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Abstract This paper presents a new perspective into the decomposition of the Generalized
Inertia Matrix (GIM) of multibody systems with open kinematic architecture, serial or tree-
type. Links and kinematic pairs are the two constituting elements of multibody systems. In
this work, we propose to decompose a multi-branch multibody system into several kinematic
modules. Each module is a set of serially connected links like a serial-chain system. Such a
description allows one to obtain a block decomposition ŪD̄ŪT of the GIM where Ū and D̄
are the block upper-triangular and diagonal matrices, respectively. The results provide a re-
cursive inverse of the GIM on module-level. Many new perspectives leading to macroscopic
purview of the complex multibody systems are provided. Empowered with the proposed de-
composition, an inter- and intra-modular efficient and numerically stable recursive dynamics
algorithm for forward dynamics and simulation was possible. While recursive expressions
are derived for a four degree-of-freedom gripper, numerical results are shown for a spatial
biped.
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Nomenclature

Latin letters
Aki ,(k−1)i , Āi,j The 6 × 6 link-twist propagation and the 6ni × 6nj module-twist

propagation matrices
ˆ̄Ai,j 6ni × 6nj articulated module-twist propagation matrix
B̄, B̄i n × n block upper triangular matrix, and n × n ith Elementary Block Upper

Triangular Matrix (EBUTM)
D̄ n × n block diagonal matrix
dki , d̃ki 3-dimensional vector from the origin of link ki to its center-of-mass, and

3 × 3 skew symmetric matrix associated with dki

fki 3-dimensional vector of the force applied at origin Oki of link ki

I, Īi,j n × n Generalized Inertia Matrix (GIM), and ni × nj (i, j)th block element
of I

Iki , ˆ̄Ii 3 × 3 inertia tensor of link ki and ni × ni inertia matrix of the
articulated-module i

ki kth link in the ith module
mki , m̂ki Mass of the kth link (scalar), and mass moment of inertia of

articulated-body k (scalar)
Mki , M̄i , M Mass matrices of link ki (6 × 6), the ith module (6ni × 6ni), and

generalized mass matrix (6n × 6n)

M̃ki , M̂ki 6 × 6 mass matrices of ki composite- and articulated-body
˜̄Mi ,

ˆ̄Mi 6ni × 6ni mass matrices of ith composite- and articulated-module
N̄i 6ni × ni module-joint-rate propagation matrix associated with the ith

module
N̄l , N̄d 6n × 6n and 6n × n module-level DeNOC matrices
ni , n Number of links in ith module and total number of links
nki 3-dimensional vector of moments applied at Oki of link ki

Oki , ȯki Origin of link ki and 3-dimensional linear velocity vector of the origin
pki 6-dimensional joint-rate propagation vector of link ki

˙̄qi , q̇ ni-dimensional joint rate of ith module and n-dimensional vector of
generalized joint rates

s Total number of modules
tki , t̄i , t 6-dimensional vectors of twist, 6ni-dimensional module-twist and

6n-dimensional generalized twist
U, Ū n × n upper-triangular matrix, n × n module-level block upper-triangular

matrix
Ūi , Ūi,j n × ni and ni × nj matrices
ˆ̄Ui,j ni × nj matrix
V̄i ni × nj matrix
0, O, 1, 1i A null vector, null matrix and an identity matrix of sizes compatible to the

dimension of matrices and vectors where it appears, and ni × ni identity
matrix

Greek letters
β, βi Parent, and parent of module i

γ i Tree upstream from module i

ηk , η̃k 6-dimensional vectors
θ̇ki Rate of joint ki
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μk , μ̃k 6-dimensional vectors
ϕ n-dimensional vector containing Coriolis, centripetal and gravity terms,

along with the external forces
ˆ̄ϕi , ˜̄ϕi ni-dimensional vectors
ϕ̂i , ϕ̃i Scalars
ψk , ψ̂k 6-dimensional vectors
�̄ i 6ni × ni matrices
�̄i 6ni × 6ni articulated module transformation matrix
ωki , ω̃ki Angular velocity vector of the kth link, and 3 × 3 skew symmetric matrix

associated with ωki

Notational rules followed in this paper are as follows:

(1) Scalars are in lightface italics font.
(2) Column matrices and algebraic vectors are in boldface lower-case letters.
(3) Matrices are in boldface upper-case letters.
(4) A ‘−’ over an entity, e.g., M̄i , signifies that it is associated with a module.
(5) Superscript over an entity, e.g., ki , specifies module number.

1 Introduction

Over the last two decades multibody dynamics has been applied in the areas of robotics,
automobile, aerospace, bio-mechanics, molecular modeling, and many more [1]. With con-
tinuous development and evolution of complex systems, multibody dynamics has still wider
scope of research. Complex multibody systems, mainly those with closed kinematic loops,
are commonly analyzed by representing them as equivalent open tree-type systems subjected
to constraints and/or external forces [2]. The inertia matrix of these tree-type systems plays a
key role in the study of their overall dynamic behavior, particularly, in the forward dynamics
which is essential for simulation of the multibody system under study. In forward dynamics,
the main objective is to find the joint accelerations as q̈ = I−1ϕ, where I is the generalized
inertia matrix (GIM) of the tree-type system, whereas ϕ contains the Coriolis, centripetal,
and gravity terms, along with the external forces. The joint accelerations q̈ are subsequently
integrated to find the corresponding joint velocities and positions. Note that the calculation
of the joint accelerations does not generally require explicit inversion of the GIM. However,
the way q̈ is solved, not only the computational efficiency but also the numerical stability
of the algorithm get affected. The role of the GIM in the analysis of multibody systems was
demonstrated in [3, 4].

Interestingly, the forward dynamics algorithms can be categorized based on explicit or
implicit solutions of the associated linear equations derived from the dynamic equations
of motion, namely, Iq̈ = ϕ. In the explicit solution methods, the GIM I is formulated first
numerically or analytically [5, 6] before it is decomposed numerically using Cholesky de-
composition or Gaussian elimination (GE) [7]. It is followed by the backward and forward
substitutions to obtain the joint accelerations q̈. This method leads to a forward dynamics
algorithm which is of Order(n3) or simply O(n3) complexity, where n is the degree-of-
freedom (DOF) or the number of joint variables present in a tree-type system. On the con-
trary in the implicit solution methods [8–10], the joint accelerations are obtained directly.
It means that no numerical values need be found explicitly either for the computations of
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the elements of the GIM nor for the steps involved during the substitution processes. Rather
the process of decomposition and substitutions evolves using several recursive expressions
of the GIM available from the systematic modeling approach, e.g., using the concept of
the Decoupled Natural Orthogonal Complement (DeNOC) matrices proposed in [10]. Such
steps exhibit recursive relations leading to O(n) computational complexity for the forward
dynamics algorithm which is not only efficient but also numerically stable. The latter re-
quirement is very important from a realistic simulation point of view. In relation to explicit
calculations, the implicit steps are more involved resulting in complex expressions, which
of course pay off in terms of algorithmic efficiency and numerical stability. The explicit and
implicit methods were referred in [8] as inertia matrix and propagation methods, respec-
tively. In the implicit solution approach of [8], the terms of the equations of motion were
made available at the link-level. They were then used to write the same for the adjacent
links till a solvable link is obtained to find an expression for the joint acceleration associated
with that solvable link. The process was then reversed to find the joint accelerations asso-
ciated with the previous adjacent links. In the implicit approach of [10], the GIM was first
decomposed into three matrices using the rules of the Reverse Gaussian Elimination (RGE)
[3], and then solved for the joint accelerations recursively using the forward and backward
substitutions instead of the backward–forward substitutions of the GE. The advantages of
the latter approach using the RGE plus forward-backward substitutions were demonstrated
in [10]. The approach in [10] provided several advantages, for example, one can very easily
evaluate the condition number of the GIM from the diagonal elements of the GIM, which
contain the “composite masses.” This aspect was demonstrated in [11], which was not so
obvious from the derivations of [8]. In this work, the DeNOC based approach is extended
to provide macroscopic view of the system’s dynamics rather than the microscopic view of
[8–10]. Motivated by the work in [10] applied to a single serial-chain system, a block de-
composition on the GIM of a tree-type multibody system is attempted in this paper. For this
purpose, we use a module-level description of the tree-type kinematic architecture shown
in [12, 13], and we propose the module-level decomposition of the GIM. Their benefits are
enumerated through examples.

Many times simple delineation of a system in terms of a set of bodies does not provide
macroscopic purview of the several kinematic and dynamic properties, thereby increasing
the complexity of analyses in many instances. In the module-based description, instead of
considering a serial or tree-type system composed of several links or bodies (classical ap-
proach), the complete system is considered to have several kinematic modules. A kinematic
module is defined here as a collection of one or more than one serially connected links.
Hence, a more comprehensive macroscopic purview is possible based on the simpler serial-
chain module which is well developed in the domain of serial robot dynamics. One needs
not analyze the complete GIM of the tree-type system. Instead, the GIMs of the constituent
modules can be monitored whose condition could infer the overall condition of the complete
system.

This paper augments the work presented earlier in [3, 10, 14, 15] and introduces a de-
composition and analytical inverse of the GIM expressed using the module-level description
of a complex multi-branched multibody system. The earlier work in the literature, e.g., in
[8] and others or by one of the authors of this paper, say, in [10], exploited discretization
of a multibody system into several links or bodies. In the proposed work, however, a more
systematic and comprehensive view is proposed, where even a serial-chain system can be
considered consisting of several smaller serial-chain modules instead of only links or bod-
ies. In fact, in that sense, the views taken by [8] or [10] is the special or limiting case of
what is proposed here. Each smaller serial-chain module has only one link. The present
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representation now allows one to extend the proposed module concept to multi-branched
system where each branch is a set of modules or serial-chains. It leads to an elegant inter-
and intra-modular representations of many mathematical terms appear during the deriva-
tion of the dynamic equations of motion of a complex multi-branched multibody system.
These expressions provide a step-by-step understanding of the complete system, i.e., in the
first-level one understands how each module, which is like a serial-chain system, affects the
overall system, followed by the second-level understanding of how each link affects the dy-
namics of a module. Alternatively, one studies the effects of links on the module, followed
by the effects of modules on the complete system. The concept of the kinematic module is
central to the complete development of the dynamics of any complex multi-branched multi-
body system and plays a crucial role in the derivations of the dynamic equations of motion.
The derivations performed in this paper builds on the recursive relationships between sev-
eral modules in contrast to the links used in [10]. This has led to the generalization of the
concept of the Reverse Gaussian Elimination (RGE) of the GIM proposed in [3, 10] for
the decomposition and analytical inverse of the GIM. Note that the notion of the kinematic
module was introduced in [13], where it was used only for the development of recursive
algorithms of legged robots. Here, the proposed work explains new perspectives towards
the decomposition of the GIM for any general multibody systems, which was not reported
earlier.

