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Abstract Musculoskeletal modeling is becoming a standard method to estimate muscle,
ligament and joint forces non-invasively. As input, these models often use kinematic data ob-
tained using marker-based motion capture, which, however, is associated with several limi-
tations, such as soft tissue artefacts and the time-consuming task of attaching markers. These
issues can potentially be addressed by applying marker-less motion capture. Therefore, we
developed a musculoskeletal model driven by marker-less motion capture data, based on two
Microsoft Kinect Sensors and iPi Motion Capture software, which incorporated a method
for predicting ground reaction forces and moments. For validation, selected model outputs
(e.g. ground reaction forces, joint reaction forces, joint angles and joint range-of-motion)
were compared to musculoskeletal models driven by simultaneously recorded marker-based
motion capture data from 10 males performing gait and shoulder abduction with and with-
out external load. The primary findings were that the vertical ground reaction force during
gait and the shoulder abduction/adduction angles, glenohumeral joint reaction forces and
deltoideus forces during both shoulder abduction tasks showed comparable results. In ad-
dition, shoulder abduction/adduction range-of-motions were not significantly different be-
tween the two systems. However, the lower extremity joint angles, moments and reaction
forces showed discrepancies during gait with correlations ranging from weak to strong, and
for the majority of the variables, the marker-less system showed larger standard deviations.
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Although discrepancies between the systems were identified, the marker-less system shows
potential, especially for tracking simple upper-body movements.

Keywords Marker-less motion capture · Microsoft Kinect Sensor · iPi Motion Capture ·
Ground reaction force prediction · Musculoskeletal modeling · AnyBody Modeling System

Abbreviations
MBS Marker-based system
MKS Microsoft Kinect Sensor
ROM Range-of-motion
MGRF Measured ground reaction force
PGRF Predicted ground reaction force
MLS Marker-less system
PCSA Physiological cross-sectional area
SA Unloaded shoulder abduction
LSA Loaded shoulder abduction
GRF Ground reaction force
AMS AnyBody Modeling System
JRF Joint reaction force
r Pearson’s correlation coefficient
RMSD Root-mean-square deviation

1 Introduction

Motion capture is an important tool in various research areas and frequently used to collect
kinematic input data for musculoskeletal models to estimate the muscle, joint and ligament
forces [1–3]. One of the most commonly used motion capture methods is a combination of
infrared cameras and skin markers [4]. Unfortunately, this method has limitations: 1) it is
time consuming [5], 2) markers can become occluded [6], 3) marker-based systems (MBS)
are complex and spacious [7] and 4) markers can move relative to the underlying bone,
a phenomenon known as soft tissue artefact [8, 9].

In recent years, the Microsoft Kinect Sensor (MKS) (Microsoft Corp., Redmond, WA,
USA) has attracted the interest of researchers due to its potential application for motion
analysis [5, 7, 10–15]. Originally developed to control gaming devices through gestures and
voice commands, the MKS is a portable, easy-to-use, commercially available and signifi-
cantly cheaper 3D motion capture system, compared to MBSs. For gesture recognition, the
MKS combines an infrared laser projector and video camera to project a speckle pattern
onto objects in its field-of-view, and creates a 3D map based on the recorded deformations
in this pattern [7, 16]. Previous investigations of the MKS have shown encouraging results
for the tracking of 3D marker coordinates [7], anatomical landmark positions and angular
displacements [11], and shoulder abduction range-of-motion (ROM) [5]. However, the MKS
only detects body segments directly in its field-of-view, which limits the sensor’s ability to
track full-body movements, where body segments can obstruct each other. Recently devel-
oped software called iPi Motion Capture (iPi Soft, LLC, Moscow, Russia) is able to support
two MKSs, which enables simultaneous tracking of all body segments. Additionally, a pre-
vious investigation has demonstrated that the iPi software provides higher accuracy when
tracking upper-body movements compared to freely available software [13]. If this system
can provide accuracy comparable to a MBS, it would result in a compact and cheap motion
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capture system. However, two issues need to be addressed if the MKS is to be used in mus-
culoskeletal modeling: firstly, the methodology for applying motion capture data obtained
using the MKS, or a similar device, to drive musculoskeletal models does not currently exist
and secondly, it is not possible to combine MKS and force plate data.

