΘcRT
bc − md̃2

bc (which is the parallel axes theorem).
The momentum coscrew represented in the body-fixed RFR Fb is �b = MbVb. The

frame transformation of (39) to the BFR Fb yields the body-fixed momentum balance rep-
resented in Fb in the concise form:

Wb = �̇
b − adT

Vb�
b

= MbV̇b − adT

Vb MbVb (42)

with the applied wrench Wb = (tb, fb)T in body-fixed representation. Equations (42) are for-
mally identical to the spatial equations (39). Written separately, this yields the NE equations
expressed in an arbitrary body-fixed BFR

Θbω̇
b + ω̃bΘbω

b + mbd̃bc

(
v̇b + ω̃bvb

) = tb, (43)

m
(
v̇b + ω̃bvb + ( ˙̃ωb + ω̃bω̃b

)b
dbc

) = fb. (44)

When using the COM frame as special case, the momentum represented in the body-fixed
COM frame is �b

c = Mb
cVb

c , and the momentum balance yields

Wb
c = Mb

cV̇b
c − adT

ωb
c
Mb

cVb
c . (45)

Written in components, this yields the NE equations represented in the COM frame:

Θcω̇
b
c + ω̃b

cΘcω
b
c = tb

c, (46)

m
(
v̇b

c + ω̃b
cvb

c

) = fb
c . (47)

Noticeably, the angular and translational momentum equations are coupled even though the
COM is used as reference. This is due to using body-fixed twists.

3.3 Hybrid form

The hybrid twist Vh
c = (ωs, ṙc)

T of the COM frame is related to the body-fixed twist by
Ad−1

Rc
Vb

c (see (99)), where Rc is the absolute rotation matrix of Fc in Cc. The hybrid mo-
mentum screw is thus �h

c = Mh
cVh

c , where the hybrid representation of the inertia matrix
is

Mh
c = Ad−T

Rc
Mb

cAd−1
Rc

=
(

Θh
c 0

0 mI

)
, Θh

c = RcΘcRT
c . (48)

The hybrid momentum balance with respect to the COM follows from �̇
h
c = Wh

c . Using
Ṁh

c = −adT
ωs Mh

c − Mh
cadωs yields

Wh
c = Mh

cV̇h
c + adωs Mh

c

ω

Vh
c (49)
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with
ω

Vh
c = (ωs,0)T (notice that −adT

ωs = adωs ). Writing (49) separately for the angular and
linear momentum balance,

Θh
cω̇

s + ω̃sΘh
cω

s = th
c, (50)

mṙc = fh
c, (51)

shows that the hybrid NE equations with respect to the COM are indeed decoupled. Here
Wh

c = (th
c, fh

c)
T denotes the hybrid wrench measured in the COM frame and resolved in the

IFR.
Now consider the arbitrary body-fixed BFR Fb with configuration C = (R, r). The hybrid

twist Vh = (ωs, ṙ)T measured at this RFR is Vh = Addbc Vh
c ,with the displacement vector dbc

from BFR to COM resolved in the IFR. The hybrid mass matrix with respect to the BFR Fb

is found as

Mh = Ad−T
dbc

Mh
cAd−1

dbc
=

(
Θh md̃bc

−md̃bc mI

)
, Θh = Θh

c − md̃2
bc. (52)

The momentum balance in hybrid representation with respect to an arbitrary BFR

�̇
h = Wh (53)

is found, using Ȧd
−1
dbc

= −adḋbc
= Ad−1

dbc
adωs − adωs Ad−1

dbc
to evaluate (53), as

Wh = MhV̇h + adωs Mh
ω

Vh. (54)

Separating the angular and translational part results in

Θhω̇s + ω̃sΘhωs + md̃bcr̈ = th, (55)

m
(
r̈ + ( ˙̃ωs + ω̃sω̃s

)
dbc

) = fh. (56)

These are simpler than the body-fixed equations (43) and (44). Finally, notice that fh = fs.

3.4 Mixed form

The mixed twist Vm = (ωb, ṙ)T consist of the body-fixed angular velocity ωb, that is, mea-
sured and resolved in the BFR Fb, and the translational velocity ṙ measured at the BFR Fb

and resolved in the IFR. The NE equations for the mixed representation with respect to a
general BFR are directly found by combining (43) and (56) with r̈ = v̇b + ω̃bvb:

Θbω̇b + ω̃bΘbωb + mbd̃bcRT r̈ = tb, (57)

m
(
r̈ + R

( ˙̃ωb + ω̃bω̃b
)

bdbc

) = fh. (58)

If a COM frame is used, then combining (46) and (51) yields

Θcω̇
b
c + ω̃b

cΘcω
b
c = tb

c,

mr̈c = fh
c .

(59)
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3.5 Arbitrary representation

The NE equations of body i represented in an arbitrary frame Fj are obtained by a frame
transformation of the spatial momentum balance (37) as

AdT
Cj

�̇
s
i = AdT

Cj
Ws

i . (60)

The spatial twist in terms of the twist of body i represented in Fj is Vs
i = AdCj

j Vi . Using

V̇s
i = AdCj

j V̇i + adVs
j
Vs

i , (39) yields

j Mi

(
j V̇i + adj Vj

j Vi

) − adT
j Vi

j Mi
j Vi = j Wi (61)

with the inertia matrix of body i represented in frame j

j Mi := AdT
Cj

Ms
iAdCj

. (62)

The spatial and body-fixed representations are particular cases with i = j .
Even more generally, the NE equations can be resolved in yet another frame Fk . This is

achieved by transforming the momentum balance (37) as

AdT
Rj,k

AdT
Cj

�̇
s
i = AdT

Rj,k
AdT

Cj
Ws

i (63)

where Rk,j is the rotation matrix from Fi to Fk . The final equations follow from (61) and

the relation j V̇
j

i = AdRj,k

kV̇
j

i + ad
j

ω
Vj

k

AdRj,k

kVj

i as

kMj

i

(
kV̇

j

i + (adkVj
j

+ ad
k

ω
Vj

k

)kVj

i

) − adT
kVj

i

kMj

i
kVj

i = kWj

i (64)

with the mass matrix of body i measured at frame Fj and resolved in frame Fk

kM
j

i := AdT
Rk,j

j MiAdRk,j
= AdT

Rk,j
AdT

Cj
Ms

iAdCj
AdRk,j

. (65)

The spatial and body-fixed representations are particular cases with i = j = k, and the hy-
brid representation with i = j and k = 0. An alternative form of the NE equations in arbi-
trary reference frames was presented in [9].