The modular approach leads to the following advantages: (1) compact representation of
a system’s kinematic and dynamic model; (2) Provision of module-level analytical expres-
sions for the matrices and vectors appearing in the equations of motion. One can use such
expressions in predicting instability of a module rather than only having the global pic-
ture; (3) Possibility of repeating the computations of a module to another module having
similar module architecture; (4) Possibility of the development of hybrid recursive-parallel
algorithms, where modules are solved in parallel, whereas the links inside the modules are
solved in a recursive manner. It is worth pointing out that the main objective of this work
is to exploit the module-level expressions of the GIM for a tree-type multibody system,
and then use it for module-level decomposition of the GIM and its analytical recursive in-
verse which provide many physical interpretations. The decomposed GIM itself suggests a
recursive inter- and intra-modular forward dynamics algorithm which is not only efficient
but also numerically stable. The salient contributions of the paper, not reported earlier, are
summarized here:

• The module-level block decomposition of the GIM introducing the Elementary Block Up-
per Triangular Matrices (EBUTMs) and the Block Reverse Gaussian Elimination (BRGE)
of the GIM.

• Attaining analytical expressions for the product of the two neighboring EBUTMs and the
consequent derivation of the analytical inverse of the GIM.

• Ascertaining new module level properties such as the composite and articulated modules,
the inertia matrix of the articulated-module, the articulated-module transformation matrix
and the articulated module-twist propagation matrix.

• Numerical studies of tree-type systems, namely, a planar tree-type gripper and a spatial
biped, to investigate the numerical stability of the recursive inter- and intra-modular for-
ward dynamics algorithms developed based on the proposed BRGE and its comparison
with the algorithms based on GE and RGE.

The rest of the paper is organized as follows: Sect. 2 presents the derivation of the GIM
using the concept of kinematic modules and the module-level DeNOC matrices, while its
module-level decomposition is shown in Sect. 3. The module-level analytical inverse of the
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GIM is shown in Sect. 4. An application of the proposed concept in deriving the inter- and
intra-modular recursive algorithms is discussed in Sect. 5 along with numerical simulation
of a spatial biped. Numerical stability of the proposed algorithm is presented in Sect. 6.
Finally, conclusions are given in Sect. 7.

2 Generalized inertia matrix (GIM): a macroscopic purview

Conventionally, a serial- or tree-type system is considered to have a set of links connected
by kinematic pairs, as shown in Fig. 1(a). However, in this work a more generic approach is
undertaken where a serial or tree-type architecture is considered to have a set of kinematic
modules instead of links. This is shown in Fig. 1(b), where the modules are depicted by
dotted lines. It is assumed that each module, other than the base, is a child module, e.g.,
Mi in Fig. 1(b), which contains serially connected links and emerges from the last link of
its parent module Mβ . Obviously the child module bears a higher module number than its
parent, i.e., i > β . As a result, the conventional approach, Fig. 1(a), turns out to be the
special case of the proposed architecture shown in Fig. 1(b) where each module has only
one link. Referring to Fig. 2, the links in module Mi are denoted 1i , . . . , ki, . . . , ni , where
superscript i is the module number. The total number of modules, the number of links in
each module and the total number of links in all the modules are designated by s, ni , and
n, respectively. The set of all modules originating from Mi is denoted by γ i , as shown in
Fig. 3.

Next, the elements of the GIM, I, for the multi-modular tree-type system will be derived.
These will not only provide interpretations of several module-level properties but also enable
one to decompose the GIM. For the system shown in Fig. 1(b), the 6n×6n generalized mass
matrix, resulting out of the 6n uncoupled Newton–Euler equations (written with respect to
the origin of each body) of n free bodies in s modules, can be written as [13]

M ≡ diag
[

M̄1 M̄2 · · · M̄i · · · M̄s

]
(1)

Fig. 1 Microscopic and macroscopic purview of open kinematic architectures
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Fig. 2 Module Mi and its parent
Mβ

Fig. 3 Definition of γ i

where

M̄i ≡ diag
[

M1i · · · Mki · · · Mni

]
and Mki ≡

[
Iki mki d̃ki

−mki d̃ki mki 1

]

. (2)

In Eq. (2), M̄i and Mki are the mass matrices of the ith module and kth link in the ith
module, respectively. A bar (‘−’) over an entity signifies that it is related to a module and
the superscript, i, identifies the module. Moreover, Iki is the inertia tensor about the origin
of the kth link (Oki of Fig. 4), mki is mass of the kth link, d̃ki is the 3 × 3 cross-product
tensor associated with the vector dki (shown in Fig. 4) and 1 represents the 3 × 3 identity
matrix.

If the set of rigid bodies in s modules is constrained to move due to the joint adjoining any
two links, then the 6n-dimensional generalized twist vector t containing angular and linear
velocities of the links of all constituent modules can be written in terms of the n-dimensional
generalized joint-rate vector q̇ of the multi-modular tree-type system as

t ≡ Nq̇, where N ≡ N̄lN̄d . (3)

In Eq. (3), N̄l and N̄d are the 6n × 6n and 6n × n module-level decoupled form of the
Natural Orthogonal Complement (NOC) matrix [6] or simply the decoupled NOC (DeNOC)
matrices [10]. The matrices N̄l and N̄d for the tree-type system were obtained in [13] and
their detailed derivations are given in Appendices A.1 and A.2. The matrices N̄l and N̄d are
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Fig. 4 Link ki in module Mi

(f
ki : force; n

ki : moment; ȯ
ki :

linear velocity; ω
ki : angular

velocity; d
ki , r

ki , a
(k+1)i ,ki :

position vectors)

reproduced as

N̄l ≡

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

11

Ā2,1 12 O′s
Ā3,1 Ā3,2 13

...
...

. . .
. . .

Ās,1 Ās,2 · · · Ās,s−1 1s

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

, and N̄d ≡

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

N̄1 O′s
. . .

N̄i

. . .

O′s N̄s

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

.

(4)

In Eq. (4), Āi,j and N̄i are the 6ni × 6nj module-twist propagation and the 6ni × ni

module-joint-motion propagation matrices, as derived in Appendix A.2. The term Āj,i ≡ O
if module Mj does not belong to the set γ i of all modules originating from Mi , as shown
in Fig. 3. The module-level DeNOC matrices form the foundation of this paper aiming to
obtain the macroscopic purview of the GIM.

Now, using Eqs. (1) and (4), the n × n GIM I can be expressed as an extension of what
was proposed in [10] for a serial-chain system, i.e.,

I ≡ (N̄lN̄d)
T M(N̄lN̄d) ≡ N̄T

d M̃N̄d (5a)

where

M̃ ≡ N̄T
l MN̄l . (5b)

In Eq. (5b), the matrix M̃ is referred here as the generalized mass matrix of the composite
modules. Substituting the expressions for N̄l and the mass matrix M from Eq. (4) and Eq. (1)
into Eq. (5b) and simplifying the terms, the symmetric matrix M̃ is obtained:

M̃ ≡

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

˜̄M1 sym

˜̄M2Ā2,1
˜̄M2

˜̄M3Ā3,1
˜̄M3Ā3,2

˜̄M3
...

...
. . .

. . .

˜̄MsĀs,1
˜̄MsĀs,2 · · · ˜̄MsĀs,s−1

˜̄Ms

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

( ˜̄Mj Āj,i ≡ O, if Mj /∈ γ i ) (6)
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where

˜̄Mi = M̄i +
∑

j∈γi

ĀT
j,iM̄j Āj,i . (7)

The 6ni × 6ni matrix ˜̄Mi is referred to as the mass matrix of the ith composite-module. It
represents the mass and inertia properties of the system comprising rigidly connected links
of modules which are upstream from the ith module, as depicted in Fig. 3 by the dotted
boundary line. Note that Āi,j in Eq. (7) is the 6ni × 6nj module-twist-propagation matrix

defined in Appendix A.2. In Eq. (7), ˜̄Mi is expressed in terms of the module mass matrix
M̄j of all the modules upstream from module Mi , i.e., M̄j for all j ∈ γ i . Due to introduction
of the concept of kinematic module and the parent-child relationships explained in Sect. 2,

it can be shown that ˜̄Mican be expressed recursively in terms of the already computed mass
matrices of the composite-modules that are immediate children (ξ i ) of the ith module, as

shown in Fig. 3. If these composite modules are denoted by ˜̄Mj , then for all j ∈ ξ i

˜̄Mi =
{

M̄i +∑j∈ξ i
ĀT

j,i
˜̄Mj Āj,i if ξ i �= { },

M̄i if ξ i = {},
(8)

where ξ i denotes the array of children of module Mi . Note that the summation in Eq. (8)
for j ∈ ξ i is computationally more efficient in comparison to Eq. (7) for j ∈ γ i . If a module
has no child, i.e., ξ i = {}, it is referred to as a leaf or terminal module. For the terminal
modules, the mass matrix of the composite-module is simply equal to the module mass

matrix, i.e., ˜̄Mi ≡ M̄i . Here the concept of composite-module is the generalization over a
similar concept of composite body used in [8–10]. It may be shown that the mass matrix
of the composite-body is a special case of Eq. (8), where each module has only one link,
i.e., ni = 1, for i = 1, . . . , s. Finally, using the expression in Eq. (5a), i.e., I ≡ N̄T

d M̃N̄d , the
block elements of the GIM are given by

I ≡

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

Ī1,1 sym

Ī2,1 Ī2,2

Ī3,1 Ī3,2 Ī3,3
...

...
. . .

. . .

