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Abstract In this contribution, three different reduction methods for elastic structures with
lubricated interfaces are presented and compared with each other. While for the first two
methods, classical reduction strategies from component mode synthesis are applied, for the
third method, a dual reduction basis is used, consisting of vibration modes of the free float-
ing structure, attachment modes and residual modes. Within this new dual approach, it is
shown how the residual modes can be obtained by applying pressure distributions of ana-
lytical solutions of the hydrodynamic equations. The described methods are compared for
two classical simulation example—for a one-sided elastohydrodynamic lubricated joint of a
slider–crank mechanism in a floating frame of reference formulation as well as for an elastic
rotor in a flexible journal bearing.

Keywords Elastohydrodynamics · Interface reduction · Mode synthesis · Residual modes ·
Bearing simulation

1 Introduction

Elastohydrodynamic (EHD) lubricated joints can be found in various applications of au-
tomotive or rotor dynamics, e.g. in the crank shaft connecting rod link of a slider–crank
mechanism of a combustion engine [3, 14, 20]. Their detailed numerical simulation gives
information as regards maximal pressure, minimal height, cavitation zones or stability limits.
The pressure distribution is usually calculated by a numeric discretization of the REYNOLDS

equation. For highly loaded bearings, the local deformation of the structure at the interface
strongly affects the pressure distribution in the fluid film. Therefore, a detailed representa-
tion of the lubricated interface of an elastic structure is required leading to a large number
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of elastic degrees of freedom. General examples for EHD lubricated joints can be found in
[23, 24].

For further simulation purposes like a flexible multi-body simulation, a reduction of the
elastic structure with the large coupling interface is inevitable. In the context of component
mode synthesis (CMS), the classical approaches are based on a static or a modal interface
reduction, as described in [5]. On the basis of CMS, interface reduction methods for systems
with fluid–structure interaction are outlined in [12, 13]. However, dual approaches can also
be used, which account for interface loads by the use of attachment modes. On this basis,
a time dependent parametric model order reduction scheme for systems with varying loads
is given in [22]. In the context of EHD lubrication, a dual approach is followed in [9, 10],
where a set of basis vectors coming from a static analysis at different load regimes is applied
for the interface reduction of line and circular point contacts, respectively.

In this paper, we apply three different reduction schemes for structures with lubricated
interfaces and discuss their numerical and computational efficiency in the context of a multi-
body simulation by using a floating frame of reference formulation. The first method rep-
resents a classical CRAIG–BAMPTON [1] reduction of the structure without considering the
lubricated interface in particular. In the second method, which is already applied by [19],
first, a CRAIG–BAMPTON reduction is applied to the elastic structure in order to maintain
the degrees of freedom of the lubricated interface. In a second step, the already reduced
structure is further reduced by a second CRAIG–BAMPTON step. The third method, pub-
lished in [15], makes use of a dual reduction strategy as proposed in [7]. Within this concept,
load dependent interface modes are used to represent the elastic deformation of the interface
due to pressure forces.

Results for the behavior of the three methods are presented for two classical simulation
examples: the first one is a slider crank mechanism with a flexible connecting rod modeled
by a Finite Element (FE) discretization. The crank shaft and the rod are connected by a
cylindrical EHD lubricated joint. The second one is an elastic rotor with unbalance, which
rotates in a flexible journal bearing.

The structure of the paper is as follows: in Sect. 2, a brief introduction to the hydrody-
namic equations including REYNOLDS equation, joint kinematics, cavitation condition and
force calculation is given. In Sect. 3, the three reduction methods are outlined. In Sect. 4,
the first simulation example of a flexible slider–crank mechanism with a lubricated joint is
described and global simulation outputs for the different methods are compared. In Sect. 5,
the second simulation example of an elastic rotor in a flexible bearing is investigated. A con-
clusion is given in Sect. 6.

2 Hydrodynamic equations

In this section, the hydrodynamic equations for the pressure calculation in an elastohydro-
dynamic lubricated cylindrical joint are given. For a more detailed description, it is referred
to [11, 17]. It is noted that in the following, isoviscous and isothermal lubricant properties
are assumed, even though the viscosity is sensitive to changes in pressure and temperature.
However, since the later described reduction approaches remain unaffected by the fluid be-
havior, constant fluid properties are assumed for simplicity.

2.1 Pressure calculation

The pressure is computed by a finite element discretization of the REYNOLDS equation. For
a cylindrical, flexible joint, the kinematics needed for the REYNOLDS equation are derived
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Fig. 1 Notations in the fluid
domain

in detail. During the pressure computation, a steady-state cavitation condition, also known
as REYNOLDS condition, is applied in order to avoid negative pressures in the fluid film.