4 Recursive evaluation of the motion equations for a kinematic chain

The model-based control of complex MBS and the computational MBS dynamics rely on
efficient recursive inverse and forward dynamics algorithms. The recursive Newton–Euler
method for tree-topology MBS was presented in an abstract, that is, coordinate-free, ap-
proach in [46]. However, the various recursive methods using different representations give
rise to algorithmically equivalent methods but with different computational costs. In the fol-
lowing, the various inverse dynamics algorithms are presented, and their computational ef-
fort is estimated. A detailed analysis and forward dynamics algorithms are beyond the scope
of this paper. The presented discussion is nevertheless indicative also for the corresponding
forward dynamics algorithms. Some results on the forward kinematics complexity can be
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found in [65, 79, 85]. This, however, depends on the actual implementation. A comparative
study is still due and will be part of further research.

The inverse dynamics consists in evaluating the motion equations for given joint coordi-
nates q, joint rates q̇, accelerations q̈, and applied wrenches Wapp

i and hence in determining
the joint forces Q = (Q1, . . . ,Qn). The starting point of recursive algorithms for rigid body
MBS is the NE equations of the individual bodies. The MBS dynamics is indeed governed
by the Lagrange equations. Consequently, summarizing the recursive steps yields the La-
grangian motion equations in closed form. This will be shown in the following.

It is assumed for simplicity that the inertia properties, that is, the mass matrices Mb
i ,

are expressed in the body-fixed BFR of body i determining its configuration, rather than
introducing a second frame.

4.1 Body-fixed representation

Forward kinematics recursion Given the joint variables q, the configurations of the n

bodies are determined recursively by (93) or (94), and the twists by (109). Then also the ac-
celerations are found recursively. The expression Ci−1,i (qi) = Bi exp(iXiqi) for the relative
configuration yields ȦdCi,i−1 Vb

i−1 = [AdCi,i−1 Vb
i−1,

iXi q̇i], and hence

V̇b
i = AdCi,i−1 V̇b

i−1 + [
AdCi,i−1 Vb

i−1,
iXi q̇i

] + iXi q̈i (66a)

= AdCi,i−1 V̇b
i−1 + [

AdCi,i−1 Vb
i−1,Vb

i

] + iXi q̈i (66b)

= AdCi,i−1 V̇b
i−1 + [

Vb
i ,

iXi q̇i

] + iXi q̈i , (66c)

where (66b) and (66c) follow by replacing either argument in the Lie bracket using (109).

Remark 3 Notice that solving (109) for q̇i leads to the result in Remark 9 of [60]. Solv-
ing (66c) for q̈i yields (12). Using (66b), the latter can be expressed as q̈i = iXT

i (Vb
i −

AdCi,i−1 V̇b
i−1 + [Vb

i ,AdCi,i−1 Vb
i−1])/‖iXi‖2.

Recursive Newton–Euler algorithm Once the configurations, twists, and accelerations
of the bodies are computed with the forward kinematics recursion, the Newton–Euler equa-
tions (42) for each individual body can be evaluated by an inverse dynamics backward re-
cursion. The momentum balance of body i then yields the resulting body-fixed wrench Wb

i

acting on the body due to generalized joint forces and constraint reactions forces. Projecting
the resultant wrench onto the screw axis iXi of joint i yields the generalized force Qi . Sum-
marizing the forward and backward recursions yields the following recursive algorithm:

Forward Kinematics
– Input: q, q̇, q̈
– For i = 1, . . . , n

Ci = Ci−1Bi exp
(
iXiqi

) = exp(Y1q1) · . . . · exp(Yiqi)Ai (67a)

Vb
i = AdCi,i−1 Vb

i−1 + iXi q̇i (67b)

V̇b
i = AdCi,i−1 V̇b

i−1 − q̇iadiXi
Vb

i + iXi q̈i (67c)

– Output: Ci ,Vb
i , V̇b

i
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Inverse Dynamics
– Input: Ci ,Vb

i , V̇b
i ,Wb,app

i

– For i = n − 1, . . . ,1

Wb
i = AdT

Ci+1,i
Wb

i+1 + Mb
i V̇b

i − adT

Vb
i

Mb
i Vb

i + Wb,app
i (68a)

Qi = iX
T

i Wb
i (68b)

– Output: Q

The joint reaction wrench is omitted in (68a) since this is reciprocal to the joint screw
and does not contribute to (68b). Notice that, with (95), the body-fixed iXi and the spatial
representation Yi of joint screw coordinates can be used. This form of the recursive body-
fixed NE equations, using Lie group notation, has been reported in several publications [50,
67, 70, 71].

Computational effort For the kinematic chain comprising n bodies connected by n 1-
DOF joints, in total, the twist recursion (67b) and acceleration recursion (67c) each requires
n − 1 frame transformations. The acceleration recursion (67c) further requires n − 1 Lie
brackets. The second argument of the Lie bracket can be reused from (67b). Hence the twist
and acceleration recursion need 2(n− 1) frame transformations and n− 1 Lie brackets. The
backward recursion (68a) needs n−1 frame transformations and n Lie brackets. In total, the
NE algorithm needs 3(n−1) frame transformations and 2n−1 Lie brackets. The evaluation
of the Lie bracket in (67c) can be simplified using (66b) since the screw vector iXi expressed
in RFR is sparse and often only contains one non-zero entry.

Remark on forward dynamics Using the body-fixed representation, a recursive forward
dynamics algorithm, making explicit use of Lie group concepts, was presented in [67, 68,
70, 71, 76]. The kinematic forward recursion, together with the factorization in Sect. 3.1.3 of
[60], was used to derive O(n) forward dynamics algorithms in [30, 44], where the Lie group
concept is regarded as spatial operator algebra. Other O(n) forward dynamics algorithms
were presented in [2, 7, 34, 35]. The inverse dynamics formulation was also presented in
[29, 45] in the context of screw theory.

4.2 Spatial representation

Forward kinematics recursion Expressing the spatial twist in terms of the spatial Jaco-
bian, the expressions (105) lead immediately to

Vs
i = Vs

i−1 + Js
i q̇i . (69)

The recursive determination of spatial accelerations thus only requires the time derivative
(17) of the spatial Jacobian, so that

V̇s
i = V̇s

i−1 + adVs
i
Js

i q̇i + Js
i q̈i

= V̇s
i−1 + adVs

i−1
Vs

i + Js
i q̈i . (70)

The second form in (70) follows by inserting (69). This is a generalization of Euler’s the-
orem, for the derivative of vectors resolved in moving frames, to screw coordinate vectors.
Therefore the ad operator is occasionally called the “spatial cross product”.
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Recursive Newton–Euler algorithm The momentum balance expressed with the spatial
NE equations (39), together with (69), leads to the following algorithm:

Forward Kinematics
– Input: q, q̇, q̈
– For i = 1, . . . , n

Ci = Ci−1Bi exp
(
iXiqi

) = exp(Y1q1) · . . . · exp(Yiqi)Ai (71a)