Īs,1 Īs,2 · · · Īs,s−1 Īs,s

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

(9)

where the ni × nj block element Īi,j is given, for i = 1, . . . , s and j = 1, . . . , i, as

Īi,j ≡ Īj,i =
{

N̄T
i

˜̄MiĀi,j N̄j , if Mi ∈ γ j (for i = j, Āi,j = 1),

O, otherwise.
(10)

The analytical expression derived in Eq. (10) is the foundation for obtaining the analyt-
ical block decomposition of the GIM at module-level, and enables one to find analytical
module-level inverse of the GIM and the inter- and intra-modular recursive forward dynam-
ics algorithm. These will be presented in the subsequent sections.
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Fig. 5 A robotic gripper and its
modularization

2.1 An illustration: the GIM of a tree-type gripper

For clearer understanding, the module-level expression of the GIM is derived for a tree-type
4-DOF gripper shown in Fig. 5. The gripper is divided into three modules, M1, M2, and M3

whereas M0 is the fixed-base. Using Eqs. (9) and (10), the GIM I is expressed as

I ≡

⎡

⎢⎢
⎣

N̄T
1

˜̄M1N̄1 sym

N̄T
2

˜̄M2Ā2,1N̄1 N̄T
2

˜̄M2N̄2

N̄T
3

˜̄M3Ā3,1N̄1 O N̄T
3

˜̄M3N̄3

⎤

⎥⎥
⎦ . (11)

Here I is the 4 × 4 GIM and Ī3,2 = 0 as M3 does not belong to tree upstream from M2,
i.e., M3 /∈ γ 2. In Eq. (11), the block elements N̄i and Āj,i are obtained using Eq. (A.7) in
Appendix A.2:

N̄1 ≡ p11 , N̄2 ≡
[

p12 0

A2212 p12 p22

]

, N̄3 ≡ p13 ,

Ā2,1 ≡
[

A1211

A2211

]

, and Ā3,1 ≡ A1311 .

(12)

Moreover, the 6×6, 12×12 and 6×6 mass matrices of the composite-module ˜̄M3, ˜̄M2 and
˜̄M1, respectively, are obtained by using Eq. (8) as

˜̄M3 = M̄3,
˜̄M2 = M̄2,

˜̄M1 = M̄1 +
∑

j=3,2

ĀT
j,1

˜̄Mj Āj,1 (13)

where the module mass matrices M̄1, M̄2 and M̄3 are obtained from Eq. (2), i.e.,

M̄1 ≡ M11 , M̄2 ≡
[

M12 O

O M22

]

, M̄3 ≡ M13 . (14)
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3 Block decomposition of the GIM

The UDUT decomposition, where U and D are the upper triangular and diagonal matrices,
respectively, of the GIM of a serial-chain system was shown in [14]. A similar LT DL fac-
torization for branched kinematic tree, where L is the lower triangular matrix, and hence
LT ≡ U, was proposed in [16]. Note here that the approach followed in [17] was numerical
in contrast to the analytical approach taken in [14]. In both approaches the decomposition
was carried out on link-level. More recently, a factorization was proposed in [17] for a tree
consisting of a single main chain with short side branches for an optimal serial-parallel algo-
rithm. As compared to link-level approaches in [14, 16], the module-level decomposition in
the form of ŪD̄ŪT is presented in this work for a tree-type multibody system. This provides
suitable recursive module-level expressions to obtain the implicit inverse of the GIM result-
ing in a recursive forward dynamics algorithm. In contrast to [17], the proposed approach
builds on the concept of kinematic module presented earlier in [12, 13], and emphasizes on
analytical block decomposition and related physical interpretation.

The proposed ŪD̄ŪT decomposition is based on the Block Reverse Gaussian Elimination
(BRGE) of the GIM that generalizes the concept of the Reverse Gaussian Elimination (RGE)
of the GIM proposed in [3]. The term “reverse” was used with the well-known Gaussian
Elimination (GE), where the annihilation starts from the first column [7], because of starting
of the annihilation from the nth (last) column of the matrix. In this paper, another adjective
“block” is added to emphasize the point that the rules of annihilation are applied to the block
matrices of the GIM arising out of the masses and inertia tensors of the links belonging to
composite-module instead of the scalar terms of a serial-chain system arising out of the
masses and inertias of a composite-body [10]. It actually helps in obtaining various element
of the decomposed matrix by establishing recursive relationships from the terminal module
or link to the zeroth module or link, a process otherwise is not possible with the conventional
GE. The RGE or BRGE also preserves the sparsity pattern of the elements of the GIM into
its factor Ū, and results into numerically stable algorithms. The BRGE of the GIM given by
Eq. (9) starts with the annihilation of the sth block column and proceeds to the second block
column by using Elementary Block Upper Triangular Matrices (EBUTMs), similar to the
Elementary Upper Triangular Matrices (EUTMs) of [3], which in turn were adopted from
the Elementary Lower Triangular Matrices used in the conventional process of GE [7].

3.1 The ŪD̄ŪT decomposition of the GIM of a tree-type gripper

For the 3-module robotic gripper explained in Sect. 2.1, the GIM was obtained in Eq. (11),
which is reproduced here:

I ≡

⎡

⎢⎢
⎣

N̄T
1

˜̄M1N̄1 N̄T
1 ĀT

2,1
˜̄M2N̄2 N̄T

1 ĀT
3,1

˜̄M3N̄3

N̄T
2

˜̄M2Ā2,1N̄1 N̄T
2

˜̄M2N̄2 O

N̄T
3

˜̄M3Ā3,1N̄1 O N̄T
3

˜̄M3N̄3

⎤

⎥⎥
⎦≡

⎡

⎢
⎣

Ī1,1 Ī1,2 Ī1,3

Ī2,1 Ī2,2 Ī2,3

Ī3,1 Ī3,2 Ī3,3

⎤

⎥
⎦ . (15)

As M2 and M3 are terminal modules, ˜̄M2 = M̄2 and ˜̄M3 = M̄3 from Eq. (8). In BRGE, the
above GIM is converted into a lower block triangular matrix in two stages shown below:

⎡

⎢
⎣

Ī1,1 Ī1,2 Ī1,3

Ī2,1 Ī2,2 Ī2,3

Ī3,1 Ī3,2 Ī3,3

⎤

⎥
⎦

︸ ︷︷ ︸
I

1st stage⇒
⎡

⎢
⎣

Ī(3)

1,1 Ī(3)

1,2 O

Ī(3)

2,1 Ī(3)

2,2 O

Ī3,1 Ī3,2 Ī3,3

⎤

⎥
⎦

︸ ︷︷ ︸
I(3)

2nd stage⇒
⎡

⎢
⎣

Ī(2)

1,1 O O

Ī(3)

2,1 Ī(3)

2,2 O

Ī3,1 Ī3,2 Ī3,3

⎤

⎥
⎦

︸ ︷︷ ︸
I(2)

(16)
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where I(2) is the resulting lower block triangular matrix, and Ī3,3, Ī(3)

2,2 and Ī(2)

1,1 are the block
pivots for the BRGE. The matrix I(2) represents the matrix whose above block-diagonal
elements till column 2 have been annihilated. The first stage of the BRGE started with Ī3,3

as the block pivot which annihilated the block elements above it using the following matrix
operations:

⎡

⎢
⎣

1 O −Ū1,3

O 1 −Ū2,3

O O 1

⎤

⎥
⎦

︸ ︷︷ ︸
Ū3

⎡

⎢
⎣

Ī1,1 Ī1,2 Ī1,3

Ī2,1 Ī2,2 Ī2,3

Ī3,1 Ī3,2 Ī3,3

⎤

⎥
⎦

︸ ︷︷ ︸
I

=
⎡

⎢
⎣

Ī(3)

1,1 Ī(3)

1,2 O

Ī(3)

2,1 Ī(3)

2,2 O

Ī3,1 Ī3,2 Ī3,3

⎤

⎥
⎦

︸ ︷︷ ︸
I(3)

(17)

where Ū2,3 ≡ Ī2,3Ī−1
3,3 and Ū1,3 ≡ Ī1,3Ī−1

3,3 are the block coefficient matrices applied for anni-
hilation of (2,3)rd and (1,3)rd block elements of the GIM I. Matrix Ū3 is nothing but the
EBUTM and Ū2,3 and Ū1,3 are obtained using block elements of I in Eq. (15) as

Ū2,3 = Ī2,3Ī−1
3,3 = O (because Ī2,3 = O),

Ū1,3 = Ī1,3Ī−1
3,3 = N̄T

1 ĀT
3,1

˜̄M3N̄3Ī−1
3,3 = N̄T

1 ĀT
3,1�̄3

ˆ̄I−1
3

(18)

where �̄3 ≡ ˜̄M3N̄3 and ˆ̄I3 ≡ Ī3,3. The block elements Ī(3)

2,2 and Ī(3)

21 are then obtained from
Eqs. (15) and (17):

Ī(3)

2,2 = Ī2,2 − Ū2,3Ī3,2 = N̄T
2

˜̄M2N̄2 because Ī3,2 = O (19)

and

Ī(3)

2,1 = Ī2,1 − Ū2,3Ī3,1 = N̄T
2

˜̄M2Ā2,1N̄1 = �̄
T

2 Ā2,1N̄1 (20)

where �̄2 = ˜̄M2N̄2. Next, Ī(3)

1,2 and Ī(3)

1,1 are obtained:

Ī(3)

1,2 = Ī1,2 − Ū1,3Ī3,2 = N̄T
1 ĀT

2,1
˜̄M2N̄2 = N̄T

1 ĀT
2,1�̄2 (21)

and

Ī(3)

1,1 = Ī1,1 − Ū1,3Ī3,1 = N̄T
1

˜̄M1N̄1 − {N̄T
1 ĀT

3,1�̄3
ˆ̄I−1

3

}
N̄T

3
˜̄M3Ā3,1N̄1. (22)

Substituting ˜̄M1 = M̄1 + ĀT
2,1

˜̄M2Ā2,1 + ĀT
3,1

˜̄M3Ā3,1 one obtains
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Ī(3)