2.1.1 REYNOLDS equation

For the lubricated contact depicted in Fig. 1, the pressure distribution in the fluid film be-
tween two bodies can be calculated by the REYNOLDS equation when the fluid film is thin
and fluid inertia is neglected. To simplify the presentation, but without loss of generality,
it is further assumed that fluid viscosity η and density ρ do neither depend on pressure
nor on temperature. Then the REYNOLDS approach gives the following partial differen-
tial equation for the pressure in the fluid film h(y, z) = h2 − h1 between the two bodies
in the two-dimensional fluid domain Ωf ⊂ R

2 with descriptive coordinates (y, z) (see for
instance [11]):
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where ui and vi are the absolute velocities of the interface of body i (i ∈ {1,2}) in
the local normal and tangential direction, respectively. For simplicity, the velocity wi in
z-direction is not considered here, as its change is usually negligible in classical bearings.
The POISEUILLE term qpoiseuille describes the flow driven by the pressure gradient, the COU-
ETTE term qcouette describes the flow due to the movement of surfaces in the tangential y-
direction, the squeeze term qsqueeze describes the flow due to squeezing motion and the local
expansion term qexpansion describes the change of density. The flow qexpansion will be used
to impose a steady-state cavitation condition in the one of the following subsections. The
squeeze term of Eq. (1) is expressed in terms of the local normal velocities ui , tangential
velocities vi and derivatives of the heights hi with respect to y, see [11]:

∂h

∂t
= u2 − v2

∂h2

∂y
− u1 + v1

∂h1

∂y
. (2)

2.1.2 Joint kinematics

For a cylindrical joint with flexible bearing shell and rigid shaft, the local kinematic quan-
tities can be derived according to Fig. 2. The procedure is explained for a two-dimensional
problem, but it can without difficulty be extended to the three-dimensional case. In the cylin-
drical bearing, the local coordinates (y = Rϕ,z) are used for the description of the fluid
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Fig. 2 Kinematics in cylindrical
joint

domain. The joint kinematics is described in the frame (Bx, By), which is fixed to the bear-
ing shell. For the REYNOLDS equation, local quantities are needed, i.e. the velocities and
heights have to be transformed into the local frame (Cx, Cy) of cylindric coordinates. For
the eccentricity between the two center points C1 and C2 follows:

Be =
(

ex

ey

)
→C e =

(
er

et

)
=
(

ex cos(ϕ) + ey sin(ϕ)

−ex sin(ϕ) + ey cos(ϕ)

)
. (3)

According to Fig. 2, the following local heights h1 and h2 can be derived for the two points
P1 and P2, respectively:

h1(y, z) = er(y, z) +
√

R2
1 − e2

t (y, z) ≈ er(y, z) + R1 (4)

h2(y, z) = R2 + δr (y, z), (5)

where δr(y, z) describes the elastic deformation of the bearing shell in the radial direction.
For the local velocities, the translation velocities CvC,i as well as the angular velocity

vector CωC,i of the center point of shaft C1 and bearing C2, respectively, are needed. With
them, the following local velocities can be stated:

C
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i

= CvC,i + CωC,i × CrCP,i + C δ̇CP,2, i ∈ {1,2}, (6)

with the local velocity C δ̇CP,2 due to the vibration of the elastic bearing shell and with the
distance vectors

CrCP,1 =
⎛
⎜⎝
√

R2
1 − e2

t (y, z)

−et (y, z)

z

⎞
⎟⎠ , CrCP,2 =

⎛
⎝h2(y, z)

0
z

⎞
⎠ . (7)

For the two-dimensional example in Fig. 2, the angular velocity vectors are CωC,1 =
(0, 0, ω1)

T and CωC,2 = (0, 0, ω2)
T.



Interface reduction for EHD lubricated joints 83

Having the kinematic entities as a function of the descriptive coordinates (y, z), the
derivatives of the local heights and velocities with respect to y can be derived for the
REYNOLDS equation.