Js
i = AdCi

iXi = AdCiA−1
i

Yi = AdCj Sj,j

j−1Zj (71b)

Vs
i = Vs

i−1 + Js
i q̇i (71c)

V̇s
i = V̇s

i−1 + Js
i q̈i + adVs

i−1
Vs

i (71d)

– Output: Ci ,Vs
i , V̇s

i ,Js
i

Inverse Dynamics
– Input: Ci ,Vs

i , V̇s
i ,Js

i ,Ws,app
i

• For i = n − 1, . . . ,1

Ms
i = Ad−T

Ci
Mb

i Ad−1
Ci

(72a)

Ws
i = Ws

i+1 + Ms
i V̇

s
i − adT

Vs
i
Ms

iV
s
i + Ws,app

i (72b)

Qi = (
Js

i

)T
Ws

i (72c)

– Output: Q

Computational effort In contrast to (67b), once the instantaneous screws (71b) and the
spatial mass matrix (35) are computed, recursions (71c), (71d), and (72b) do not require
frame transformations of twists. Instead, the spatial mass matrix is transformed according
to (72a), which is the frame transformation of a second-order tensor. Overall, the spatial
algorithm needs n frame transformations of screw coordinates, n frame transformation of a
second-order tensor, and 2n−1 Lie brackets. Comparing body-fixed and spatial formulation,
it must be noticed that the frame transformation of the second-order inertia tensor has the
same complexity as two screw coordinate transformations (if just implemented in the form
(35)), and hence the computational complexity of both would be equivalent. This fact is to be
expected since body-fixed and spatial representations are related by frame transformations.
Nevertheless, the spatial version has some interesting features that should be emphasized:

1. The NE equations (39) form a nonlinear first-order ODE system on SE(3) × se(3). Since
a spatial reference is used, the momentum conservation of a rigid body can simply be
written as �̇

s
i = 0, where �s

i ∈ se∗(3) is the momentum coscrew. Using the spatial mo-
mentum balance (37) has potentially two advantages. Firstly, (37) is a linear ODE in �

on the phase space SE(3) × se∗(3). This implies that a numerical integration scheme can
easily preserve the momentum, as pointed out in [12]. Secondly, O(n) formulations us-
ing canonical momenta have been shown to be computationally advantageous. An O(n)

forward dynamics algorithm based on the canonical Hamilton equations was presented
in [64] that uses a hybrid form. It was shown to require less numerical operations than
O(n) algorithms based on the NE equations. It is also known that O(n) algorithms based
on the spatial representation can be computationally more efficient than those based on
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body-fixed or hybrid representations [29]. A further reduction of computational costs can
be expected from an algorithm using spatial momenta.

2. It is interesting to notice that the hybrid as well as the spatial twists appear in the recursive
O(n) forward dynamics formulation in [6], where the first is called “Cartesian velocity”,
and the latter is called “velocity state”. In this formulation the spatial twist plays a central
role, and it was already remarked that the recursive relation of spatial twists (see (71c))
is simpler than that for hybrid twists (76c).

3. If a purely kinematic analysis is envisaged the forward recursion (71b)–(71d) is more
efficient than the body-fixed and the hybrid version (see the next section) [65] (disre-
garding possibly necessary transformations of the results to local reference frames). As
pointed out in Sect. 2.2, this advantage is retained for the higher-order kinematics (jerk,
jounce, etc.) [54].

Remark on forward dynamics The spatial formulation is rarely used for dynamics.
Featherstone [26, 29] derived a forward dynamics O(n) algorithm. He concluded that this
requires the lowest computational effort compared to other methods. But this does not take
into account the necessary transformations of twists and wrenches to local reference frames.
Moreover, it was shown in [79] that the O(n) forward dynamics algorithm in body-fixed
representation, using the body-fixed joint screw coordinates iXi and RFR at the joint axis,
can be implemented in such a way that it requires less computational effort than the spa-
tial version. The key is that when the BFR of Fi is located at and aligned with the axis
of joint i, then iXi becomes sparse. From a user perspective this, however, is a restraining
presumption.

4.3 Hybrid form

Forward kinematics recursion The hybrid twists are determined recursively by (111)
with 0Xi

i=AdRi

iXi . For the acceleration recursion, note that Ȧdri,i−1 = adṙi,i−1 = adṙi−1 −
adṙi

since ṙi,i−1 = ṙi−1 − ṙi . This yields

V̇h
i = Adri,i−1 V̇h

i−1 + 0X
i

i q̈i + adṙi,i−1 Vh
i−1 + adωi

0X
i

i q̇i . (73)

Taking into account that adṙi
(Vh

i − Xh
i q̇i ) = adṙi

Vh
i−1 (because there is no angular part in

adṙi
) and adṙi

+ adωs
i
= adVh

i
, this can be transformed to

V̇h
i = Adri,i−1 V̇h

i−1 + 0X
i

i q̈i + adṙi−1 Vh
i−1 − adṙi

Vh
i + adVh

i

0X
i

i q̇i . (74)

Another form follows by solving (111) for Vh
i−1 and inserting this into (73), noting that

adṙi,i−1 Ad−1
ri,i−1

= adṙi,i−1 , as

V̇h
i = Adri,i−1 V̇h

i−1 + 0X
i

i q̈i + adṙi,i−1 Vh
i + (adVh

i
− adṙi−1)

0X
i

i q̇i . (75)

Comparing these three different recursive relations (73), (74), and (75) for the hybrid accel-
eration from a computational perspective (73) is the most efficient.

Recursive Newton–Euler algorithm With the hybrid Newton–Euler equations (54), the
recursive NE algorithm is as follows:
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Forward Kinematics
– Input: q, q̇, q̈
– For i = 1, . . . , n

Ci = Ci−1(q)Bi exp
(
iXiqi

) = exp(Y1q1) · . . . · exp(Yiqi)Ai (76a)

0X
i

i = AdRi

iXi = Ad−ri
Yi = AdRi

AdSi,i

i−1Zi (76b)

Vh
i = Adri,i−1 Vh

i−1 + 0X
i

i q̇i (76c)

V̇h
i = Adri,i−1 V̇h

i−1 + adṙi,i−1 Vh
i−1 + adωs

i

0X
i

i q̇i + 0X
i

i q̈i (76d)

– Output: Ci ,Vh
i , V̇h

i ,
0Xi

i

Inverse Dynamics
– Input: Ci ,Vh

i , V̇h
i ,

0Xi

i ,Wh,app
i

– For i = n − 1, . . . ,1

Mh
i = Ad−T

Ri
Mb

i Ad−1
Ri

(77a)

Wh
i = AdT

di+1,i
Wh

i+1 + Mh
i V̇h

i + adωh Mh
i

ω

Vh
i + Wh,app

i (77b)