1,1 = N̄T
1

{
M̄1 + ĀT

2,1
˜̄M2Ā2,1 + ĀT

3,1
˜̄M3Ā3,1

}
N̄1 − {N̄T

1 ĀT
3,1�̄3

ˆ̄I−1
3

}
N̄T

3
˜̄M3Ā3,1N̄1

= N̄T
1

[{
M̄1 + ĀT

2,1
˜̄M2Ā2,1

}+ ĀT
3,1

{
1 − �̄3

ˆ̄I−1
3 N̄T

3

} ˜̄M3Ā3,1

]
N̄1

= N̄T
1

[{
M̄1 + ĀT

2,1
˜̄M2Ā2,1

}+ ĀT
3,1�̄3

˜̄M3Ā3,1

]
N̄1 (23)

where

�̄3 ≡ 1 − �̄3
ˆ̄I−1

3 N̄T
3 . (24)

The second stage of the BRGE started with Ī(3)

2,2 of Eq. (19) as the block pivot element
which annihilated the block elements of the second column above it. The following matrix
operation was used:

⎡

⎢
⎣

1 −Ū1,2 O

O 1 O

O O 1

⎤

⎥
⎦

︸ ︷︷ ︸
Ū2

⎡

⎢
⎣

Ī(3)

1,1 Ī(3)

1,2 O

Ī(3)

2,1 Ī(3)

2,2 O

Ī3,1 Ī3,2 Ī3,3

⎤

⎥
⎦

︸ ︷︷ ︸
I(3)

=
⎡

⎢
⎣

Ī(2)

1,1 O O

Ī(3)

2,1 Ī(3)

2,2 O

Ī3,1 Ī3,2 Ī3,3

⎤

⎥
⎦

︸ ︷︷ ︸
I(2)

(25)

where

Ū1,2 = Ī(3)

1,2

{
Ī(3)

2,2

}−1 = N̄T
1 ĀT

2,1�̄2

{
N̄T

2
˜̄M2N̄2

}−1 = N̄T
1 ĀT

2,1�̄2
ˆ̄I−1

2 . (26)

In Eq. (26), ˆ̄I2 ≡ Ī(3)

3,3 was used for simplicity in notation. The recursive expression to calcu-

late Ī(2)

1,1 is given by

Ī(2)

11 = Ī(3)

11 − Ū12Ī(3)

21

= N̄T
1

[{
M̄1 + ĀT

2,1
˜̄M2Ā2,1

}+ ĀT
3,1�̄3

˜̄M3Ā3,1
]
N̄1 − {N̄T

1 ĀT
2,1�̄2

ˆ̄I−1
2

}
N̄T

2
˜̄M2Ā2,1N̄1

= N̄T
1

[
M̄1 + ĀT

3,1�̄3
˜̄M3Ā3,1 + ĀT

2,1

{
1 − �̄2

ˆ̄I−1
2 N̄T

2

} ˜̄M2Ā2,1
]
N̄1

= N̄T
1

[
M̄1 + ĀT

3,1�̄3
˜̄M3Ā3,1 + ĀT

2,1�̄2
˜̄M2Ā2,1

]
N̄1

(
where �̄2 ≡ 1 − �̄2

ˆ̄I−1
2 N̄T

2

)

= N̄T
1

ˆ̄M1N̄1 ≡ ˆ̄I1 (27)

where ˆ̄I1 is the third block pivot-element and

ˆ̄M1 ≡ M̄1 +
∑

j=3,2

ĀT
j,1�̄j

ˆ̄Mj Āj,1. (28)

Note that, for the terminal modules M2 and M3, ˆ̄M2 = ˜̄M2 = M̄2, ˆ̄M3 = ˜̄M3 = M̄3. We have
now obtained a block lower triangular matrix as a result of the BRGE of I as

⎡

⎢
⎣

1 −Ū1,2 O

O 1 O

O O 1

⎤

⎥
⎦

︸ ︷︷ ︸
Ū2

⎡

⎢
⎣

1 O −Ū1,3

O 1 −Ū2,3

O O 1

⎤

⎥
⎦

︸ ︷︷ ︸
Ū3

I =

⎡

⎢⎢
⎣

ˆ̄I1 O O

�̄
T

2 Ā2,1N̄1
ˆ̄I2 O

�̄
T

3 Ā3,1N̄1 O ˆ̄I3

⎤

⎥⎥
⎦

︸ ︷︷ ︸
I(2)

(29)
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where

Ū1,j ≡ N̄T
i ĀT

j,i�̄j
ˆ̄I−1
j (for j = 2,3) and Ū2,3 ≡ O,

ˆ̄Ii ≡ N̄T
i

ˆ̄MiN̄i (for i = 1,2,3).

(30)

Equation (29) can be rewritten in terms of I using the inverses of the EBUTMs Ū2 and Ū3

as

I = Ū−1
3 Ū−1

2

⎡

⎢⎢
⎣

ˆ̄I1 O O

�̄
T

2 Ā2,1N̄1
ˆ̄I2 O

�̄
T

3 Ā3,1N̄1 O ˆ̄I3

⎤

⎥⎥
⎦

︸ ︷︷ ︸
I(2)

. (31)

It is a simple matter to observe that the EBUTMs in Eq. (29) have the following trivial
inverses:

Ū−1
2 =

⎡

⎣
1 Ū1,2 O

O 1 O
O O 1

⎤

⎦ , Ū−1
3 =

⎡

⎢
⎣

1 O Ū1,3

O 1 Ū2,3

O O 1

⎤

⎥
⎦ . (32)

Substitution of Eq. (32) into Eq. (31) yields

I =
⎡

⎢
⎣

1 N̄T
1 ĀT

2,1�̄2
ˆ̄I−1

2 N̄T
1 ĀT

3,1�̄3
ˆ̄I−1

3

O 1 O
O O 1

⎤

⎥
⎦

︸ ︷︷ ︸
Ū=Ū−1

3 Ū−1
2

⎡

⎢
⎢
⎣

ˆ̄I1 O O

�̄
T

2 Ā2,1N̄1
ˆ̄I2 O

�̄
T

3 Ā3,1N̄1 O ˆ̄I3

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
I(2)

. (33)

Now, the lower block triangular matrix I(2) in Eq. (33) for the symmetric GIM, I, can be
shown to be equal to I(2) = D̄ŪT . As a result, I is decomposed as I = ŪD̄ŪT , i.e.,

I =
⎡

⎢
⎣

1 N̄T
1 ĀT

2,1�̄2
ˆ̄I−1

2 N̄T
1 ĀT

3,1�̄3
ˆ̄I−1

3

O 1 O

O O 1

⎤

⎥
⎦

︸ ︷︷ ︸
Ū

⎡

⎢
⎢
⎣

ˆ̄I1 O O

O ˆ̄I2 O

O O ˆ̄I3

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
D̄

⎡

⎢
⎢
⎣

1 O O
ˆ̄I−1

2 �̄
T

2 Ā2,1N̄1 1 O
ˆ̄I−1

3 �̄
T

3 Ā3,1N̄1 O 1

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
ŪT

.

(34)
The derivation of Eq. (34) on the modular level is one of the main contributions of this paper,
which is generalized in the next sub section.

3.2 The ŪD̄ŪT decomposition of multi-module tree-type system

In this subsection, we build on the results of the previous subsection to obtain the ŪD̄ŪT

decomposition of an n−DOF multi-module tree-type system. As an extension of Eq. (16),
a tree-type system with s modules will require annihilation from the sth block column to the
second block column using EBUTMs. This is expressed as

Ū2 · · · Ūi · · · ŪsI = I(2). (35)
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The n×n matrices Ūi and I(2) are the upper and lower block triangular matrices, as demon-
strated in Eq. (29). The matrix I(2) is the one whose block elements above the diagonal
elements were annihilated. The expression of the n × n EBUTM Ūi , similar to Eqs. (17)
and (25), is derived:

Ūi =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

11 O · · · −Ū1,i · · · O
. . .

...
...

...

1i−1 −Ūi−1,i · · · O

1i · · · O
. . .

...

O′s 1s

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

≡ 1 − Ū′
iV̄

T
i . (36)

Here the n × ni matrices Ū′
i and V̄i have the following representation:

Ū′
i ≡ [ ŪT

1,i · · · ŪT
i−1,i O · · · O

]T
, (37)

V̄i ≡ [O · · · O 1i · · · O
]T

. (38)

In Eq. (36) Ūj,i is the nj ×ni block coefficient matrix applied for the annihilation of (j, i)th
block element of the updated GIM obtained as a result of the annihilation of the (i + 1)th
block column. Note that Ūj,i is nothing but the (j, i)th block element times the inverse of the
(i, i)th block element (or pivot) of the updated GIM. Equation (35) can then be re-written as

I = ŪI(2) where Ū ≡ Ū−1
s · · · Ū−1

i · · · Ū−1
2 (39)

where Ū−1
i is the inverse of the EBUTM Ūi which can easily be obtained:

Ū−1
i = (1 − Ū′

iV̄
T
i

)−1 =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

11 O · · · Ū1,i · · · O
. . .

...
...

...

1i−1 Ūi−1,i · · · O

1i · · · O
. . .

...

O′s 1s

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

≡ 1 + Ū′
iV̄

T
i . (40)

The multiplication of the two inverses of the neighboring EBUTM is simply

Ū−1
i Ū−1

i−1 = (1 + Ū′
iV̄

T
i

)(
1 + Ū′

i−1V̄T
i−1

)= 1 + Ū′
iV̄

T
i + Ū′

i−1V̄T
i−1. (41)

It is worth noting that in Eq. (41), the term Ū′
iV̄

T
i Ū′

i−1V̄T
i−1 vanishes as V̄T

i Ū′
i−1 = O. This is

evident from Eqs. (37) and (38). Similarly, it can be shown that the product of Ū−1
s · · · Ū−1

2

is obtained:

Ū = 1 + Ū′
sV̄

T
s + · · · + Ū′

2V̄T
2 . (42)
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Substituting Eqs. (37) and (38) into Eq. (42), the inverse of the EBUTMs, namely, Ū, can be
represented in the matrix form as

Ū =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

11 Ū1,2 · · · Ū1,i · · · Ū1,s

. . .
...

...
...

1i−1 Ūi−1,i · · · Ūi−1,s

1i · · · Ūi,s

. . .
...