2.1.3 Cavitation condition

For the further calculation of the pressure, a cavitation condition is imposed on the
REYNOLDS equation (1) in order to avoid unphysical negative pressures in the fluid film.
Here, a stationary cavitation condition, also known as REYNOLDS condition, is applied. It
states that in the pressurized zone (p > 0) the non-stationary density flux qexp. = h

∂ρ

∂t
is zero

(−qexp. = 0), whereas in the cavitation zone (p = 0) the density flux is positive (−qexp. > 0),
meaning the density starts to decrease. This cavitation condition can be formulated mathe-
matically by a Linear Complementarity Problem (LCP) by finding the pressure p such that:

20 ≤ −qexp. =
(

−∇
(

h3ρ

12η
∇p

)
+ qcouette + qsquezze

)
⊥ p ≥ 0 on Ωf , (8)

p = p̂ on Γp, (9)

h3ρ

12η
∇pn = q̂ on Γq, (10)

where the symbol ⊥ denotes orthogonality for each point (y, z) on Ωf (i.e. qexp.(y, z) ·
p(y, z) = 0). Dirichlet and Neumann boundary conditions at the boundaries Γp and Γq ,
respectively, are considered additionally in the REYNOLDS equation by (9) and (10). In our
case, the pressure is set to zero at the two bearing sides.

A numerical solution of equations (8) to (10) can be achieved by a finite element dis-
cretization. For the discretized pressure P, the following discretized LCP is then obtained:

0 ≤ P ⊥ −Qexp. ≥ 0 ⇔ 0 ≤ P ⊥ N−1
[
A(q)P − b(q, q̇)

]≥ 0, (11)

where the kinematics are described by the generalized coordinates q and velocities q̇ and
the symbol ⊥ stands now for component-wise orthogonality. The square matrix A results
from the numerical discretization of the POISEUILLE term of Eq. (1), the vector b from the
discretization of the terms −qcouette and −qsqueeze and square matrix N is the finite element
mass matrix.

This resulting LCP for the pressure P can be solved by different methods, e.g. a block
pivot-based Murty algorithm of Goenka [8] or a projection formulation as proposed in [17].

2.2 Force calculation

Having calculated the pressure P on the fluid mesh by Eq. (11), the forces on the two bodies
can be computed. In this contribution, we want to describe only pressure forces in normal
direction, but the methods can easily be extended to shear forces in tangential direction.

For the calculation, the pressure Pf is integrated on the fluid mesh, yielding the vector of
discrete forces Ff :

Ff = Mff Pf , M
jk

ff =
∫

Ωf

N
j

f (y, z)Nk
f (y, z)nf (y, z) dΩf , j, k = 1, . . . ,mf , (12)
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where Nf (y, z) are the ansatz functions for both the pressure and the displacement field on
the fluid mesh, nf (y, z) is the local normal vector on the fluid mesh and mf the number of
nodes on the fluid mesh.

For a rigid body, the resulting force Fres is needed, which is obtained by the sum of the
discrete forces:

Fres =
mf∑
m=1

Ff,m. (13)

For a flexible body with a structure mesh on its interface, which does not necessarily
coincide with the fluid mesh, methods of fluid structure interaction have to be applied to
transfer the pressure from one mesh to another. Here, the Mortar method [2] is chosen as
a weighted residual approach, which gives a consistent transfer matrix Hsf between the
pressure Pf of the fluid mesh and the pressure Ps of the structure mesh:

Ps = Hsf Pf . (14)

For the determination of Hsf , it is referred to [6, 16]. Note that beside the Mortar method
other methods for the construction of Hsf are applicable; see [6]. With the pressure Ps on
the structure mesh, it is possible next to calculate the force vector Fs containing all forces at
the single nodes of the interface mesh of the structure:

Fs = MssPs , Mli
ss =

∫
ΓS

Ni
s (x)Nl

s (x)ns(x) dx, l, i = 1, . . . ,ms, (15)

where Ns(x) are the shape functions for both the pressure and the displacement field on the
structure mesh, ns(x) is the local normal vector on the structure mesh and ms the number of
nodes on the structure mesh. The interface ΓS of the structure is described by coordinates x.

3 Reduction methods

In this section, three different reduction methods for flexible structures with a lubricated
interface are presented. The reduced structures are later used in a floating frame of reference
formulation. It means that the shaft and the housing are considered as separate substructures
that will be reduced.

All methods are described for a linear finite element model (N degrees of freedom)
governed by the equation

MFEẍ + KFEx = f(t) (16)

with mass matrix MFE, stiffness matrix KFE and a vector f(t) of external forces. For further
considerations, the displacement vector x of the finite element model (16) is partitioned into
ni degrees of freedom of inner nodes, np degrees of freedom of the nodes of the lubricated
interface and nb degrees of freedom of boundary nodes, yielding:

x = (
xT

i xT
p xT

b

)T
. (17)

In the first method, a CRAIG–BAMPTON procedure is applied, which does not particu-
larly take care of the lubricated interface. The second method uses the CRAIG–BAMPTON

method twice in sequence, in order to cover the deformation of the lubricated interface in a
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better way. In contrast to the first two methods, which are based on fixed-interface modes,
the third method describes a dual reduction scheme using vibration modes of the free floating
structure, attachment modes and additionally load dependent static modes for the lubricated
interface.