Therefore, the purpose of this investigation was to 1) develop a musculoskeletal model
driven by marker-less motion capture data, obtained using two MKSs and iPi Motion Cap-
ture software, without the use of force plates and 2) to evaluate the model’s kinematic and
kinetic outputs against those obtained when simultaneously recorded skin-marker trajecto-
ries with measured (MGRF) and predicted ground reaction forces (PGRF) were used as input
to the model. This approach aimed at providing a framework for applying marker-less and
force plate-less motion capture data as input to musculoskeletal models, in general, while
validating the model outputs associated with the Kinect-based marker-less system (MLS)
data.

2 Materials and methods

2.1 Experimental data

Ten healthy males (age 23.50 ± 1.27 years, height 181.60 ± 4.40 cm, weight 76.12 ±
5.26 kg) volunteered to participate in the investigation and provided written informed con-
sent.

During data collection, participants only wore tight fitting underwear or shorts, which en-
abled the placement of markers on the body as well as allowing the MLS to distinguish body
segments. The following movements were executed: 1) gait at a self-selected pace, 2) un-
loaded shoulder abduction (SA) and 3) loaded shoulder abduction (LSA). These movements
were chosen in order to determine the MLS’s ability to track both full-body and isolated
upper-body movements. Furthermore, the inclusion of both loaded and unloaded shoulder
abduction enabled evaluation of the model’s kinetic output in response to different loading
conditions. Participants were instructed to walk at their self-selected pace and completed
five gait trials. Likewise, five trials were completed for each of the two shoulder abduction
tasks, each consisting of three consecutive repetitions. For the SA and LSA trials, partici-
pants were instructed to raise their dominant arm to an approximately horizontal position
with and without a 3 kg dumbbell held in their hand, respectively. One repetition was com-
pleted when the participants returned their arm to its starting position along the torso. Four
successful trials of each movement were selected for further analysis, as data from single
trials for a number of participants were incomplete due to either marker occlusion more than
10% or incomplete movement reconstruction in the iPi software. For test subjects where all
trials were successful, we excluded the first collected trial.

Data were simultaneously collected using the MLS and MBS. The MLS consisted of
two MKSs, sampling at 30 Hz, and the recordings were processed using iPi Recorder v.
2.2.2.27 (iPi Soft LLC, Moscow, Russia). The MKSs were positioned 4.7 m from each
other, elevated 1 m from the ground with an angle of 86.5 degrees between the sensors’
field-of-views, which resulted in a distance of approximately 3.4 m from the sensors to
the center of the measurement volume. Thirty-three passive reflective markers were placed
on the participants using a full-body protocol and their trajectories tracked using a MBS
consisting of eight infrared high-speed cameras (Oqus 300 series), sampling at 100 Hz,
combined with Qualisys Track Manager v. 2.7 (Qualisys, Sweden). Ground reaction forces
(GRF) were obtained at 2000 Hz using three force plates (AMTI, MA, USA).
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2.2 Computational methods

2.2.1 Full-body model

The musculoskeletal models were developed using the Anybody Modeling System (AMS)
v. 6.0.2 (AnyBody Technology A/S, Aalborg, Denmark) based on the GaitFullBody template
from the AnyBody Managed Model Repository v. 1.5, in which the lower extremity model
is based on the cadaver data set collected by Horsman et al. [17], the lumbar spine model
based on the work of de Zee et al. [18] and the shoulder and arm model based on the work of
the Delft Shoulder Group [19–21]. For each trial, two musculoskeletal models were created:
one driven by the marker-less motion capture data and one by the marker-based data. The
steps included in the two modeling procedures are illustrated in Fig. 1.

2.2.2 Geometric and inertial parameter scaling

In order to scale the cadaver-based model to the different sizes of the subjects, a length-
mass-scaling law [22] was applied, which utilize the segment lengths as predictor. These
segment lengths were estimated differently between the two models as will be explained
later.

The total body mass was distributed to the individual segments using the regression
equations of Winter et al. [23]. Geometric scaling of each segment was accomplished by
introducing a linear diagonal scaling matrix that was applied to each point on the segment,
including the geometric center-of-masses. The entry of the scaling matrix for the longitudi-
nal direction was computed as the ratio between the unscaled and scaled segment lengths.
In the two other orthogonal directions, the scaling was computed as the square root of the
mass ratios divided by the length ratios between the scaled and unscaled models [22].