Qi = (
0X

i

i

)T
Wh

i (77c)

– Output: Q

Computational effort The hybrid representation is a compromise between using twists
and wrenches measured in body-fixed frames (as for the body-fixed representation, where
twists and wrenches are measured at the RFR origin) and those resolved in the IFR (as
for the spatial representation, where twists and wrenches are measured at the IFR origin).
It has therefore been used extensively for O(n) inverse and forward dynamics algorithms.
The essential difference between the forward recursion for kinematic evaluation in body-
fixed and hybrid formulation is that the body-fixed recursion (67a)–(67c) requires frame
transformations of screws involving rotations and translations, whereas the hybrid recursion
(76a)–(76d) only requires the change of reference point using position vectors resolved in
the IFR. The attitude transformation only appears in (76b) and in the computation of the hy-
brid inertia matrix (77a). In total, the forward kinematics needs n rotational transformations
and 2n − 2 translational transformations. Further, (76d) needs n − 1 cross products of the
form adṙi,i−1 Vh

i−1 = (0, (ṙi−1 − ṙi ) × ωs
i−1)

T and n Lie brackets adωs
i

0Xi

i . The inverse dy-
namics needs the n rotational transformations (77a) of the second-order inertia tensor, n− 1
translational transformations of wrenches, and n Lie brackets with ωs

i in (77b). In total, the
hybrid NE algorithm needs 3n − 3 translational and n rotational transformations of screw
coordinates, n rotational transformations of the inertia tensor, and 3n − 1 Lie brackets. Al-
though the number of operations is equivalent to the body-fixed version, the particular form
of transformations is computationally very simple motivating its extensive use in O(n) for-
ward dynamics algorithms. Moreover, the hybrid NE equations are commonly expressed in
a body-fixed BFR at the COM, so that the hybrid NE equations simplify to (49) and (50),
(51), respectively.

Instead of transforming the joint screws iXi or Yi in the reference configuration, the
instantaneous hybrid joint screws can be determined using the defining expression (36) in
[60] with the current bj,i and ej .
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Remark on forward dynamics The above inverse dynamics formulation was presented
in [37, 38, 73, 74] together with O(n) forward dynamics algorithms. An O(n) forward
dynamics method was presented in [1, 6]. These algorithms are deemed efficient taking
into account that the computation results do not have to be transformed to the body-fixed
reference points of interest, as in case of the spatial version. An O(n) forward dynamics al-
gorithm was developed in [64] using canonical Hamilton equations in hybrid representation,
that is, the momentum balance (53) in terms of the conjugate momenta �h

i , rather than the
NE equations. It was concluded that its performance is comparable to that of Featherstone’s
[29] method in terms of spatial twists.

4.4 Choice of body-fixed reference frames

The Lie group formulation involves geometric and inertia properties that are readily avail-
able, for example, from CAD data.

In [60] and in the preceding sections, two approaches to the description of MBS geometry
(with and without body-fixed joint frames) and three versions for representing velocities
and accelerations (body-fixed, spatial, hybrid) were presented, each having its merits. The
description of the geometry is independent from the representation of twists. For instance,
the geometry could be described in terms of joint screws expressed in the IFR, whereas
the kinematics and dynamics is modeled using body-fixed twists. This allows us to take
advantage of the low-complexity hybrid or spatial recursive NE equations while still having
the freedom to use or avoid body-fixed joint frames.

The standard approach to model an MBS is to introduce (1) an IFR, (2) body-fixed BFRs,
and (3) body-fixed JFRs. The latter is avoided using spatial joint screws Yi , as already pre-
sented. It still remains to introduce body-fixed BFRs kinematically representing the bodies.
However, even the explicit definition of RFRs can be avoided by properly placing them.
Their location is usually dictated by the definition of the inertia tensors, and it is customary
to relate the inertia data to the COM. If, instead, the body-fixed BFRs are assigned such
that they coincide in the reference configuration (q = 0) with the IFR, then no reference
configurations of bodies need to be determined (Ai = I). This normally means that the RFR
is outside the physical extension of a body, that is, the inertia properties of all bodies are
determined in the assembly reference configuration with respect to the global IFR. In other
words, they are deduced from the design drawing (corresponding to q = 0) relative to a
single construction frame. This can be exploited when using CAD systems. The required
kinematic data then reduces to the direction and position vectors ei and yi in order to com-
pute Yi in (95). As a side effect, Yi = iXi . This is an important result and does apply to any
of the discussed twist representations since the representation of twists has nothing to do
with the geometry description. Moreover, then the POE (94) and the Jacobian (104), (105),
and thus (107) simplify in terms of spatial screw coordinates. The only computational draw-
back is that the hybrid Newton and Euler equations are not decoupled since the spatial IFR,
to which the inertia data is related, is unlikely to coincide with the COM of the bodies in the
reference configuration. Details can be found in [53].

5 Motion equations in closed form

5.1 Euler–Jourdain equations

The body-fixed NE equations for the individual bodies within the MBS are

Mb
i V̇b

i − adT

Vb
i

Mb
i Vb

i − Wb,app
i − Wb,c

i = 0, (78)
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where Wb,c
i is the constraint reaction wrench of joint i, and Wb,app

i represents the total wrench
applied to body i including the applied wrench in joint i. Jourdain’s principle of virtual
power, using the admissible variation δVb = Jbδq̇ of the system twist and noting that δVb

are reciprocal to the constraint wrenches (see Sect. B.2), yields the system of n motion
equations

(
Jb

)T

⎛

⎜⎜⎝

Mb
1V̇b

1 − adT

Vb
1
Mb

1Vb
1 − Wb,app

1

...

Mb
nV̇b

n − adT

Vb
n
Mb

nVb
n − Wb,app

n

⎞

⎟⎟⎠ = 0. (79)

This form allows for a concise and computationally efficient construction of the motion
equations. The point of departure are the NE equations of the individual bodies. The body-
fixed system Jacobian (113) is determined by the (constant) joint screw coordinates in Xb

and the screw transformations encoded in Ab. The same applies to the other representations.
The accelerations are determined by (7), respectively (11). Explicit evaluation of (79) leads
to the recursive algorithm in Sect. 4.1. Inserting the twists and accelerations into (79) yields
Eqs. (1) that determine the MBS dynamics on the tangent bundle TV

n with state vector
(q, q̇) ∈ TV

n. Alternatively, combining (79) with (112) yields a system of n + 6n ODEs
in the state variables (q,Vb) ∈ V

n × se(3)n that govern the dynamics on the state space
V

n × se(3)n. The advantage of this formulation is that it is a first-order ODE system and that
the system has block triangular structure. Yet another interesting formulation follows with
the NE equations (37) in terms of the conjugate momenta in spatial representation

(
Js

)T

⎛

⎜⎝
�̇

s
1 − Ws,app

1
...