3.1 CRAIG–BAMPTON reduction (M1)

The first method is a classical CRAIG–BAMPTON reduction [1] without considering the
lubricated interface in particular. Hence, the nodes xp of the lubricated interface are treated
like inner nodes, which leads to the following partitioned finite element system:

[
Mp̄p̄ Mp̄b

Mbp̄ Mbb

](
ẍp̄

ẍb

)
+
[

Kp̄p̄ Kp̄b

Kbp̄ Kbb

](
xp̄

xb

)
=
(

fp̄
fb

)
, (18)

with the partitioned displacement vector xp̄ = (xT
i xT

p)T. The CRAIG–BAMPTON procedure
gives the following reduction of the displacement vector:

x =
[
Φ p̄v̄ −K−1

p̄p̄Kp̄b

0bv̄ Ibb

](
qp̄

xb

)
= T

(
qp̄

xb

)
, (19)

where qp̄ is the vector of the reduced modal coordinates, Ibb is the identity matrix and
the matrix Φ p̄v̄ contains a subset of the first n̄v < ni + np fixed-boundary vibration modes
corresponding to the eigenvalue problem for the nodes xp̄:

(−ω2
i Mp̄p̄ + Kp̄p̄

)
φi = 0, i = 1, . . . , (ni + np) (20)

with eigenvalues ω2
i and eigenvectors φi .

3.2 Two-step CRAIG–BAMPTON reduction (M2)

The second method, which is already used for mechanical systems with lubricated contacts
[19], is decomposed into two steps.

In the first step, the nodes of the lubricated interface of system (16) are treated like
boundary nodes and the CRAIG–BAMPTON procedure is applied, leading to the following
transformation:

x =
⎡
⎣Φ̂ iv̂ −K−1

ii Kip −K−1
ii Kib

0pv̂ Ipp 0pb

0bv̂ 0bp Ibb

⎤
⎦
⎛
⎝qi

xp

xb

⎞
⎠= T1x̂, (21)

where the matrix Φ̂ iv̂ contains a subset of the first n̂v < ni fixed-interface vibration modes
corresponding to the eigenvalue problem for the inner nodes xi . This first reduction step
gives the reduced system matrices:

TT
1 MFET1 =

⎡
⎢⎣

Iv̂v̂ M̂v̂p M̂v̂b

M̂pv̂ M̂pp M̂pb

M̂bv̂ M̂bp M̂bb

⎤
⎥⎦ , TT

1 KFET1 =
⎡
⎣Ω2

v̂ 0v̂p 0v̂b

0pv̂ K̂pp 0pb

K̂bv̂ K̂bp K̂bb

⎤
⎦ . (22)

In a second step, the already reduced system is further reduced by a second CRAIG–
BAMPTON reduction step for the new coordinate vector x̂ = (qT

i xT
p xT

b )
T. Maintaining the
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boundary nodes xb , the second transformation is given by

x̂ =
⎡
⎣Φ v̂ṽ 0v̂b

Φpṽ 0pb

0bṽ Ibb

⎤
⎦
(

qp̄

xb

)
= T2

(
qp̄

xb

)
. (23)

The matrix
[
ΦT

v̂ṽ ΦT
pṽ

]T
contains a subset of the first ñv < n̂v + np fixed-boundary vibration

modes computed from the reduced system (22), where the boundary degrees of freedom are
fixed, namely

(
−ω2

i

[
Iv̂v̂ M̂v̂p

M̂pv̂ M̂pp

]
+
[
Ω2

v̂v̂ 0v̂p

0pv̂ K̂pp

])
φi = 0, i = 1, . . . , (n̂v + np). (24)

This second reduction step couples the static interface modes with the fixed-interface vibra-
tion modes of the first step. In conclusion, the complete procedure of the second method is
expressed by the reduction basis T, see (21) and (23):

x = T
(

qp̄

xb

)
, T = T1T2. (25)

After the complete reduction sequence, the reduced matrices at the end will be block-
diagonal like in the classical CRAIG–BAMPTON case, since the second step is like applying
CRAIG–BAMPTON on the reduced problem (22) of the first step.

3.3 Load dependent reduction strategy (M3)

In this section, a load dependent reduction strategy is proposed. The general framework of
the procedure is based on a dual superelement formulation of [7]. Therefore, for a more
detailed description of the surrounding framework, it is referred to [7] and here, only the
main steps of the procedure and its specification for lubricated interfaces are given.