For estimation of the mass moments of inertia, the segments were assumed cylindrical
with a uniform density, with the length and mass equal to the segment length and mass.

2.2.3 Muscle recruitment problem

The muscle recruitment problem was solved by formulating a polynomial optimization prob-
lem that minimizes a scalar objective function, G, subject to the dynamic equilibrium equa-
tions and non-negativity constraints, ensuring that the muscles can only pull and that the
muscle forces do not exceed the strength of the muscles:
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M indicates the muscle forces, f
(M)
i is the ith muscle force, n(M) is the number of muscles

and Ni is the strength of the muscle. C is the coefficient matrix for the dynamic equilibrium
equations, f is a vector of unknown muscle and joint reaction forces, and d contains all
external loads and inertia forces. Finally, Ai is the physiological cross-sectional area (PCSA)
of each muscle unit and, for split muscles, each unit was assigned the corresponding fraction
of the total muscle PCSA, resulting from a uniform subdivision by the number of units.
Further details as regards muscle recruitment can be found in Damsgaard et al. [24] and
Marra et al. [25].
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Fig. 1 Top: marker-less data analysis workflow, where the data is 1) collected from two Microsoft Kinect
Sensors using iPi Recorder, 2) tracked in iPi Mocap Studio, 3) the resulting stick figure is imported in AMS
and tracked by a scaled musculoskeletal model, and 4) inverse dynamics, including prediction of ground
reaction forces, is performed. Bottom: marker-based data analysis workflow, where the data is 1) collected
with infrared cameras and force plates using Qualysis Track Manager, 2) imported into AMS for inverse
kinematic analysis based on the marker trajectories and 3) kinetic analysis is performed with predicted and
measured ground reaction forces

The strengths of the muscles were assumed to be constant, independent of the muscle
length and contraction velocity, and set to the values reported in the data sets for the dif-
ferent body parts. Furthermore, the muscle strengths were adjusted using a strength scaling
factor based on fat percentage [22]. The fat percentage was estimated from each subject’s
Body-Mass-Index, which was determined using the regression equation for men reported by
Frankenfield et al. [26].
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In both models, muscles were added to the lower extremities. For the shoulder abduction
trials, additional muscles were added to the torso, shoulder and arm. The dumbbell weight,
associated with the LSA, was modeled as a downward vertical vector applying a force of
29.4 N at the palm of the hand.

2.2.4 Musculoskeletal model driven by the marker-less data

Data obtained using the MLS were processed in iPi Mocap Studio v. 2.5.1.159 (iPi Soft,
LLC, Moscow, Russia), which fitted a 19-segment stick figure to each frame in the depth
data generated by the MKSs. The stick figure was exported from iPi Mocap Studio and
imported into AMS together with the GaitFullBody model.

The GaitFullBody model was set up to automatically scale the segment lengths according
to the joint-to-joint distances of the stick figure. The segment lengths in the musculoskeletal
model that could be directly computed from the stick figure were scaled based on joint-to-
joint distances, as for instance the pelvis width (hip-to-hip joint center distance). For the
trunk, hands and feet, however, the segment lengths were not directly obtainable from the
stick figure. Therefore, an additional step was introduced in order to scale these segments in
the model. First, additional nodes were added to the musculoskeletal model at locations cor-
responding to points identifiable on the stick figure. Second, the unscaled model was placed
in a neutral position and the distance between the added nodes were computed and saved
together with the unscaled segment lengths. Subsequently, the ratio between the unscaled
segment lengths and the nodes was multiplied onto the segment length measurements on the
stick figure before being used to scale the respective segments in the musculoskeletal model.

To obtain tracking of the stick figure by the musculoskeletal model, virtual markers were
introduced on both the stick figure and the musculoskeletal model. On the stick figure, vir-
tual markers were located around anatomical landmarks that were possible to define on both
the stick figure and the musculoskeletal model (further details are provided as supplemen-
tary material). Based on these virtual markers, a nonlinear least-square optimization problem
was defined that minimized the least-square difference between the virtual markers on the
stick figure and those on the musculoskeletal model. This optimization problem was solved
using the method of Andersen et al. [27]. This tracking ensured that the musculoskeletal
model optimally tracked the stick figure even though the two models differed in segment
and joint definitions. Due to the lack of measurements of subtalar eversion and neck flexion,
these were fixed in neutral positions.