�̇
s
n − Ws,app

n

⎞

⎟⎠ = 0,

Ms
iJ

s
i q̇ = �s

i , i, . . . , n.

(80)

This is a system of n + 6n first-order ODEs in the phase space (q,�s) ∈ V
n × se∗(3)n.

System (80) can be solved for the �̇
s
i and q̇i noting the block triangular structure of Js [60].

From a numerical point of view, the momentum formulation in phase space will allow for
momentum-preserving integration schemes.

Various versions of (79) have been published. Using the hybrid representation of twists,
basically the same equations were reported in [4]. There the system Jacobian is called the
“natural orthogonal complement”, motivated by the fact that the columns of Jb are orthogo-
nal to the vectorial representations of constraint wrenches (although the former are screws,
whereas the latter are coscrews). In classical vector notation, they were reported in [39, 48]
and [14]. In [39] the equations (79) are called the Euler–Jourdain equations. In [48], empha-
sizing on the recursive evaluation of the body Jacobian, the instantaneous body-fixed joint
screws Jb

i are called “kinematic basic functions” since they are the intrinsic objects in MBS
kinematics. In [14] Eqs. (79) are called “projection equations” since the NE equations of
the individual bodies are restricted to the feasible motion (although Jb is not a projector).
Equations (79) in body-fixed representation are equivalent to Kane’s equations, where Jb

i

are called “partial velocities” [40]. The instantaneous joint screw coordinates, that is, the
columns Jb

i of the geometric Jacobian, were also called “kinematic influence coefficients”
and their partial derivatives (6) the “second-order kinematic influence coefficients” [8, 82].

It should be finally remarked that, due to the block triangular form of Jb, solving (79) and
using the inversion of Ab (see (25) in [60]) lead immediately to an O(n) forward dynamics
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algorithm. This is the common starting point for deriving forward dynamics algorithms that
applies to any twist representation.

5.2 Lagrange equations

The MBS motion equations can be derived as the Lagrange equations in terms of generalized
coordinates. For simplicity, potential forces are omitted, so that the Lagrangian is simply the
kinetic energy. Then the equations attain the form

d

dt

(
∂T

∂q̇

)T

−
(

∂T

∂q

)T

= M(q)q̈ + C(q̇,q)q̇ = Q(q̇,q, t) (81)

with generalized mass matrix M, where C(q̇,q)q̇ represent the Coriolis and centrifugal
forces. The vector Q stands for all other generalized forces, including potential, dissipa-
tive, and applied forces. Using body-fixed twists, the kinetic energy of body i is Ti =
1
2 (Vb

i )
T Mb

i Vb
i . The kinetic energy of the MBS is T (q̇,q) = ∑

i Ti = 1
2 (Vb)T MbVb = 1

2 q̇T Mq̇
with the generalized mass matrix

M(q) = (
Jb

)T
MbJb (82)

and Mb := diag(Mb
1, . . . ,Mb

n). The conjugate momentum vector is thus ( ∂T
∂q̇ )T = (Jb)T MbVb.

Its time derivative with (11) is given as d
dt

( ∂T
∂q̇ )T = M(q)q̈−(Jb)T ((MbAbab)T +MbAbab)Jbq̇,

and ab is defined in (10). From (8) it follows that ( ∂T
∂q )T = (MbAbbbXb)T Jbq̇ with

bb
(
Vb

) := diag(adVb
1
, . . . ,adVb

n
). (83)

This admits identifying the generalized mass matrix (82) and the matrix

C(q, q̇) = −(
Jb

)T ((
MbAbab

)T + MbAbab
)
Jb − (

MbAbbbXb
)T

Jb

= −(
abJb + bbXb

)T (
Ab

)T
MbJb − (

Jb
)T

MbAbabJb. (84)

The first term on the right-hand side in (84) can be simplified so that

C(q, q̇) = −(
Jb

)T (
MbAbab + (

bb
)T

Mb
)
Jb. (85)

The concise expressions (82) and (85) allow for construction of the Lagrange equations in
closed form. Similar expressions can be derived using the spatial and hybrid representation
of twists.

For analytic investigations of the MBS dynamics, it may be useful to write the Lagrange
equations in components as

n∑

j=1

Mij (q)q̈j +
n∑

j,k=1

Γijk(q)q̇j q̇k = Qi(q, q̇, t), (86)
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where the Christoffel symbols of first kind are defined as Γijk = 1
2 (

∂Mik

∂qj
+ ∂Mij

∂qk
− ∂Mjk

∂qi
) =

Γikj . The recursive relations (6) give rise to the closed-form expressions

Γijk = 1

2

n∑

l=k

((
Jb

l,k

)T
MladJb

l,i
Jb

l,j + (
Jb

lj

)T
MladJb

l,i
Jb

l,k + (
Jb

l,i

)T
MladJb

l,s
Jb

l,r

)

with i < j ≤ k or j ≤ i < k, r = max(i, j), s = min(i, j). (87)

This expression for the Christoffel symbols in Lie group notation was reported in [16, 50],
and already in [48] in tensor notation. This expression simplifies when Binet’s inertia
tensor ϑ i = 1

2 tr(Θ i )I − Θ i is used in the mass matrix Mb
i . Then (40) is replaced by

M̌
b

ic = diag(ϑ i ,miI), and (41) by M̌
b

i = Ad−T
Sbc

M̌
b

icAd−1
Sbc

. This leads to

Γijk = 1

2

n∑

l=k

(
Jb

l,j

)T
M̌ ladω

Jb
l,k

Jb
l,i

with i < j ≤ k or j ≤ i < k. (88)

Equations (87) were presented in [50, 67, 68, 70, 71], and (88) in [50]. Prior to these
publications, Eqs. (87) and (88) have been reported in [48, 49] using tensor notation rather
than Lie group notation. Another publication that should be mentioned is [19] where the
Lagrange equations were derived using similar algebraic operations.

The above closed forms of EOM are derived using body-fixed twists. The potential ben-
efit of using spatial or hybrid twists remains to be explored.

6 Derivatives of motion equations

In various contexts the information about the sensitivity of the MBS kinematics and dy-
namics is required either with respect to joint angles, geometric parameters, or dynamic
parameters. Whereas it is known that the EOM of a rigid body MBS attains a form that is
linear in the dynamic parameters, they depend nonlinearly on the generalized coordinates
and geometry. The POE formulation provides a means to determine sensitivity with respect
to kinematic parameters.