3.3.1 General framework

In [7], for the finite element system (16), a reduction basis

V = [
U Φv Ga Gr

]= [
U T

]
(26)

is proposed. The matrix U collects the nu rigid body modes of the floating structure, the
matrix Φv collects the nv vibration modes of the free floating structure (usually nv � (N −
nu)), the matrix Ga collects the na attachment modes obtained by the static responses of a
unit loading at the attachment nodes and the matrix Gr collects nr residual modes, which
can be chosen in different ways in order to enrich the reduction basis, e.g. in the case of
nonlinear external forces like contact forces. In this contribution, the set of residual modes
will be created by static responses due to pressure forces (see below).

The eigenvalue problem of system (16),

(−ω2
i MFE + KFE

)
φi = 0 i = 1, . . . ,N,

→ rigid body modes: U = [
φ1, . . . ,φnu

]
for ω2

i = 0,

→ vibration modes: Φv = [
φnu+1, . . . ,φnu+nv

]
for ω2

i �= 0, (27)
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gives the nu rigid body modes belonging to the zero eigenvalues and the (N − nu) vibration
modes belonging to the remaining eigenvalues. A modal reduction is obtained, when only
a reduced set of nv < (N − nu) vibration modes is used. The vibration modes can be mass
normalized in such a way that

ΦT
v KFEΦv = Ω2

v, ΦT
v MFEΦv = Ivv. (28)

For the na attachment modes, a loading matrix Ja is constructed, in which each column
belongs to a unit force vector at a single attachment node. In a similar way, for the residual
modes, a loading set Jc is constructed, which contains nc arbitrary load cases not necessarily
being unit force vectors or belonging to an attachment node. The static responses Ga and
Gc are calculated by solving

[
KFE MFEU

UTMFE 0

][
Ga Gc

λa λc

]
=
[

Ja Jc

0 0

]
, (29)

where the LAGRANGE multiplier λa and λc ensure mass orthogonality of the static mode
sets with respect to the rigid body modes.

The directions of the static mode set [Ga Gc], which are already covered by the vibration
modes Φv , are filtered out by the following transformation:

[
Ga Gc

]← [
Ga Gc

]− ΦvΩ
−2
v ΦT

v

[
Ja Jc

]
. (30)

A reduced set Gr of residual modes can be obtained from the static set Gc by different
approaches, e.g. by selecting these modes, which contribute the most to the strain energy.
In this contribution, they are computed by an eigenvalue problem for the reduced stiffness
matrix Kcc = GT

c KFEGc:

(−ω2
i Icc + Kcc

)
Zi = 0, i = 1, . . . , nc, (31)

and choosing the set of eigenvectors Zr belonging to the first nr smallest eigenvalues ω2
i .

Then a reduction of the static modes Gc is achieved by the following transformation:

nr ← nc, Gr ← GcZr , Ω2
r ← Kcc. (32)

Thus far, a reduction by the transformation matrix T of (26) not yet gives a nicely block-
diagonal form for the reduced matrices. However, such a form can be achieved by applying
further diagonalization steps as described in [7].

3.3.2 Construction of interface modes

The set Gr of the static residual modes is a subset of the static set Gc , which is defined
by an arbitrary load set Jc; see (29) and (32). In the following, the load set Jc is specified
for pressure forces coming from the hydrodynamic equations of Sect. 2. With (15), it is
generally defined by

Jc = MssPc, (33)

where Pc is a set of discrete pressure values. Setting

Pc,1 = Icc (34)
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Fig. 3 Pressure distributions for infinitely long (middle) and infinitely short bearing (right), computed in a
discrete (F x,F z)-plane (left)

to the identity matrix, gives an overall definition of the pressure set, as unit pressure values
are applied at the interface nodes. This choice already reduces the 3ms degrees of freedom
of the interface to ms degrees of freedom, since the pressure forces are acting in normal
direction only.

As the number ms still can be large, we propose to build a set of pressure distribution,
which is applicable for lubricated revolute joints, where the relative rotation occurs around
the F z-direction only (no tilting), like in Fig. 2. In this case, analytical solutions for the
pressure distribution in F z-direction exist for an infinite long and an infinite short bearing;
see Fig. 3. The solution pl(z) of an infinite long bearing gives a constant pressure distribution
and the solution ps(z) of an infinite short bearing gives a quadratic distribution:

pl(z) = pm, ps(z) = 4p0

B2

(
B2

4
− z2

)
,

where B is the bearing width and the mean pressure pm of the long and the maximal pressure
p0 of the short bearing solution, respectively, still have to be specified in the circumferential
direction. We propose to build a set of pressure distribution by assuming the analytical axial
distribution at several circumferential positions:

Pc,2 = [
Pl,1 . . . Pl,msy , Ps,1 . . . Ps,msy

]
. (35)

With this pressure set Pc,2, the 3ms interface degrees of freedom are reduced to 2msy from
the beginning.