Since GRFs were not measured by the MLS, these were predicted by the model based on
measured full-body kinematic data only. This was enabled by introducing artificial muscle-
like actuators at 12 contact nodes defined under each foot. To overcome the underdetermi-
nacy issue during double support, the computation of the GRFs was made part of the mus-
cle recruitment algorithm. Five unidirectional actuators were added to each contact node,
which combined were able to generate a normal force perpendicular to the laboratory floor
and static friction forces (with a friction coefficient of 0.5) in the medio-lateral and anterior-
posterior directions. Ground contact was defined as established when the node was within
50 mm of the ground plane and the velocity of the node relative to the ground was below
1.3 m/s. The transition from no contact to full contact condition was smoothed similarly to
the procedures of Skals et al. [28] using the velocity of the nodes. Further details and vali-
dation of the method for an array of activities of daily living and sports-related movements
were provided in Fluit et al. [29] and Skals et al. [28], respectively.
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2.2.5 Musculoskeletal model driven by the marker-based data

For the models driven by the marker-based data, the model scaling and kinematic analysis
were performed using the optimization methods of Andersen et al. [8, 27]. Firstly, for each
subject, the model segment lengths and model marker positions were estimated by minimiz-
ing the least-square difference between model and experimental markers using the method
of Andersen et al. [8] for a selected gait trial. These segment lengths and marker positions
were subsequently saved and used for the analysis of all other trials. Secondly, the optimized
segment lengths and marker positions were loaded and the least-square difference between
model and experimental markers minimized to obtain the model kinematics [27]. Finally,
two different versions of kinetic analysis were performed: one where the MGRFs were ap-
plied under the feet, and the muscle and joint reaction forces (JRF) computed using muscle
recruitment [24], and one where the ground reaction forces were predicted similarly to the
Kinect-based model (PGRF). Further details regarding the marker protocol and marker op-
timization procedure is provided as supplementary material.

2.3 Data analysis

A complete gait cycle, i.e. from heel strike to heel strike, was analyzed for the gait trials.
Shoulder abduction trials were analyzed from when the arm began its migration away from
the torso until it returned to the initial position. For the gait trials, the following data were
selected for analysis: vertical GRF, joint angles and moments for ankle plantar/dorsi flexion,
knee flexion/extension, hip flexion/extension, abduction/adduction and internal/external ro-
tation, resultant JRFs for the ankle, knee and hip, and muscle forces for the gastrocnemius,
vasti and glutei. To account for the fact that the muscles were split into multiple branches
in the models, the average force across all muscle branches were used in the analysis. In
addition, peak resultant JRFs, peak vertical GRF, peak muscle forces and joint ROMs were
computed. For the shoulder abduction trials, the following data were selected for analysis:
shoulder flexion/extension, abduction/adduction and internal/external rotation angles and
moments, resultant glenohumeral JRF, muscle force for the deltoideus, peak resultant gleno-
humeral JRF, deltoideus peak force and joint ROMs.

To compare the variables, Pearson’s correlation coefficient (r) and root-mean-square de-
viation (RMSD) were computed for each trial separately and presented as the mean ±1
SD. The absolute values of r were categorized as weak, moderate, strong and excellent for
r ≤ 0.35, 0.35 < r ≤ 0.67, 0.67 < r ≤ 0.90 and 0.90 < r , respectively [30]. The Fried-
man test was applied to statistically compare the peak vertical GRFs, peak resultant JRFs,
peak muscle forces and ROMs between the three methods, and Wilcoxon paired-sample
tests were used for post-hoc analysis if significant differences were found between the three
groups. To account for multiple testing, a Bonferroni correction was implemented for the
Friedman test and significant differences are only reported for p < 0.05/11 = 0.0045. Joint
moments and all forces are expressed as percentage of bodyweight times height (% BW ×
BH) and percentage of bodyweight (% BW), respectively.