6.1 Sensitivity of motion equations

Gradients with respect to generalized coordinates are required for the linearization of the
EOM (as basis for stability analysis and controller design) and for optimal control of MBS.
Since the second-order and higher derivatives (13) of the body-fixed Jacobian, (21) of the
spatial Jacobian, and (26) of the hybrid Jacobian are given as algebraic closed-form ex-
pressions in terms of screw products, the linearized EOM can be evaluated recursively and
expressed in closed form. Using the Lie group notation, this was reported in [76].

The same results were already presented in [49] using tensor notation. Comparing the
two formulations reveals once more that the matrix Lie group formulation provides a level
of abstraction leading to compact expressions. A closed form for partial derivatives of the
inverse mass matrix has been reported in [51], which is required for investigating the con-
trollability of MBS. Using the body-fixed representation of twists, recursive O(n) where
reported in [3, 35].
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6.2 Geometric sensitivity

Optimizing the design of an MBS requires information about the sensitivity with respect
to geometric parameters. A recursive algorithm was reported in [35] and its parallel imple-
mentation in [3], where the partial derivatives are computed on a case-by-case basis. The
Lie group formulation gives rise to a general closed-form expression. To this end, the POE
formula (93) is extended as follows.

The geometry of the two bodies i and i − 1 connected by joint i is encoded in
the constant part Si,i and Si−1,i in (92), respectively in Bi in the formulation in (93).
These are frame transformations and hence can be parameterized in terms of screw co-
ordinates. If Bi depends on λ ≤ 6 geometric parameters, it is expressed as Bi (π i ) =
Bi0 exp(Ui1πi1) · . . . · exp(Uiλπiλ). The screw coordinates Ui1 and corresponding param-
eters πi1 account for the considered variations from the nominal geometry, represented by
Bi0 ∈ SE(3). Thus the relative configuration due to joint i and the geometric variations is
Ci−1,i (q,π i ) = Bi (π i ) exp(iXiqi). The key observation is that partial derivatives of Bi (π i )

are available in closed form, as for the joint screw coordinates. Hence also the sensitivity
withe respect to the MBS geometry can be expressed in closed form [52]. This fact has been
applied to robot calibration [21, 22], where the POE accounts for geometric imperfections
to be identified.

6.3 Time derivatives of the EOM

The design of feedback-linearizing flatness-based controllers for robotic manipulators mod-
eled as rigid body MBS actuated by elastic actuators (so-called series elastic actuators) re-
quires the time derivatives of the inverse dynamics solution Q(t) [25, 66], that is, the first
and second time derivatives of the EOM are necessary. Extensions of the classical recursive
Newton–Euler inverse dynamics algorithms in body-fixed representations were presented
in [18]. As it can be expected, the relation are very complicated. Using the presented Lie
group formulation of the inverse dynamics algorithms gives rise to rather compact and thus
fail-safe algorithm. This was presented in [61] for the body-fixed and hybrid version.

7 Geometric integration

This paper focuses on the MBS modeling in terms of relative (joint) coordinates. Alterna-
tively, the MBS kinematics can be described in terms of absolute coordinates.

One of the issues addressed when modeling MBS in terms of absolute coordinates is the
kinematic reconstruction, that is, the determination of the motion of a rigid body, represented
by C(t), from its velocity field V(t). This amounts to solving one of the equations (see
Appendix A2 in [60])

V̂b = C−1Ċ, V̂s = ĊC−1 (89)

together with the NE (42) or (39), respectively. Classically, the orientation is parameterized
with three parameters. The problem encountered is that there is no singularity-free global
parameterization of rotations with three parameters. Instead of local parameters (position
and rotation angles), the absolute configurations of the rigid bodies within the MBS can
be represented by C(t). Then a numerical integration step from time tk−1 to tk = tk−1 + h

will determine the incremental configuration update �Ck = C−1
k−1Ck with Ck = C(tk) and

Ck−1 = C(tk−1). Equations (89) are ODEs on the Lie group SE(3). These can be replaced
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by ODEs on the Lie algebra se(3). The motion increment from tk−1 to tk is parameterized as
�C(t) = exp X(t) with an algorithmic instantaneous screw coordinate vector X. Then (89)
are equivalent to the ODEs on the Lie algebra

Vs = dexpXẊ, Vb = dexp−XẊ, (90)

where dexpX : se(3) → se(3) is the right-trivialized differential of the exp mapping on SE(3)

[12, 58, 59, 69]. This is the basic idea of the class of Munthe-Kaas integration schemes [20,
36, 62]. This scheme has been adapted to MBS in absolute coordinates [80]. The advantage
of these integration methods is that no global parameterization is necessary since the numer-
ical integration is pursued in terms of the incremental parameters X. The ODEs (90) can be
solved with any vector space integration scheme (originally the Munthe-Kaas scheme uses
a Runge–Kutta method) with initial value X(tk−1) = 0.

Recently, the geometric integration concepts were incorporated in the generalized α

method [17, 41] for MBS described in absolute coordinates. In this case the representation
of proper rigid body motions is crucial, as discussed in [57, 58], which is frequently incor-
rectly represented by SO(3)×R

3. Also momentum-preserving schemes were proposed [81].
It should be mentioned that the concept of geometric integration schemes on SE(3) can be
transferred to the kinematics of flexible bodies undergoing large deformations described as
Cosserat continua. In this context the spatial description (referred to as fixed-pole formula-
tion) has proven to be beneficial [31]. Recent results on Lie group modeling of beams can
be found in [77, 78].

8 Conclusions and outlook

The computational effort of recursive O(n) algorithms, but also of the formalisms for eval-
uating the EOM in closed form, depends on the representation of rigid body motions and of
the motions of technical joints. Since the geometry of finite rigid body and relative motions
is described by the Lie group SE(3) and that of instantaneous motions by the screw algebra
se(3), Lie group theory provides the geometric framework. As already shown in [60], Lie
group formulations for the MBS kinematics give rise to compact recursive formulations in
terms of relative coordinates. In this paper the corresponding recursive NE algorithms were
presented and related to the various O(n) algorithms scattered in the literature. This allows
for a comparative investigation of their efficiency in conjunction with the modeling proce-
dure. For instance, whereas most O(n) algorithms used the hybrid representation, the spatial
representation, as used by Featherstone [29] and Bottasso [12] (where it is called fixed point
formulation), is receiving increased attention since it gives easily rise to structure-preserving
integration schemes [10–12, 31]. A conclusive investigation will be the subject of future re-
search. Future research will also focus on combining the O(n) forward dynamics algorithm
by Featherstone [29], based on NE equations using spatial representations with Naudet’s
algorithm [64] based on Hamilton’s canonical equations in hybrid representation. The use
of the spatial momentum balance shall allow for momentum-preserving integration of the
EOM and at the same time to reduce the number of frame transformations. A further impor-
tant research topic is the derivation of structure-preserving Lie group integration schemes
for which the spatial formulation of EOM will be formulation of choice.
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Appendix A: Summary of basic kinematic relations