O′s 1s

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

. (43)

Since the GIM I is a symmetric matrix [7], similar to Eq. (34), the lower block triangular
matrix I(2) can be shown to be equal to I(2) = D̄ŪT . Hence, the GIM for the n-DOF tree-type
system with s module is decomposed as

I = ŪD̄ŪT (44)

where the expression for the block upper triangular matrix Ū is obtained in (43) and the
block diagonal matrix D̄ has the representation

D̄ = diag
[ ˆ̄I1

ˆ̄I2 · · · ˆ̄Is

]
. (45)

Note that the ni × ni matrix ˆ̄Ii is essentially the block pivot of the BRGE.
It is worth noting that the elements of the matrices U and D resulting from the UDUT

decomposition of the GIM of a serial system [10] are scalars, whereas the elements of the

matrices Ū and D̄, i.e., Ūi,j and ˆ̄Ii , in Eqs. (43) and (45), respectively, are matrices. Their
recursive expressions are obtained by performing the BRGE analytically, similar to Sect. 3.1,
as

Ūi,j ≡
{

N̄T
i ĀT

j,i�̄j
ˆ̄I−1
j , if j ∈ γ i ,

O, otherwise,

ˆ̄Ii ≡ N̄T
i

ˆ̄MiN̄i .

(46)

For the ith module, the 6ni × ni matrices �̄ i needed in Eq. (46) is given by

�̄ i = ˆ̄MiN̄i (47)

where the 6ni × 6ni matrix ˆ̄Mi in Eq. (47) contains the mass and inertia properties of the
articulated-module i, which is obtained similar to Eq. (28) as

ˆ̄Mi =
{

M̄i +∑j∈ξ i
ĀT

j,i�̄j
ˆ̄Mj Āj,i if ξ i �= { },

M̄i if ξ i = {},
(48)

the articulated-module corresponding to ˆ̄Mi is nothing but the composite-module of Fig. 3 in

which fixed joints are replaced with the actual joints. The ni ×ni matrix ˆ̄Ii of Eq. (46), on the
other hand, may be interpreted as the generalized inertia matrix of the articulated-module.
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The relationship between the matrices ˆ̄Mi and ˆ̄Ii can be viewed similar to that between M
and I of Eqs. (1) and (9), respectively. Moreover, the 6ni × 6ni matrix �̄j in Eq. (48) is
obtained:

�̄j ≡ 1 − �̄j
ˆ̄I−1
j N̄T

j . (49)

Matrix �̄j is referred to as the matrix of the articulated-module transformation. Similar
matrix, however, at link-level was also derived in [3, 10]. The one proposed here is more
generic as it is applicable to any multi-module tree-type system. Comparing Eqs. (8) and
(48), it may be seen that it is �̄j , which distinguishes mass matrix of the articulated module
ˆ̄Mi from the mass matrix of the composite-module ˜̄Mi . Again the concept of the articulated-

body inertia [8–10] is generalized here to a tree-type multibody system consisting of several
kinematic modules. If each module of a tree-type system has only one link, the matrix of the
articulated-module degenerates to the articulated-body inertia of [3].

4 Analytical block inversion of the GIM

The block ŪD̄ŪT decomposition of the GIM of a tree-type multibody system presented in
the previous section also facilitates its block analytical inversion. According to Eq. (44) the
inverse is given by

I−1 = Ū−T D̄−1Ū−1 (50)

where D̄−1 is block diagonal matrix and Ū−1 ≡ Ū2 · · · Ūi · · · Ūs is the block upper triangu-
lar matrix given by Eq. (35). Using the definition of the EBUTM given by Eq. (36), the
multiplication of the two neighboring EBUTMs is obtained:

Ūi−1Ūi = (1 − Ū′
i−1V̄T

i−1

)(
1 − Ū′

iV̄
T
i

)

= 1 − Ū′
i−1V̄T

i−1 − (Ū′
iV̄

T
i − Ū′

i−1V̄T
i−1Ū′

iV̄
T
i

)

= 1 − Ū′
i−1V̄T

i−1 − ˆ̄UiV̄T
i (51)

where ˆ̄Ui ≡ Ū′
i − Ū′

i−1(V̄
T
i−1Ū′

i )V̄
T
i = Ū′

i − Ū′
i−1Ūi−1,iV̄T

i in which unlike in Eq. (41) where
V̄T

i Ū′
i−1 = O, the term V̄T

i−1Ū′
i does not vanish, i.e., V̄T

i−1Ū′
i �= O. However, its expression

can easily be obtained from Eqs. (37) and (38) as V̄T
i−1Ū′

i = Ūi−1,i , which is the last non-zero
block element of Ū′

i . The non-vanishing V̄T
i−1Ū′

i makes the calculations for Eq. (51) more
involved. The product of the EBUTMs, Eq. (51), is then generalized to

Ū−1 = Ū2 · · · Ūi · · · Ūs = 1 + ˆ̄U2V̄T
2 + · · · ˆ̄UiV̄T

i · · · + ˆ̄UsV̄T
s (52)

where ˆ̄Ui , for i = 2, . . . , s, is given by

ˆ̄Ui = −(Ū′
i − ˆ̄Ui−1Ūi−1,i − · · · − ˆ̄U2Ū2,i ); ˆ̄U2 = Ū′

2 and Ūj,i = O if i /∈ γ j . (53)
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Based on Eqs. (52) and (53), the n × n block upper-triangular and diagonal matrices Ū−1

and D̄−1 have the following representation:

Ū−1 ≡

⎡

⎢⎢
⎢⎢
⎢
⎣

11
ˆ̄U1,2 · · · ˆ̄U1,s

11

...

. . . ˆ̄Us−1,s

O′s 1s

⎤

⎥⎥
⎥⎥
⎥
⎦

, and D̄−1 ≡

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

ˆ̄I−1
1 O′s

ˆ̄I−1
2

. . .

O′s ˆ̄I−1
s

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

(54)

where the block elements ˆ̄Ui,j and ˆ̄I−1
i are obtained by performing analytical steps, for in-

verse similar to the one used to obtain Eq. (46), i.e.,

ˆ̄Ui,j ≡
{

−N̄T
i

ˆ̄AT
j,i�̄j

ˆ̄I−1
j , if j ∈ γ i ,

O, otherwise,

ˆ̄I−1
i ≡ (N̄T

i
ˆ̄MiN̄i

)−1
.

(55)

In Eq. (55), note that the second term ˆ̄Aj,i is different from Āj,i in Eq. (46). The matrix ˆ̄Aj,i

may be interpreted as the articulated module-twist propagation matrix and has the following
representation:

ˆ̄Aj,i ≡ ˆ̄Aj,h
ˆ̄�T

h
ˆ̄Ah,i where ˆ̄�h = 1 − �̄h

ˆ̄I−1
h N̄T

h . (56)

In Eq. (56), h is any intermediate serially connected module between modules j and i. The
proof of Eqs. (55) and (56) is given in Appendix A.3.

Interestingly, the module-twist propagation matrix Āj,i has the property of Āj,i =
Āj,hĀh,i , whereas the matrix of the articulated module transformation �̄h makes the prop-

erty of matrix ˆ̄Aj,i different which is shown in Eq. (56). For any two adjoining modules, say,

module j and its parent βj , the articulated module-twist propagation matrix ˆ̄Aj,β is simply
equal to the module-twist propagation matrix, i.e.,

ˆ̄Aj,β = Āj,β . (57)

4.1 An illustration: analytical inversion of the GIM of the gripper

The ŪD̄ŪT decomposition of the GIM for the Gripper, shown in Fig. 5, is derived in Eq. (34).
The analytical inverse of the decomposed GIM in terms of the 4 × 4 Ū−1 and the 4 × 4 D̄−1

is obtained from Eqs. (54) and (55):

Ū−1 ≡
⎡

⎢
⎣

11 −N̄T
1

ˆ̄AT
2,1�̄2

ˆ̄I−1
2 −N̄T

1
ˆ̄AT

3,1�̄3
ˆ̄I−1

3

12 O

O′s 13

⎤

⎥
⎦ and

D̄−1 = diag
[ ˆ̄I−1

1
ˆ̄I−1

2 · · · ˆ̄I−1
s

]

(58)
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where the 12 × 6 and the 6 × 6 matrices ˆ̄AT
2,1 and ˆ̄AT

3,1, respectively, are available from
Eq. (56), namely,

ˆ̄A2,1 ≡ Ā2,1, and ˆ̄A3,1 ≡ Ā3,1. (59)

In Eq. (59), module M1 is the parent of modules M2 and M3. Hence, the expressions for
ˆ̄A2,1 and ˆ̄A3,1 are simplified to their corresponding module twist-propagation matrices, i.e.,
Ā2,1 and Ā3,1, respectively.

A numerical validation of Eqs. (34) and (58) is provided in Appendix A.4.

5 Intra- and inter-modular recursive forward dynamics

One of the purposes of inverting the GIM was to perform forward dynamics calculations as
q̈ = I−1ϕ, where q̈ is the vector of joint accelerations, I is the GIM, and ϕ is the vector of
all external and other generalized forces. As mentioned in Introduction, a straight-forward
numerical inversion leads to O(n3) algorithm. However, due to the existence of the recursive
expressions of the decomposed matrices of the GIM, one can easily derive a set of recursive
relations which have complexity of O(n), thus, making it extremely efficient when n is
very large [18]. Besides, it was shown in [15] how the RGE based algorithm can provide
numerically stable results.

It is pointed out here that the recursive algorithms are also available in the literature, e.g.,
[8–10], which use only body-level recursions. However, in the present work, the recursion is
obtained first amongst the modules, followed by the body- or link-level recursions inside a
module. In fact, the latter approach encapsulates the former. As result, the problem is solved
in a much more elegant manner where a tree-type system has several modules, which in
turn have several bodies or links in them. This was possible, mainly due to the existence of
several module-level expressions in the matrices Ū, D̄, and Ū−1. Using Eq. (50), the joint
accelerations q̈ are solved in three steps, namely,

(i) ˆ̄ϕ ≡ Ū−1ϕ,

(ii) ˜̄ϕ = D̄−1 ˆ̄ϕ,

(iii) q̈ = Ū−T ˜̄ϕ.