3 Results

The time-histories of the selected variables for the gait and shoulder abduction trials are de-
picted in Figs. 2, 3, 4 and 5, 6, 7, respectively. Correlation coefficients and RMSDs are listed
in Tables 1a, 1b, 1c for gait and Table 2 for the shoulder abduction trials. The results of the
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Fig. 2 Results for gait, illustrating the ankle plantar/dorsi flexion angle (top left), knee (top center) and hip
flexion/extension angle (top right), ankle plantar/dorsi flexion moment (middle left), knee (middle center)
and hip flexion/extension moment (middle right), ankle (bottom left), knee (bottom center) and hip resultant
JRF (bottom right). The results for the marker-based system with MGRFs (red) and PGRFs (black), and
marker-less system (blue) are illustrated as the mean ±1 SD (shaded area) over the subjects and trials (Color
figure online)

Wilcoxon signed-rank tests are summarized in Tables 3a, 3b, 3c. The Friedman test showed
significant differences between the three methods for all peak forces (p ≤ 0.0045) with
the exception of the SA glenohumeral peak resultant JRF (p = 0.6077), and the Wilcoxon
signed-rank test was, therefore, applied as post-hoc analysis for the remaining variables.

Comparable results were found between the MBS with MGRFs and PGRFs for all ana-
lyzed variables (see Table 1b) with correlations ranging from 0.77 (hip internal/external ro-
tation moment) to 0.94 (knee and hip resultant JRF), and RMSDs ranging from 0.50 ± 0.11
(hip internal/external rotation moment) to 56.60±12.57 (ankle resultant JRF). Furthermore,
the shape and magnitude differences between the two methods and the MLS were almost
identical, so in the following, only the comparisons between the MBS with MGRF and
the MLS are summarized. It should be noted, however, that the Wilcoxon signed-rank test
showed significant differences between the two methods for all peak forces (see Table 3b)
with the exception of the peak vertical GRF (mean diff. = −0.72 ± 3.72, p = 0.2477).
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Fig. 3 Results for gait, illustrating the hip abduction/adduction and internal/external rotation angles (top)
and moments (bottom). The results for the marker-based system with MGRFs (red) and PGRFs (black), and
marker-less system (blue) are illustrated as the mean ±1 SD (shaded area) over the subjects and trials (Color
figure online)

When comparing the MBS and MLS, similar results were found for the shoulder ab-
duction/adduction angles, glenohumeral resultant JRFs and deltoideus forces during both
shoulder abduction tasks, the shoulder flexion/extension and abduction/adduction moments
during LSA, and the vertical GRF during gait. However, the MLS’s tracking of the lower
body during gait showed discrepancies compared to the MBS and was, in general, incon-
sistent with correlations ranging from −0.63 (hip internal/external rotation angle) to 0.82
(hip flexion/extension angle) (see Table 1a). The Wilcoxon paired-sample tests (see Ta-
ble 3a) showed significant differences for the ankle plantar/dorsi flexion ROM (p < 0.0001),
knee (p < 0.0001) and hip flexion/extension ROM (p < 0.0001), peak vertical GRF (p <

0.0001), knee (p < 0.0001) and hip peak resultant JRF (p < 0.0001), and glutei peak force
(p < 0.0001) during gait. For the shoulder abduction tasks, significant differences were
found for the SA shoulder internal/external rotation ROM (p = 0.0044), LSA glenohumeral
peak resultant JRF (p < 0.0001) and deltoideus peak force (p < 0.0001).

3.1 Gait

Strong correlations were found between the systems for the vertical GRF (0.85), knee flex-
ion/extension angle (0.81), hip flexion/extension angle (0.82) and abduction/adduction an-
gle (0.81), ankle plantar/dorsi flexion (0.71) and hip abduction/adduction moment (0.77),
ankle (0.80), knee (0.78) and hip (0.71) resultant JRFs, and glutei force (0.77). However,
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Fig. 4 Results for gait, illustrating the vertical GRF (top left), gastrocnemius (top right), vasti (bottom left)
and glutei force (bottom right). The results for the marker-based system with MGRFs (red) and PGRFs
(black), and marker-less system (blue) are illustrated as the mean ±1 SD (shaded area) over the subjects and
trials (Color figure online)

the other variables showed correlations ranging from weak to moderate with the hip inter-
nal/external rotation angle (−0.63) and moment (0.57) showing the outermost values. No
significant differences were found for the hip abduction/adduction ROM (p = 0.1704) and
internal/external rotation ROM (p = 0.0983), ankle peak resultant JRF (p = 0.4356), gas-
trocnemius (p = 0.1222) and vasti peak force (p = 0.5633).