As prerequisite, the kinematic relations derived in [60] are summarized. Denote by

Ci =
(

Ri ri

0 1

)
∈ SE(3) (91)

the absolute configuration of body i with respect to the inertial frame (IFR) F0. This is
alternatively denoted by Ci = (Ri , ri ). The relative configuration of body i relative to body
i − 1 is given as

Ci−1,i (qi) = Si−1,i exp
(
i−1Ziqi

)
S−1

i,i = Bi exp
(
iXiqi

)
, (92)

where Bi := Si−1,iS−1
i,i = Ci−1,i (0) is the reference configuration of body i with respect to

body i − 1, that is, for qi = 0, and i−1Zi ∈ R
6 is the screw coordinate vector of joint i

represented in the joint frame (JFR) Ji−1,i on body i − 1. Successive relative configurations
can be combined to

Ci (q) = B1 exp
(

1X1q1

) · B2 exp
(

2X2q2

) · . . . · Bi exp
(
iXiqi

)
(93)

= exp(Y1q1) · exp(Y2q2) · . . . · exp(Yiqi)Ai , (94)

where iXi ∈ R
6 is the screw coordinate vector of joint i represented in the joint frame fixed

at body i, Yi ∈ R
6 is the joint screw coordinate vector in spatial representation (measured

and resolved in IFR) for the reference configuration q = 0, and Ai = Ci (0) is the reference
configuration of body i. The two representations of joint screw coordinates are related by

Yi = AdAi

iXi ,
iXi = AdSi,i

i−1Zi , (95)

where, in vector representation of screws, the adjoined transformation Ad corresponding to
C ∈ SE(3) is given by the matrix

AdC =
(

R 0
r̃R R

)
. (96)

For simplicity, the following notations are used:

AdR =
(

R 0
0 R

)
for C = (R,0), Adr =

(
I 0
r̃ I

)
for C = (I, r), (97)

so that AdC = AdrAdR.
The twist of body i in body-fixed representation Vb

i = (ωb
i ,vb

i )
T and in spatial represen-

tation Vs
i = (ωs

i ,vs
i )

T is defined by

V̂b
i =

(
ω̃b

i vb
i

0 0

)
= C−1

i Ċi , V̂s
i =

(
ω̃s

i vs
i

0 0

)
= ĊiC−1

i . (98)

Here vb
i = RT

i ṙi the body-fixed translational velocity, that is, the velocity of the origin of the
body-fixed reference frame (RFR) Fi of body i measured in the IFR F0 and resolved in Fi ,
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whereas vs
i = ṙi + ri × ωs

i is the spatial translational velocity, that is, the velocity of the
point of the body that is momentarily passing through the origin of the IFR F0 resolved in
the IFR. The body-fixed and spatial angular velocity, ωb

i and ωs
i , are defined by ω̃b

i = RT
i Ṙi

and ω̃s
i = ṘiRT

i , respectively. The hybrid twist is defined as Vh
i = (ωs

i , ṙi )
T , and finally the

mixed twist as Vm
i = (ωb

i , ṙi )
T . The four representations are related as follows:

Vh
i =

(
Ri 0
0 Ri

)
Vb

i = AdRi
Vb

i , (99)

Vs
i = AdCi

Vb
i = AdCi

Ad−1
Ri

Vh
i = Adri

Vh
i , (100)

Vm
i =

(
I 0
0 Ri

)
Vb

i =
(

RT
i 0

0 I

)
Vh

i =
(

RT
i 0

−̃ri I

)
Vs

i . (101)

The twist of body i within a kinematic chain is determined in terms of the generalized
velocities q̇ as

Vb
i =

∑

j≤i

Jb
i,j q̇j = Jb

i q̇, Vs
i =

∑

j≤i

Js
j q̇j = Js

i q̇, (102)

Vh
i =

∑

j≤i

Jh
i,j q̇j = Jh

i q̇, Vm
i =

∑

j≤i

Jm
i,j q̇j = Jm

i q̇, (103)

with the Jacobian Jb
i in body-fixed, Js

i in spatial, Jh
i in hybrid, and Jm

i in mixed representation.
The ith column of the Jacobian is respectively given by

Jb
i,j = AdCi,j

j Xj = AdCi,j A−1
j

Yj , (104)

Js
j = AdCj

j Xj = AdCj A−1
j

Yj , (105)

Jh
i,j = Adri,j

0Xj

j for j ≤ i. (106)

These are the instantaneous joint screw coordinates in body-fixed, spatial, and hybrid repre-
sentation. The Jacobians are related as

Js
j = Adri

Jh
i,j = AdCi

Jb
i , Jh

i = AdRi
Jb

i . (107)

The representations of joint screw coordinates are related by (95) and by

Yj = Adri

0Xj

j ,
0Xj

j = AdRj

j Xj , (108)

where ri is the current position of body i in Ci . The twists admit the recursive expressions

Vb
i = AdCi,i−1 Vb

i−1 + iXi q̇i , (109)

Vs
i = Vs

i−1 + Js
i q̇i , (110)

Vh
i = Adri,i−1 Vh

i−1 + 0Xi
i q̇

i . (111)

Summarizing the twists of all bodies in Vb,Vs,Vh ∈R
6n, respectively, admits the expressions

Vb = Jbq̇, Vs = Jsq̇, Vh = Jhq̇ (112)

in terms of the system Jacobians that admit the factorizations [60]

Jb = AbXb, Js = AsYs = AsbXb, Jh = AhXh. (113)
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This provides a compact description of the overall MBS kinematics. The explicit relations
for the inverse of the matrices A are the starting point for deriving recursive forward dynam-
ics O(n) algorithms.

Appendix B: Rigid body motions and the Lie group SE(3)

For an introduction to screws and to the motion Lie group SE(3), the reader is referred to
the text books [5, 47, 63, 75].

B.1 Derivatives of screws

Let Ci be time dependent. According to (96), the corresponding frame transformation of
screw coordinates from Fi to F0 is X ≡ 0X = AdCi

iX. Assume that the screw coordinates
expressed in body-fixed frame are constant. The rate of change of the screw coordinates ex-
pressed in IFR is d

dt
X̂ = d

dt
AdCi

(iX̂) = ĊiC−1
i Ci

iX̂C−1
i −Ci

iX̂C−1
i ĊiC−1

i = V̂s
i X̂− V̂s

i X̂ =
[V̂s

i , X̂]. Therein

[X̂1, X̂2] = X̂1X̂2 − X̂2X̂1 = adX1(X2) (114)

is the Lie bracket on se(3), also called the adjoint mapping. In vector notation of screws,
denoting a general screw vector with X = (ξ ,η)T , this is

[X1,X2] = (ξ 1 × ξ 2,η1 × ξ 2 + ξ 1 × η2)
T = adX1 X2 (115)

with

adX =
(

ξ̃ 0
η̃ ξ̃

)
. (116)

The form (115) is known as the screw product [13, 75]. Matrix (116) has appeared under
different names, such as “spatial cross product” in [28, 29, 38] or the “north-east cross
product’ [12]. The Lie bracket obeys the Jacobi identity

[
X1, [X2,X3]

] + [
X2, [X3,X1]

] + [
X3, [X1,X2]

] = 0. (117)

Allowing for time-dependent body-fixed screw coordinates iX, this relation gives rise to an
expression for the time derivative of screw coordinates in moving frames:

Ad−1
Ci

Ẋ = iẊ + [
Vb

i ,
iX

]
. (118)

This is the spatial extension of Euler’s formula for the derivative of a vector resolved in a
moving frame.