4 Simulation example 1: flexible slider–crank mechanism

In this section, the described reduction methods are compared for a simulation example
of a slider–crank mechanism with an elastic connecting rod between a rigid crank shaft
and a rigid piston. Hence, the connecting rod is the only body with flexible behavior. This
simplification is made in order to better demonstrate and compare the different reduction
methods. Further, when assuming the crank shaft to be rigid, there is no need for dealing
with sliding meshes, which would be a topic beyond of this contribution.

4.1 Flexible slider–crank mechanism

The flexible slider–crank mechanism is shown in Fig. 4. A hydrodynamic revolute cylin-
drical joint links the rigid shaft with the flexible connecting rod. A constant rotation
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Fig. 4 Slider–crank mechanism with 3D flexible connecting rod and lubricated joint

speed ω1 = 500 rad/s around the initial I z-direction is enforced. At the beginning of the
simulation, the slider is positioned at I x = l1 + l2, i.e. the relative eccentricity in the bear-
ing is zero. Note that the elastic structure deforms three-dimensionally, while the main rigid
body motion of the rod takes place in the I x/I y-plane. Due to the rotation around the I z-axis
only, the concept of combining the short and long bearing solutions in the third reduction
scheme is well applicable. The more general case will be considered in Sect. 5 model occurs
in the two-dimensional (I x, I y)-plane

The mass and stiffness matrix of the 3D flexible rod come from a finite element soft-
ware tool. They are embedded in the multi-body simulation by a floating frame of reference
formulation as described in [4, 15, 21]. For the first two CMS-based reduction methods,
the floating frame is automatically attached to the center C2 of the hydrodynamic bearing
by constraining the rigid body translation and rotation of point C2. For the third reduction
method, where a dual approach is followed and free-interface normal modes are used, the
floating frame is automatically located in the deformed configuration of the center of mass,
also known as mean axis or Tisserant frame [21].

The cylindrical interface for the bearing is meshed with 20 × 5 bi-quadratic elements in
circumferential and z-direction, respectively, which results in ms = 340 interface nodes on
the structure with msy = 40 equally distributed circumferential positions. Structural damp-
ing is applied by choosing the reduced damping matrix De = ζ(TTKFET) proportional to
the reduced stiffness matrix with damping factor ζ . For the fluid mesh, a structured mesh
with 20 × 5 bi-quadratic elements in circumferential and z-direction, respectively, is used,
leading to mf = 340 fluid nodes. The fluid mesh is assumed to be attached to the housing,
meaning it is always conforming with the structural mesh. Further simulation parameters
and fluid properties are listed in Table 1.

4.2 Comparison of the three reduction methods

Global simulation outputs of the flexible slider–crank mechanism are compared for the three
reduction methods of Sect. 3. In detail, the maximal pressure and the minimal height during
one rotation, i.e. T = 2π/ω1, are analyzed.



90 A. Krinner, D.J. Rixen

Table 1 Simulation parameters for the slider crank mechanism

Parameter Value Parameter Value

Angular velocity ω1 500 rad/s dyn. viscosity η 0.01 kg/m s

Radius bearing R2 2.25 cm fluid density ρ0 800 kg m3

Clearance h0 = R2 − R1 17.0 µm nb. fluid nodes mf 340

Bearing width B 2.20 cm nb. interface nodes ms 340

Crank length l1 0.048 m damping factor ζ 0.001

Rod length l2 0.160 m E-module E 210 × 109 N m2

Rod center of mass c2,x 0.0677 m tolerances tolAbs, tolRel 1 × 10−7

Crank mass m1 1.00 kg crank inertia J1,zz 1 × 10−3 kg m2

Rod mass m2 0.973 kg rod inertia J2,zz 4 × 10−3 kg m2

Piston mass m3 0.500 kg

Fig. 5 Reference solution with (M3) by using Pc,1 = Icc , nr = 60 residual modes and nv = 6 vibration
modes

A reference solution is created with the third reduction method (M3) by applying the
general choice Pc,1 = Icc for the pressure set. A large number of nr = 60 residual modes
is used ensuring a reduction basis, which is rich enough to cover the interface behavior.
The maximal pressure and minimal height over time are shown in Figs. 5(a) and 5(b). The
number of vibration modes is nv = 6. In Fig. 5(b), a typical value hsaf e ≈ 2.5 µm for the safe
height in engine bearings is depicted as well [18]. In the reference solution, an interesting
effect due to the elasticity of the journal bearing can be observed: Between t = 6 to 8 ms, the
maximal pressure is almost constant, while the minimum film thickness is decreasing. Note
that the maximum pressure can be found at ϕ ≈ 0 in the flexible bearing. In this zone, the
pressure distribution changes from a sharp to a more smoother profile in the divergent fluid
zone, since the flexibility of the bearing increases at ϕ = 0 in circumferential direction. This
effect causes the maximal pressure to remain constant, while the minimum film thickness is
decreasing.