3.2 Shoulder abduction

For the SA trials, strong correlations were established for the shoulder abduction/adduction
angle (0.89) and internal/external rotation angle (0.68), and no significant differences were
found for the shoulder flexion/extension ROM (p = 0.4046), abduction/adduction ROM
(p = 0.7572), glenohumeral peak resultant JRF and deltoideus peak force (p = 0.0099).
LSA showed excellent correlations for the shoulder abduction/adduction angle (0.96) and
moment (0.90), while strong correlations were found for the shoulder internal/external rota-
tion angle (0.72), glenohumeral resultant JRF (0.87) and deltoideus force (0.88). No sig-
nificant differences were found for the shoulder flexion/extension (p = 0.1322), abduc-
tion/adduction (p = 0.5364) and internal/external rotation ROM (p = 0.4436).
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Fig. 5 Results for SA, illustrating the shoulder flexion/extension, abduction/adduction and internal/external
rotation angles (top) and moments (bottom). The results for the marker-based (red) and marker-less system
(blue) are illustrated as the mean ±1 SD (shaded area) over the subjects and trials (Color figure online)

Fig. 6 Results for LSA, illustrating the shoulder flexion/extension, abduction/adduction and internal/external
rotation angles (top) and moments (bottom). The results for the marker-based (red) and marker-less system
(blue) are illustrated as the mean ±1 SD (shaded area) over the subjects and trials (Color figure online)
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Fig. 7 Results for SA (left) and LSA (right), illustrating the glenohumeral resultant JRF (top) and deltoideus
force (bottom). The results for the marker-based (red) and marker-less system (blue) are illustrated as the
mean ±1 SD (shaded area) over the subjects and trials (Color figure online)

4 Discussion

We developed a musculoskeletal model driven by motion capture data obtained using a
MLS, consisting of dual MKSs and iPi Motion Capture software, and evaluated the model
outputs against those obtained from musculoskeletal models driven by simultaneously
recorded skin marker trajectories. Furthermore, to enable kinetic analysis with the MLS,
the GRF&Ms were predicted by incorporating the method of Fluit et al. [29] and Skals et al.
[28]. The developed methodology enabled, for the first time, estimation of kinetic variables
based on a MLS. In general, the motion variables compared between the systems revealed
different results for the studied movements. The vertical GRF data showed a strong correla-
tion during gait, but the peak values were significantly different and the time of occurrence
in the gait cycles deviated slightly. Noticeable discrepancies were observed for the remain-
ing variables during gait, which, however, were inconsistent. Shoulder abduction/adduction
angles showed strong to excellent correlations and the ROMs were not significantly differ-
ent during both SA and LSA. For the LSA, strong to excellent correlations were also found
for the shoulder abduction/adduction moment, glenohumeral resultant JRF and deltoideus
force, but the peak forces were, however, significantly different. Although the results for the
MLS were generally associated with larger standard deviations than the MBS, the shoulder
abduction measurements showed considerably lower standard deviations compared to the
results for the lower body.



A musculoskeletal model driven by dual Microsoft Kinect Sensor data 309

Table 1a Correlation and RMSD between the marker-based system with MGRFs and MLS for the selected
variables during gait. The results are presented as the mean and standard deviation over the subjects