For simplicity, throughout the paper the following notations are used:

ω

V =
(

ω

0

)
,

v

V =
(

0
v

)
. (119)

Then the matrices

adω =
(

ω̃ 0
0 ω̃

)
, adv =

(
0 0
ṽ 0

)
(120)

are used to denote matrix (116) for twists
ω

V and
v

V, respectively, which are the infinitesimal
versions on (97).
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B.2 Wrenches as coscrews—se∗(3)

Screws are the geometric objects embodying twists, wrenches, and momenta of rigid bod-
ies. These different physical meanings imply different mathematical interpretations of the
geometric object.

A wrench, defined by a force and moment, is denoted by W = (t, f)T . The force applied
at a point with position vector p generates the moment t = p × f. The dual to the Chasles
theorem is the Poinsot theorem stating that every system of forces can be reduced to a force
together with a couple with moment parallel to the force.

Geometrically, a screw is determined by the Plücker coordinates of the line along the
screw axis and the pitch. If e is the unit vector along the screw axis, and p is a position
vector of a point on that axis, then the screw coordinate vector of a twist is V = (ω,v)T =
ω(e,p × e +he)T , where ω = ‖ω‖ is its magnitude, and h = vT ω/ω2 is its pitch. The screw
coordinate vector of a wrench, that is, the force f producing a torque t about the axis e
when the point of application is displaced according to p from the axis, is W = (t, f)T =
f (p × e + he, e)T with pitch h = tT f/‖f‖2. Apparently, the linear and angular components
of the screw coordinates are interchanged for twists and wrenches. The different definition
of screw coordinate vectors allows to describe the action of a wrench on a twist as the scalar
product: WT V is the power performed by the wrench acting on twist V.

A twist 2V represented in frame F2 transforms to its representation in frame F1 according
to 1V = AdS1,2

2V. The power conservation yields that a wrench represented in F1 transforms
to its representation in F2 according to

2W = AdT
S1,2

1W. (121)

Although this notation is useful for kinetostatic formulations, it is inconsistent in the
sense that it treats screw coordinates differently for twists and wrenches. In screw theory,
aiming on a consistent treatment of screw entities, a screw is represented by its coordinates
as defined by (67) in [60], and the so-called reciprocal product of two screws is used [5, 13,
75]. The latter is defined for X1 = (ξ 1,η1)

T and X2 = (ξ 2,η2)
T as X1 	 X2 = ξT

1 η2 + ηT
1 ξ 2.

Two screws are said to be reciprocal if X1 	 X2 = 0. Obviously, if twists and wrenches
are represented consistently with the same definition of screw coordinates, then a twist and
wrench screws being reciprocal means that they perform no work. Geometrically, for zero
pitch screws, this means that the screw axes intersect.

In screw theory, wrench screws are called coscrews to distinguish them from motion
screws and to indicate that a wrench acts on a motion screw (a twist) as a linear operator
that returns work or power. Since twists form the Lie algebra se(3), wrenches form the dual
se∗(3).

Appendix C: Nomenclature

F0 IFR
Fi BFR of body i

Ji,i JFR for joint i at body i, joint i connects body i with its predecessor body
i − 1

Ji−1,i JFR for joint i at body i − 1
ir Coordinate representation of a vector resolved in BFR on body i. The index

is omitted if this is the IFR: r ≡ 0r
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Ri Rotation matrix from BFR Fi at body i to IFR F0

Ri,j Rotation matrix transforming coordinates resolved in BFR Fj to coordinates
resolved in Fi

ri Position vector of origin of BFR Fi at body i resolved in IFR F0

ri,j Position vector from origin of BFR Fi to origin of BFR Fj

x̃ skew symmetric matrix associated with the vector x ∈R
3

Ci = (Ri , ri ) Absolute configuration of body i. This is denoted in matrix form by Ci

Ci,j = C−1
i Cj Relative configuration of body j w.r.t. body i

kvj

i Translational velocity of body i measured at origin of BFR Fj , resolved in
BFR Fk

vb
i ≡ ivi

i Body-fixed representation of the translational velocity of body i

vs
i ≡ 0v0

i Spatial representation of the translational velocity of body i
kωi Angular velocity of body i measured and resolved in BFR Fk

ωb
i ≡ iωi Body-fixed representation of the angular velocity of body i

ωs
i ≡ 0ωi Spatial representation of the angular velocity of body i

kVj

i Twist of (RFR of) body i measured in Fj and resolved in Fk

Vb
i ≡ iVi

i Body-fixed representation of the twist of body i

Vs
i ≡ 0V0

i Spatial representation of the twist of body i

Vh
i ≡ 0Vi

i Hybrid form of the twist of body i

Vb Vector of system twists in body-fixed representation
Vs Vector of system twists in spatial representation
Vh Vector of system twists in hybrid representation
Vm Vector of system twists in mixed representation
Wb

i Applied wrench at body i in body-fixed representation
Ws

i Applied wrench at body i in spatial representation
Wh

i Applied wrench at body i in hybrid representation
Mb

i Inertia matrix of body i in body-fixed representation
Ms

i Inertia matrix of body i in spatial representation
Mh

i Inertia matrix of body i in hybrid representation
AdR Screw transformation associated with C = (R,0)

Adr Screw transformation associated with C = (I, r)
AdCi,j

Transformation matrix transforming screw coordinates represented in Fj to
screw coordinates represented in Fi

adX Screw product matrix associated with screw coordinate vector X ∈R
6

[X,Y] Lie bracket of screw coordinate vectors X,Y ∈ R
6; [X,Y] = adXY

X̂ ∈ se(3) 4 × 4 matrix associated with the screw coordinate vectors X ∈ R
6

SE(3) Special Euclidean group in three dimensions—Lie group of rigid body mo-
tions

se(3) Lie algebra of SE(3), algebra of screws
q ∈V

n Joint coordinate vector
V

n Configuration space
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