In order to compare the three methods, the results of the maximal pressure and the min-
imal height are analyzed for a comparable number of modes. Point A of the flexible rod is
considered as a boundary node in the reduction methods M1 and M2 and as a attachment
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Fig. 6 CRAIG–BAMPTON scheme (M1)

Fig. 7 Two-step CRAIG–BAMPTON scheme (M2)

mode in method M3, respectively. In the first two methods, nb = 2 static deformation modes
and in the third method, na = 2 attachment modes, respectively are used by applying unit
displacements and unit forces in Rx/Ry-direction, respectively. For the load dependent re-
duction method (M3), it can be well distinguished between vibration modes and residual
modes, which allows us to use a fixed number of 6 vibration modes (nv = 6) and vary the
number nr of residual modes. For the two-step CRAIG–BAMPTON method (M2), the num-
ber of overall vibration modes is varied in dependence of nr by ñv = nr + 6. Making the
CRAIG–BAMPTON method (M1) comparable as well, the number n̄v of vibration modes is
varied in the same way, yielding n̄v = nr + 6.

In Fig. 6, the results for the first reduction method (M1) are shown. Compared to the
reference solution, its obvious that a large number of modes is required to cover the inter-
face deformation. In particular, in the segments of high loads of Fig. 6(a), the pressure is
overestimated, as the reduction basis is too poor.

Figure 7 shows the maximal pressure and minimal height obtained by the second reduc-
tion method (M2). Compared to M1, for similar results, less modes are required. However,
the number ñv of modes has still to be large, when the reference solution should be well ap-
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Fig. 8 Load dependent reduction scheme (M3) with Pc,2 (pm = 1 and p0 = 1.5)

proximated. As can be seen in Fig. 7(a), the elastic structure with ñv = 127 modes behaves
still too stiff in the high pressure segments.

The maximal pressure and minimal height for the load dependent reduction scheme (M3)
with Pc,2 are depicted in Fig. 8. The analytical pressure distributions in F z-direction of the
bearing width are normalized by setting pm = 1 and p0 = 1.5. It becomes clear that the
reference solution is well approximated when using nr = 31 residual modes only. Com-
pared to M2, for similar results, less than a quarter of the number of modes are required.
It is noteworthy that the combination of short and long bearing solution like in Eq. (35) is
mainly necessary in order to account properly for the bending deformation of the bearing in
F z-direction. The application of only one of the two analytical solutions would not converge
to the reference solution.

All the simulations are performed with Matlab on a i3-3220 CPU (3.3 GHz, 8 GB RAM).
Concerning computational efficiency, it is noted that the computational time of the dynamic
simulation strongly depends on the number of modes used for the description of the elastic
body. Since the third reduction method needs at the same accuracy much less static modes
than the first two reduction schemes do, the simulation time is relatively low when using the
third reduction approach.

5 Simulation example 2: elastic rotor in flexible journal bearing

In this section, the second simulation example of an elastic rotor in a flexible journal bearing
is analyzed. In contrast to the simulation example of the previous section, unsymmetrical
pressure distributions along the axial direction now occur in the journal bearing. Again, the
three reduction methods are compared with each other.

5.1 Elastic rotor in flexible journal bearing

The simulation model of the elastic rotor in the flexible journal bearing is depicted in Fig. 9.
The elastic rotor consist of an elastic shaft with a rigidly attached disk in the middle. The

shaft is modeled by 20 BERNOULLI beam elements, each with two nodes and 4 degrees of
freedom per node for the bending deformation in x- and y-direction, respectively. A modal
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Fig. 9 Elastic rotor with unbalance in flexible journal bearing

reduction gives 20 modes for the elastic deformation of the rotor, leading together with the
shaft rotation to 21 overall degrees of freedom. Gyroscopic effects are considered; see for
instance [4]. The rotor with the length l is supported at both ends elastically by a stiffness c

and at half length by a flexible journal bearing. Modal damping with the damping ratio ζ for
each mode is considered. The rotor rotates with a constant rotation speed ω1 = 600 rad/s
and at three quarter length of the rotor an unbalance force Fr acts in radial direction.