MBS (MGRF) vs. MLS

Variable Mean r ± SD RMSD ± SD

Gait

Ankle plantar/dorsi flexion angle (deg) 0.57±0.17 14.83±4.47

Knee flexion/extension angle (deg) 0.81±0.13 11.08±3.06

Hip flexion/extension angle (deg) 0.82±0.18 15.20±4.37

Hip abduction/adduction angle (deg) 0.81±0.12 4.91±1.18

Hip internal/external rotation angle (deg) −0.63±0.19 11.88±3.48

Ankle plantar/dorsi flexion moment (% BW × BH) 0.72±0.20 2.03±0.77

Knee flexion/extension moment (% BW × BH) −0.05±0.32 2.11±0.70

Hip flexion/extension moment (% BW × BH) 0.43±0.30 1.99±0.66

Hip abduction/adduction moment (% BW × BH) 0.77±0.12 1.94±0.50

Hip internal/external rotation moment (% BW × BH) 0.57±0.20 0.75±0.23

Vertical GRF (% BW) 0.85±0.10 24.57±8.88

Ankle resultant JRF (% BW) 0.80±0.13 124.84±44.98

Knee resultant JRF (% BW) 0.78±0.10 92.49±32.93

Hip resultant JRF (% BW) 0.71±0.13 154.00±69.13

Gastrocnemius (% BW) 0.50±0.33 48.83±18.60

Vasti (% BW) 0.06±0.32 16.69±7.67

Glutei (% BW) 0.77±0.11 18.27±5.80

Joint angles and ROM showed poor agreement during gait, most noticeably in the track-
ing of the ankle plantar/dorsi flexion and hip internal/external rotation angles. The large
discrepancies associated with the ankle angles could also have contributed to the discrepan-
cies for the knee and hip angles between the systems, due to the joint constraints enforced
by the model. The MLS’s tracking of ankle plantar/dorsi flexion was associated with large
errors and a significant difference between the systems was observed for the ankle plan-
tar/dorsi flexion ROM. We assessed that these tracking errors were mainly associated with
three issues. Firstly, the tracking of the ankle could have been compromised as a result of
light reflected on the ground during data collection. Light sensitivity has been proposed as
a limitation of the MKS [7], which could substantially reduce the applicability of the MLS
outside a controlled environment. Secondly, Dutta et al. [7] reported that tracking errors of
the MKS were considerably larger near the edges of the sensor’s field-of-view, which could
have caused the poor tracking of the participants’ feet in the current investigation. This is
very likely since the MKS was developed to control gaming devices mainly through hand
gestures, which makes the depth information near the edges of the sensor’s field-of-view
less important for its primary application. Thirdly, due to the close proximity of the feet and
the ground during the stance phase of gait, a clear distinction between the feet and ground
does not exist in the depth map recorded by the MKSs, which may cause inaccuracies when
fitting the stick figure to the depth data.

The differences between the results for the upper-body and lower-body variables could
be partially explained by the argumentation above. In addition, the higher tracking accu-
racy for the shoulder abduction tasks could be the result of a combination of two factors:
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Table 1b Correlation and RMSD between the marker-based system with MGRFs and PGRFs for the selected
variables during gait. The results are presented as the mean and standard deviation over the subjects

MBS (MGRF) vs. MBS (PGRF)

Variable Mean r ± SD RMSD ± SD

Gait

Ankle plantar/dorsi flexion moment (% BW × BH) 0.93±0.03 0.97±0.15

Knee flexion/extension moment (% BW × BH) 0.80±0.11 0.68±0.11

Hip flexion/extension moment (% BW × BH) 0.86±0.07 0.96±0.22

Hip abduction/adduction moment (% BW × BH) 0.93±0.02 0.69±0.13

Hip internal/external rotation moment (% BW × BH) 0.77±0.08 0.50±0.11

Vertical GRF (% BW) 0.93±0.03 16.48±8.93

Ankle resultant JRF (% BW) 0.96±0.02 56.60±12.57

Knee resultant JRF (% BW) 0.94±0.03 39.64±6.42

Hip resultant JRF (% BW) 0.94±0.03 40.31±7.26

Gastrocnemius (% BW) 0.91±0.05 20.66±3.54

Vasti (% BW) 0.89±0.13 4.53±1.15

Glutei (% BW) 0.93±0.03 6.69±1.48

Table 1c Correlation and RMSD between the marker-based system with PGRFs and MLS for the selected
variables during gait. The results are presented as the mean and standard deviation over the subjects