(60)

Equation (60) involves backward and forward recursions, which are explained in [12]. For
a general tree-type multibody system, Appendix A.5 highlights the necessary steps. Based
on the forward dynamics calculations given in Appendix A.5, computation complexity was
found and compared in Fig. 6 with other algorithms reported in the literature. The details of
the computation complexity are provided in [12] and avoided here for brevity. It was found
that the proposed analytical inversion leads to much superior algorithm, both in terms of
efficiency [20] and numerical stability [15]. Whereas Fig. 6 demonstrates the superiority of
the computational efficiency, Sect. 6 elaborates on the numerical stability of the proposed
ŪD̄ŪT based simulation algorithm.

5.1 Simulation of spatial biped

As a numerical example, simulation results of a spatial biped shown in Fig. 7 were generated
whose geometrical and inertial parameters are given in Table 1. The biped has spherical
joints at the hips, revolute joints at the knees, and universal joints at the ankles. Biped motion
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Fig. 6 Performance of the proposed forward dynamics algorithm

Fig. 7 A 7-link biped and its module architecture

was analyzed for a single support phase where one of the feet (the supporting foot during
walking) is assumed to have no relative motion with respect to the ground. This is indicated
in the figure with hatched lines. Hence, the biped dynamics can be solved as an open tree-
type system. The biped is divided into three modules, M0, M1 and M2, as shown in Fig. 7(b).
Such modularization helps one to treat module M1 and M2 in a similar manner as each
module consists of three links, one spherical joint, one revolute joint, and one universal joint.
Hence computationally one can use the same instructions. This results in a more elegant
approach.

In order to perform dynamic analysis, the desired trajectories of the swing foot (xh, yh)

and the Center-of-Mass (COM) (x0, y0) of the trunk were synthesized first. The trunk’s
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Table 1 Model parameters for
the biped

Note: Mass moment of inertia
were calculated based on the
assumption of slender rod

Link Length (m) Mass (kg)

11, 32 0.45 2

11, 22 0.45 2

12, 22 0.15 0.5

31 0.20 × 0.20 10

COM trajectories were designed based on the Inverted Pendulum Model [22]. For 0 ≤ t ≤ T ,

x0(t) = x0(0) cosh(wt) +
(

ẋ0(0)

w

)
sinh(wt),

y0(t) = y0(0) cosh(wt) +
(

ẏ0(0)

w

)
sinh(wt)

(61)

where w = √
g/z0 and g = 9.81 m/s2. Equation (61) assumes that the mass of the biped

is concentrated at the trunk, the feet remain horizontal throughout the robot’s motion and
the trunk moves horizontally with constant height from the ground. For the spatial biped
under study, the co-ordinates of COM x0(0), y0(0) at t = 0 and z0, and T are assumed to
be −0.15 m, 0.10 m, and 0.80 m, and 1 s, respectively. In order to obtain the periodic and
symmetric biped pattern, the following repeatability conditions were used:

xh(0) = −xh(T ); ẋh(0) = ẋh(T ),

yh(0) = yh(T ); ẏh(0) = −ẏh(T ).
(62)

The above repeatability conditions help in obtaining the values of the initial velocities ẋh(0)

and ẏh(0), i.e.,

ẋh(0) = 1 + e−wT

1 − e−wT
wxh(0) and ẏh(0) = 1 − e−wT

1 + e−wT
wyh(0). (63)

The trajectories of the ankle of the swing foot (xa, ya) were defined as cosine functions,
namely,

xa(t) = − ls

2
cos

(
π

T
t

)
, za(t) = hf

2

[
1 − cos

(
2π

T
t

)]
(64)

where stride length (ls ) and maximum foot height (hf ) were assumed to be 0.60 m and
0.15 m, respectively. The resulting trajectories of the COM of the trunk and the ankle of the
swing foot are shown in Fig. 8.

Based on the motion of the trunk and ankles, the desired joint trajectories, i.e., θ11 ≡
[θ11

1
θ11

2
]T , θ21 , θ31 ≡ [θ31

1
θ31

2
θ31

3
]T , θ12 ≡ [θ12

1
θ12

2
θ12

3
]T , θ22 , θ32 ≡ [θ32

1
θ32

2
]T , were cal-

culated using the inverse kinematics relationships. The joint trajectories thus obtained are
shown in Fig. 9 as desired trajectories.

Forced simulation was performed next, where the motion of the biped was studied under
the application of the joint torques calculated using the computed torque control approach
to track the above trajectories. Note that the values of the proportional and derivative gains
were taken as Kp = 225 and Kd = 30 for all the joints. The joint motions were calculated
using the forward dynamics module of ReDySim [19]. The plots for the simulated joint
angles are shown in Fig. 9 along with the desired one. It can be seen that the simulated joint
angles match with the desired joint angles.
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Fig. 8 Designed trajectories of the trunk’s COM and the ankle of the spatial biped

6 Numerical stability

As explained in the previous section, the block ŪD̄ŪT decomposition lends its utility in de-
veloping efficient forward dynamics algorithms. Numerical stability of the forward dynam-
ics algorithm is an important issue, and it directly affects the accuracy of the results [23]. An
algorithm is called numerically stable, if it is stable in the mixed forward–backward error
sense [24]. It is worth noting that the numerical stability mainly depends on the method of
solving a problem rather than the order of computational complexity of the solver. It will be
shown in this section that the algorithms developed based on the proposed BRGE is more
stable than the algorithm based on the conventional GE [7]. As is evident from (60), the
forward dynamics problem requires computation of the joint accelerations from the set of
constrained equations of motion, i.e.,

q̈ = I−1ϕ. (65)

If the GIM I is ill-conditioned, small perturbations in the system of equations can produce
relatively large changes in the numerical solutions of q̈. Mathematically, the solution must
satisfy the following:

(q̈ + δq̈) = I−1(ϕ + δϕ) (66)

where δq̈ denotes the errors in solutions due to errors in the input denoted with δϕ. Then
the relative error in the computation of the joint accelerations is given by [24]

‖δq̈‖
‖q̈‖ ≤ κ(I)

‖δϕ‖
‖ϕ‖ (67)

where κ(I) = ‖I−1‖‖I‖ and ‖I‖ represents the norm of the GIM I. The term κ(I)is defined
as the condition number of the GIM which determines the scale factor by which the relative
change in q̈ is magnified. With the increase in the number of bodies or link (n), the increase
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Fig. 9 Simulated and desired joint angles for the biped

in condition number of the GIM is of order n4 [25]. If the condition number of the GIM
is very high, it is ill-conditioned or close to singular and there can be a loss of accuracy in
the computation of the joint accelerations. In order to investigate the numerical stability of
the proposed algorithm based on the ŪD̄ŪT decomposition, a comparative study of three
different methods to calculate the joint accelerations was undertaken. They are:

1. Gaussian Elimination (Numerical) or GE-N.
2. Reverse Gaussian Elimination (Numerical) or RGE-N.
3. Block Reverse Gaussian Elimination (Analytical) or BRGE-A.
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Table 2 Model parameters for the robotic gripper

Link Length (m) Mass (kg) Moment of inertia, IZZ (kg m2)

11 0.10 0.4 3.3333 × 10−4

12, 22, 13 0.05 0.2 0.4167 × 10−4

Table 3 Solution of q̈(0) with double precision accuracy for the gripper

I(0) ϕ(0) q̈(0)

Gripper

⎡

⎢⎢
⎢
⎢
⎣

113.3333 33.3333 9.1667 1.6667

13.3333 4.1667 0

1.6667 0

sym 1.6667

⎤

⎥⎥
⎥
⎥
⎦

× 10−4

κ2(I(0)) = 482

⎡

⎢⎢
⎢
⎢
⎣

−0.8829

−0.1962

−0.0491

0

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎣

−145.6931

268.0752

−163.1762

145.6931

⎤

⎥⎥
⎥
⎥
⎦

Note that ‘N’ and ‘A’ are used to emphasize the fact that the steps were performed numeri-
cally and analytically, respectively.

In order to test the stability of GE-N, RGE-N, and BRGE-A based solvers, gripper and
biped were considered. Since all the above three methods performed well with the double-
precision accuracy, the floating-point accuracy was considered to stress upon the numerical
errors, leading to clear differentiation between the results generated by the different meth-
ods. This is justified as actual computations at the hardware-level are generally performed
with the floating-point accuracy. The results of q̈(0), were generated first using MATLAB’s
command ‘I(0)\ϕ(0)’, with double precision accuracy. These were assumed to be “correct”
for the comparison of other results with floating point accuracy. The values of I(0), ϕ(0),
and q̈(0) (obtained with double precision accuracy) for the gripper are shown in Table 3 for
the model parameters given in Table 2.

The effect of varying floating point accuracy on the solution of the joint accelerations
using GE-N, RGE-N and BRGE-A based solvers was studied and the results are reported in
Table 4. Similar studies were performed in [15] for long-chain up to 1,00,000 DOF. The table
shows the joint accelerations obtained using the corresponding solvers and the percentage
errors relative to q̈(0). For a given floating point accuracy, the percentage errors, denoted by
δq̈ are defined as

δq̈ ≡ [δq̈1 δq̈2 δq̈3

]T
(68)

where

δq̈i
= q̈iF (0) − q̈i (0)

q̈i(0)
× 100 (69)

for i = 1,2,3. The ith joint acceleration, q̈iF (0), was obtained with different floating-point
round-offs, and q̈i (0) is the solution obtained using MATLAB with double-precision accu-
racy. Here, the absolute error is avoided to emphasize on how q̈iF (0) varies around q̈i (0). It
is evident from Table 4 that the percentage error is lower for the BRGE-A and RGA-N based
solvers while the GE-N-based solver showed higher deviations. As the floating point accu-
racy of the computing system was made higher, the solution for joint accelerations obtained
from the RGE-N- and RGE-A-based solvers converged faster to the desired solution q̈(0)

than the GE-N-based solver. Table 5 shows the norm of δq̈ for both the gripper and the biped
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Table 4 Comparison of GE-N, RGE-N and RGE-A with variable floating point round off for the gripper