The flexible bearing housing is modeled as a 3D linear finite element system (N = 8931)
with mass and stiffness matrix coming from a finite element software tool. Damping in the
bearing housing is not considered. The cylindrical interface of the bearing consists of 20×5
bi-quadratic elements in circumferential and z-direction, respectively, leading to ms = 340
interface nodes on the structure with msy = 40 circumferential positions. A conformal mesh
is applied to the fluid zone, resulting in mf = 340 fluid nodes.

In summary, the elastic structure deforms three-dimensionally and the rotor performs a
bending motion in the x/y-plane while rotating around the initial z-axis. This motion results
in unsymmetrical 3D pressure distributions in the journal bearing.

Further simulation parameters of the rotor model and the fluid properties are listed in
Table 2.

5.2 Comparison of the three reduction methods

For the simulation example, the maximal pressure and minimal height are compared for the
three reduction methods. The simulation time is T = 2π/ω, meaning that one rotation is
analyzed. In contrast to the simulation example of the slider–crank mechanism, unsymmet-
rical pressure distributions in axial direction now occur due to small tilting of the rotor shaft
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Table 2 Simulation parameters for the elastic rotor in flexible journal bearing

Parameter Value Parameter Value

Angular velocity ω1 600 rad/s dyn. viscosity η 0.01 kg/m s

Radius bearing R2 2.25 cm fluid density ρ0 800 kg/m3

Clearance h0 = R2 − R1 17.0 µm nb. fluid nodes mf 340

Bearing width B 2.20 cm nb. interface nodes ms 340

Rotor length l 1.00 m damping factor ζ 0.001

Rotor diameter dr 2.25 cm E-module E 210 × 109 N/m2

Steel density ρr 7446 kg/m3 simulation time T 2π/ω1

Rotor inertia Jr,zz 1 × 10−3 kg m2 tolerances tolAbs, tolRel 1 × 10−8

Stiffness c 1.58 × 108 N m radial force Fr 3.60 kN

Fig. 10 Comparison of the three reduction methods, each with 30 overall modes (Color figure online)

around the x- and y-directions, respectively. Therefore, the load dependent method (M3) is
applied with the more general choice Pc,1; see Eq. (34).

Similar to Sect. 4.2, the three reduction methods are compared for a comparable number
of modes. For the load dependent method (M3), nv = 10 vibration modes are used and the
number nr of residual modes is varied. For the two-step CRAIG–BAMPTON method (M2),
the number ñv of overall modes is chosen in dependence of nr by ñv = nr + 10. In a similar
way, the number n̄v of overall modes of the CRAIG–BAMPTON method (M1) is chosen by
n̄v = nr + 10.

A reference solution is created by considering the full interface. In Fig. 10, the error in
the maximal pressure and minimal height are shown for all the three methods by using for
each method 30 modes, which for the third method are decomposed into nr = 20 residual
and nv = 10 vibration modes. It can be seen that the error in the maximal pressure is large,
especially in time intervals which belong to high pressure situations. However, it becomes
clear that the load dependent method M3 comes closer to the reference solution than the
two CMS-based methods. The classical CRAIG–BAMPTON method (M1) shows the largest
deviations. In Fig. 11, the number of residual modes nr in method M3 is increased to 40,
leading to 50 overall modes. While the first two methods still behave too stiff, the error by
the third method is relatively small.
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Fig. 11 Comparison of the three reduction methods, each with 50 overall modes (Color figure online)

6 Conclusion

Different reduction schemes for structures with lubricated interfaces are presented and com-
pared for classical simulation examples.

The first two reduction methods are based on classical component mode synthesis. The
first method does not take into account the lubricated interface in particular. The second
method—a two-step CRAIG–BAMPTON scheme—gives a reduced set of modes by combin-
ing static interface deformation and the vibration modes of a interface-fixed structure. By
this, the interface deformation is covered in a better way, but still a large number of modes
is required.

The best results are obtained by a load dependent reduction strategy, where the interface
modes are computed as static responses due to pressure forces. Within this dual approach, it
is possible to use analytical pressure distributions like the infinitely short and long bearing
solution. These analytical solutions are well applicable during the reduction process for 3D
elastic revolute joints with a shaft rotating around one axis only, as the example of the slider
crank mechanism demonstrates. A more general choice is required when unsymmetrical
pressure distributions occur, like in the example of a flexible rotor in a flexible bearing
housing.

As a further advantage, this load dependent reduction strategy allows a clear decomposi-
tion of vibration modes of the free floating structure and static modes belonging to attach-
ment points and interface nodes. As a consequence, the number of modes for the lubricated
interface can be adjusted independently of the vibration modes.
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