Accuracy BRGE-A RGE-N GE-N

q̈ δq̈ q̈ δq̈ q̈ δq̈

10−4

⎡

⎢
⎢
⎢⎢
⎣

−147.1739

265.3915

−123.5982

122.6400

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

−1.0164

1.0011

24.2548

15.8230

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

−147.1600

245.4000

−74.0000

147.0000

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

−1.0069

8.4585

54.6503

−0.8970

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

−158.7876

263.3333

7.0000

180.5000

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

−8.9878

1.7689

104.2898

−23.8906

⎤

⎥
⎥
⎥⎥
⎦

10−5

⎡

⎢⎢
⎢
⎢
⎣

−145.6529

264.6884

−151.8918

142.7966

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎣

0.0276

1.2634

6.9155

1.9880

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎣

−148.5887

284.4138

−187.0588

148.5882

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎣

−1.9875

−6.0948

−14.6361

−1.9872

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎣

−146.0574

265.3714

−148.5000

146.2500

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎣

−0.2500

1.0086

8.9941

−0.3823

⎤

⎥⎥
⎥
⎥
⎦

10−6

⎡

⎢
⎢⎢
⎢
⎣

−145.7574

268.1548

−162.6959

145.4665

⎤

⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎢
⎣

−0.0441

−0.0297

0.2943

0.1555

⎤

⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎢
⎣

−145.6287

267.7021

−162.5150

145.6287

⎤

⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎢
⎣

0.0442

0.1392

0.4052

0.0442

⎤

⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎢
⎣

−145.1266

263.4929

−153.1250

143.7962

⎤

⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎢
⎣

0.3888

1.7093

6.1597

1.3020

⎤

⎥
⎥⎥
⎥
⎦

10−7

⎡

⎢
⎢
⎢⎢
⎣

−145.6987

268.0802

−163.1251

145.6695

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

−0.0038

−0.0018

0.0313

0.0162

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

−145.6858

268.0346

−163.1068

145.6857

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

0.0050

0.0152

0.0426

0.0051

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

−145.6889

267.9946

−162.9169

145.6222

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

0.0029

0.0301

0.1589

0.0486

⎤

⎥
⎥
⎥⎥
⎦

10−8

⎡

⎢⎢
⎢
⎢
⎣

−145.6934

268.0748

−163.1702

145.6905

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎣

−0.0002

0.0002

0.0037

0.0018

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎣

−145.6921

268.0703

−163.1684

145.6921

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎣

0.0007

0.0019

0.0048

0.0007

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎣

−145.6950

268.0888

−163.2026

145.7038

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎣

−0.0014

−0.0051

−0.0161

−0.0073

⎤

⎥⎥
⎥
⎥
⎦

Table 5 Comparison of norm (δq̈) for GE-N, RGE-N and RGE-A

Accuracy Gripper (κ2(I(0)) = 482) Biped (κ2(I(0)) = 42941)

BRGE-A RGE-N GE-N BRGE-A RGE-N GE-N

10−4 28.9948 55.3174 107.3827 12.1566 23.6652 190.2552

10−5 7.3057 16.1015 9.0620 3.4619 0.9353 54.2878

10−6 0.3371 0.4330 6.5353 0.0682 0.3595 6.0446

10−7 0.0355 0.0457 0.1689 0.0140 0.0052 0.6560

10−8 0.0041 0.0053 0.0185 0.0012 0.0032 0.1005

10−9 0.0004 0.0006 0.0019 0.0001 0.0002 0.0024

with varying floating point accuracy. It is evident that the BRGE-A based solver converges
faster even for lower floating point accuracy in comparison to GE-N. Finally, Figs. 10(a–b)
show the change in total instantaneous energy per unit mass.

It is clearly evident that RGE-N- and BRGE-A-based solvers perform better than the GE-
N-based solver, while the BRGE-A-based solver performs even better than RGE-N-based
solver. This proves the efficacy of the proposed approach.
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Fig. 10 Change in total instantaneous energy per unit mass, δM(t), using GE-N, RGE-N and BRGE-A

7 Conclusions

The module-level analytical expressions of the inverted inertia matrix of a tree-type multi-
body system are presented with its application in forward dynamics and simulation purposes.
The expressions were possible due to the introduction of the concept of kinematic modules,
and subsequently the module-level Decoupled Natural Orthogonal Complement (DeNOC)
matrices. At the end, the extension of the UDUT decomposition applied to serial-chain sys-
tems has been demonstrated with the tree-type systems, in which case the module-level
decomposition of the GIM is referred as ŪD̄ŪT decomposition.

Hence, a new perspective towards the decomposition of the GIM is given which provides
a framework to model a complex multi-branched multibody system, namely, a tree-type,
by decomposing it into a set of smaller serial modules. These serial modules can then be
treated using the vast knowledge available in the open literature for their forward dynamics.
In this paper, the one based on the DeNOC matrices for the serial-chain systems was used.
While investigating the performances of the numerical algorithms it was observed that the
proposed simulation algorithms using the ŪD̄ŪT decomposition is not only efficient but also
numerically stable. In conclusion, what has been proposed and shown in this paper is the
generalization of the earlier work in this domain [8, 10] where even a complex system was
considered consisting of many links instead of a smaller set of serial-chain modules. It is
much more convenient to deal with a smaller set of modules which in turn has a smaller
set of links or bodies. Hence, the gradual development of the dynamics has been possible
in this paper with their possible interpretations, and level-by-level, namely, link-to-module
and module-to-system, interactions. As shown in the literature earlier, the present concept
is equally applicable to closed-loop multibody systems where appropriate joints are cut to
make the closed-loop system open in order to be able to treat it as a tree-type open architec-
ture for which the methodology presented in this paper is applicable. The future work would
focus on the use of the proposed block decomposition in obtaining hybrid parallel-recursive
algorithm and predicating stability of the system of multibody systems.

Appendix A

The inter- and intra-modular kinematic constraints leading to the module-level DeNOC ma-
trices are obtained in Appendices A.1 and A.2, respectively. Appendix A.3 provides an il-
lustration of the recursive block inverse of Ū. Appendix A.4 presents a numerical validation
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Fig. 11 Links #ki and #(k − 1)i

coupled by joint ki in ith module

of the decomposed GIM, whereas the steps of the forward dynamics algorithm are provided
in Appendix A.5.

A.1 Intra-modular velocity constraints

As mentioned in the beginning of Sect. 2, module i, for i = 1, . . . , s, in a tree-type system
contains only serially connected links. Let us consider the kth link in the ith module, denoted
#ki , connected to the link #(k − 1)i , by a 1-DOF revolute or prismatic joint ki , as shown in
Fig. 11. The six-dimensional vector of twist associated with the angular velocity, ωki , and
linear velocity, ȯki , of the origin of #ki is defined as tki ≡ [ωT

ki ȯT

ki
]T . Next, the twist of #ki ,

tki , can be written in terms of the twist of #(k − 1)i , t(k−1)i , as

tki = Aki ,(k−1)i t(k−1)i + pki θ̇ki . (A.1)

In Eq. (A.1), θ̇ki is the time rate of change of the angular or translational displacement of
the kth joint depending on the type of joint, i.e., revolute or prismatic, respectively. The
matrix Aki ,(k−1)i is the 6 × 6 twist-propagation matrix, and pki is the six-dimensional join
motion-propagation vector. They are given by

Aki ,(k−1)i ≡
[

1 O

ãki ,(k−1)i 1

]

, and pki ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
eki

0

]

, if joint is revolute,

[
0

eki

]
, if joint is prismatic

(A.2)

where ãki ,(k−1)i is the 3 × 3 cross-product tensor associated with vector aki ,(k−1)i , and eki

is the unit vector along the axis of rotation or translation of the joint ki . Next, the vectors
of module-twist and the independent module-joint-rates for the ni -coupled links of the ith
serial module are defined as

t̄i ≡

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

t1i

...

tki

...

tni

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

and ˙̄qi ≡

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

θ̇1i

...

θ̇ki

...

θ̇ni

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

(A.3)
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where t̄i and ˙̄qi are the 6ni - and ni -dimensional vectors, respectively. Substituting Eq. (A.1)
into Eq. (A.3), for ki = 1i , . . . , ni , the expression for the generalized twist of a serial module,
t̄i , is obtained [10]:

t̄i = N̄i
˙̄qi where N̄i = N̄i,lN̄i,d . (A.4)

In Eq. (A.4), 6ni × 6ni and 6ni × ni matrices N̄i,l and N̄i,d are given by

N̄i,l ≡

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

1 O · · · O

A2i ,1i

. . . 1
. . .

...

. . .

... Aki ,(k−1)i
. . . O

. . .

Ani ,1i · · · Ani ,(n−1)i 1

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

and

N̄i,d ≡

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

p1i 0′s
. . .

pki

. . .

0′s pni

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

.

(A.5)

The matrices N̄i,l and N̄i,d are referred here as the Decoupled Natural Orthogonal Comple-
ment (DeNOC) matrices of the serial-module, which are nothing but those reported in [10]
for a serial robot.

A.2 Inter-modular velocity constraints

It is worth noting that Eq. (A.4) represents the twists of the links in the ith module if it
emanates from the ground. However, in a tree-type system, each module, other than the
base, is a child module, e.g., Mi in Fig. 1(b), which contains serially connected links and
emerges from the last link of its parent module Mβ . Hence, the velocity constraints between
the modules, i.e., at inter-modular level, will be derived in this section as an extension of the
expression derived in Eq. (A.4). For the module Mi , the 6ni -dimensional vector of module-
twist, t̄i , which has ni link twists, and the ni -dimensional vector of module-joint-rate, ˙̄qi ,
having ni joint rates are defined in Eq. (A.3). Next, it is shown that the module-twist t̄i , for
Mi , can be written in terms of the module-twist t̄β (or t̄βi

) of its parent Mβ as

t̄i = Āi,β t̄βi
+ N̄i

˙̄qi (A.6)
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where Āi,β and N̄i are the 6ni × 6nβ module-twist propagation and 6ni × ni module-joint-

motion propagation matrices, respectively, which are given by

Āi,β ≡

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

O · · · O A1i ,nβ

...
...

...

O O Aki ,nβ

...
...

...

O · · · O Ani ,nβ

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

and

N̄i ≡

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

p1i 0 · · · 0
. . .

A2i ,1i p1i p(k−1)i
. . .

...

. . .

... Aki ,(k−1)i p(k−1)i
. . . 0

. . .

Ani ,1i p1i · · · Ani ,(n−1)i p(n−1)i pni

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

.

(A.7)

In Eq. (A.7), Āi,β propagates the twist of the parent module (βth) to the child module (ith);

the last column contains the twist propagation matrix from the nth link of the βth module

wherefrom the ith module emanates, to the different links of the ith module. Matrix Aki ,nβ in
the expression of Āi,β denotes the 6 × 6 twist-propagation matrix from the twist of link #nβ

(last link in the βth module) in module Mβ to the twist of link #ki in module Mi . Moreover,

Aki ,(k−1)i and pki are defined in Eq. (A.2). Next, considering the links and joints of all the

modules, the generalized twist vector, t, consisting of all module-twists, and the generalized

joint-rate vector, q̇, consisting of all module-joint-rates are defined as

t ≡

⎡

⎢⎢
⎣

t̄1
...

t̄s

⎤

⎥⎥
⎦ and q̇ ≡

⎡

⎢⎢
⎣

˙̄q1
...

˙̄qs

⎤

⎥⎥
⎦ . (A.8)

In Eq. (A.8), the vector of module-twists t̄i and module-joint-rates ˙̄qi contain link twists and

joint rates, respectively, as defined in Eq. (A.3). Substituting Eq. (A.6) into Eq. (A.8), for

i = 1, . . . , s, the generalized twist t is expressed as

t = Āt + N̄d q̇ (A.9)

where Ā and N̄d are the 6n × 6n and 6n × n matrices, and they are given as
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Ā ≡

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

O O′s
. . .

Ā2,β O
. . .

Āi,β

. . .

. . .

O′s Ās,β O

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

, and

N̄d ≡

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

N̄1 O′s
. . .

N̄i

. . .

O′s N̄s

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

.

(A.10)

In Eq. (A.10), β in Āi,β corresponds to the parent of i, for i = 1, . . . , s. Rearranging
Eq. (A.10), the 6n-dimensional generalized twist is given by

t = N̄lN̄d q̇, where N̄l = (1 − Ā)−1. (A.11)

The 6n × 6n matrix N̄l can easily be obtained

N̄l ≡

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎣

11

Ā2,1 12 O′s
Ā3,1 Ā3,2 13

...
...

. . .
. . .

Ās,1 Ās,2 · · · Ās,s−1 1s

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎦

(A.12)

where 1i represents the 6ni × 6ni identity matrix, and O is the null matrix of compati-
ble dimension. Moreover, Āi,j and N̄i are the 6ni × 6nj module-twist propagation and the
6ni × ni module-joint-motion propagation matrices, in line with the twist-propagation ma-
trix and joint-motion propagation vector from one link to the neighboring link connected by
a single-degree-of-freedom joint [10]. The term Āi,j , defined similar to Āi,β in Eq. (A.7),
propagates the twist of the j th module relative to the ith one, where Āj,i ≡ O if module Mj

does not belong to the set γ i of all modules originating from Mi , as shown in Fig. 3. The
matrices N̄l and N̄d of Eq. (A.11) are nothing but the DeNOC matrices for the multi-modular
tree-type system under study, rather than the multi-link system.

A.3 An illustration of recursive block inverse of Ū

The inverse of the block upper triangular matrix Ū can be obtained from Eq. (39) as

Ū−1 ≡ Ū2 · · · Ūi · · · Ūs ≡

⎡

⎢⎢
⎢⎢
⎢
⎣

1 ˆ̄U1,2 · · · ˆ̄U1,s

O 1
. . .

...
...

. . .
. . . ˆ̄Us−1,s

O · · · O 1

⎤

⎥⎥
⎥⎥
⎥
⎦

. (A.13)
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In order to comprehend recursive relationship for the block elements ˆ̄Ui,j , the tree-type
system should have at least three serially connected modules. The example of gripper is
simple enough as it contains only two serially connected module sets, i.e., (M1,M2) and
(M1,M3). Therefore, let us consider a simplest system with three serially connected modules
M1, M2 and M3. For such a three module system Ū−1 is expressed as

Ū−1 ≡ Ū2Ū3 (A.14)

where the elements of EBUTM Ū2 and Ū3 are obtained from Eq. (30) and the resulting
matrices Ū2 and Ū3 are given by

Ū2 =
⎡

⎢
⎣

1 −N̄T
1 ĀT

2,1�̄2
ˆ̄I−1

2 O

O 1 O
O O 1

⎤

⎥
⎦ and Ū3 =

⎡

⎢
⎢
⎣

1 O −N̄T
1 ĀT

3,1�̄3
ˆ̄I−1

3

O 1 −N̄T
2 ĀT

3,2�̄3
ˆ̄I−1

3

O O 1

⎤

⎥
⎥
⎦ . (A.15)

Substituting Eq. (A.15) into Eq. (A.14) U−1 is expressed as

U−1 =

⎡

⎢⎢
⎣

1 −N̄T
1 ĀT

2,1�̄2
ˆ̄I−1

2 −N̄T
1

ˆ̄AT
3,1�̄3

ˆ̄I−1
3

O 1 −N̄T
2 ĀT

3,2�̄3
ˆ̄I−1

3

O O 1

⎤

⎥⎥
⎦ . (A.16)

The (1,3) block element in Eq. (A.16) denoted ˆ̄U1,3 is the simplified expression which is
obtained as follows:

ˆ̄U1,3 = −N̄T
1 ĀT

3,1�̄3
ˆ̄I−1

3 + N̄T
1 ĀT

2,1�̄2
ˆ̄I−1

2 N̄T
2 ĀT

3,2�̄3
ˆ̄I−1

3

= −N̄T
1

(
ĀT

3,1 − ĀT
2,1�̄2

ˆ̄I−1
2 N̄T

2 ĀT
3,2

)
�̄3

ˆ̄I−1
3

= −N̄T
1

(
ĀT

2,1ĀT
3,2 − ĀT

2,1�̄2
ˆ̄I−1

2 N̄T
2 ĀT

3,2

)
�̄3

ˆ̄I−1
3

= −N̄T
1 ĀT

2,1

(
1 − �̄2

ˆ̄I−1
2 N̄T

2

)
ĀT

3,2�̄3
ˆ̄I−1

3

= −N̄T
1

(
Ā3,2�̄

T

2 Ā2,1
)T

�̄3
ˆ̄I−1

3

(
where �̄2 = 1 − �̄2

ˆ̄I−1
2 N̄T

2

)

= −N̄T
1

ˆ̄AT
3,1�̄3

ˆ̄I−1
3

(
where ˆ̄A3,1 = Ā3,2�̄

T

2 Ā2,1

)
(A.17)

where

ˆ̄A3,1 = Ā3,2�̄
T

2 Ā2,1. (A.18)

It may be noted that, for the adjoining modules sets (M2,M3) and (M1,M2), ˆ̄A3,2 = Ā3,2

and ˆ̄A2,1 = Ā2,1.
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A.4 Numerical validation of the decomposed GIM of gripper

For the set of numerical values of the link masses and inertias, as given in Table 2, the GIM
can be obtained for the configuration θ11 = θ12 = θ22 = 0 and θ13 = 90, as

I =

⎡

⎢⎢
⎣

113.3333 33.3333 9.1667 1.6667
13.3333 4.1667 0

1.6667 0
sym 1.6667

⎤

⎥⎥
⎦× 10−4. (A.19)

Its decomposed block matrices Ū and D̄, and the corresponding block inverses Ū−1 and D̄−1,
respectively, are obtained from Eq. (34) and Eq. (58) as follows:

Ū =

⎡

⎢
⎢
⎣

1 3.571 −3.428 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

D̄ =

⎡

⎢
⎢
⎣

24.047 0 0 1
0 13.333 4.166 0
0 4.166 1.666 0
0 0 0 1.666

⎤

⎥
⎥
⎦× 10−4

(A.20)

and

Ū−1 =

⎡

⎢
⎢
⎣

1 −3.5714 3.4286 −1
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

D̄−1 =

⎡

⎢⎢
⎣

0.0416 0 0 1
0 0.3429 −0.8571 0
0 −0.8571 2.7429 0
0 0 0 0.6

⎤

⎥⎥
⎦× 104.

(A.21)

It is now a simple matter to verify the correctness of the inverses by computing I−1 =
Ū−1D̄−1Ū−T as

I−1 =

⎡

⎢⎢
⎣

0.0416 −0.1485 0.1426 −0.0416
0.8733 −1.3663 0.1485

3.2317 −0.1426
sym 0.6416

⎤

⎥⎥
⎦× 104. (A.22)

Equation (A.22) was checked against numerical result obtained using MATLAB command
“inv.”

A.5 Forward dynamics algorithm for a tree-type multibody system

Steps for recursive forward dynamics algorithm [12] are shown in Table 6.
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Table 6 Recursive O(n) forward dynamics algorithm for a tree-type multibody systems [12]

Initialization Find: ϕ̂j and ϕ̃j Find: θ̈j

For i = 1 : s (Inter-modular)

For k = 1 : ni

(Intra-modular)

M̂k = Mk

η̃k = 0

μ̃k = 0

end

end

− − − − − − − − −−
function_1

ψ̂k = M̂kpk

m̂k = pT
k

ψ̂k

ψk = ψ̂k/m̂k

ϕ̂k = ϕk − pT
k

η̃k

ϕ̃k = ϕ̂k/m̂k

For i = s : 1 (Inter-modular)

For k = ni : 1 (Intra-modular)

call function_1

if (βk �= 0)

call function_2

M̂βk
= M̂βk

+ AT
k,β

M̂j,j Ak,β

η̃βk
= η̃βk

+ AT
k,β

ηj

end

end

end

− − − − − − − − − − − − −−
function_2

M̂k,k = M̂k − ψ̂kψT
k

ηk = ψkϕ̂k + η̃k

For i = 1 : s (Inter-modular)

For k = 1 : ni (Intra-modular)

if (βj �= 0)

μ̃k = Ak,βμβk

call function_3

else

θ̈k = ϕ̃k

μk = pk θ̈k

end

end

end

− − − − − − − − − − − − −
function_3

θ̈k = ϕ̃k − ψT
k

μ̃k

μk = pk θ̈k + μ̃k
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