MBS (PGRF) vs. MLS

Variable Mean r ± SD RMSD ± SD

Gait

Ankle plantar/dorsi flexion moment (% BW × BH) 0.71±0.16 2.10±0.66

Knee flexion/extension moment (% BW × BH) −0.06±0.37 1.88±0.72

Hip flexion/extension moment (% BW × BH) 0.36±0.32 2.82±1.20

Hip abduction/adduction moment (% BW × BH) 0.73±0.13 1.94±0.50

Hip internal/external rotation moment (% BW × BH) 0.57±0.15 0.78±0.20

Vertical GRF (% BW) 0.82±0.10 27.04±8.44

Ankle resultant JRF (% BW) 0.77±0.13 131.84±45.06

Knee resultant JRF (% BW) 0.75±0.11 96.86±32.81

Hip resultant JRF (% BW) 0.71±0.13 156.46±69.18

Gastrocnemius (% BW) 0.48±0.29 50.48±18.20

Vasti (% BW) 0.06±0.32 15.18±7.50

Glutei (% BW) 0.73±0.12 18.64±5.74

1) the movement occurs in the center of the sensor’s field-of-view, where the tracking er-
ror is presumably lowest, and 2) the clear visibility of the arm movement during this task
compared to e.g. the legs during gait. The importance of the visibility of the movements
is clear when comparing the shoulder abduction/adduction angles to the flexion/extension
and internal/external rotation angles, which also showed poor agreement. Bonnechére et
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Table 2 Correlation and RMSD between the marker-based system with MGRFs and MLS for the selected
variables during SA and LSA. The results are presented as the mean and standard deviation over the subjects

MBS (MGRF) vs. MLS

Variable Mean r ± SD RMSD ± SD

Shoulder abduction

Shoulder flexion/extension angle (deg) 0.32±0.38 10.74±3.86

Shoulder abduction/adduction angle (deg) 0.89±0.33 11.93±13.57

Shoulder internal/external rotation angle (deg) 0.68±0.39 32.75±15.09

Shoulder flexion/extension moment (% BW × BH) 0.56±0.22 0.06±0.01

Shoulder abduction/adduction moment (% BW × BH) 0.66±0.32 0.10±0.05

Shoulder internal/external rotation moment (% BW × BH) 0.64±0.30 0.07±0.02

Glenohumeral resultant JRF (% BW) 0.62±0.30 9.78±4.95

Deltoideus (% BW) 0.66±0.33 2.88±1.33

Loaded shoulder abduction

Shoulder flexion/extension angle (deg) 0.52±0.36 11.16±13.68

Shoulder abduction/adduction angle (deg) 0.96±0.16 9.07±9.74

Shoulder internal/external rotation angle (deg) 0.72±0.30 36.69±12.89

Shoulder flexion/extension moment (% BW × BH) 0.56±0.29 0.13±0.04

Shoulder abduction/adduction moment (% BW × BH) 0.90±0.38 0.18±0.28

Shoulder internal/external rotation moment (% BW × BH) 0.54±0.29 0.18±0.06

Glenohumeral resultant JRF (% BW) 0.87±0.37 20.63±22.11

Deltoideus (% BW) 0.88±0.38 5.45±6.16

al. [5] reported comparable accuracy between a MLS, consisting of a single MKS and the
proprietary software, and a MBS for tracking shoulder abduction, but they found poor to
no agreement between the systems for hip abduction and knee flexion. The application of
two MKS and a more complex stick figure model, associated with the iPi software, was not
able to address this limitation and could not provide tracking accuracy of the lower body
comparable to the MBS, hereby supporting these results.

In general, the kinetic variables for the shoulder abduction tasks showed encouraging
results, particularly for the glenohumeral resultant JRFs and deltoideus forces, whereas the
results for the lower extremities were less accurate. When the external load was applied to
the shoulder abduction task, however, the variation in the kinetic variables increased no-
ticeably, which indicates that the Kinect-based model does not respond well to increases in
loading conditions. Strong correlations were observed for the ankle, knee and hip resultant
JRFs as well as the glutei force during gait, while the gastrocnemius and vasti forces differed
considerably. The ankle and knee resultant JRFs showed similarities in magnitude between
the systems, but the timing of the movement differed slightly. Conversely, the hip resultant
JRF differed considerably in magnitude, and the peak forces were overestimated compared
to the results of the marker-based models. For the kinetic variables, the most encouraging
results were found for the vertical GRF, which showed a strong correlation between the
systems. Although the peak forces differed slightly in magnitude and timing, the overall
similarity between the predicted and measured GRFs supports the results of previous val-
idation studies [28, 29], showing that predicted GRFs are comparable to those measured
using force plates.



312 S. Skals et al.

Table 3a Results of the Wilcoxon signed-rank test between the marked-based system with MGRFs and
MLS, listing the p-value, mean difference and standard deviation for joint ROMs and peak forces. Significant
differences are indicated with a ∗ for p < 0.0045

MBS (MGRF) vs. MLS

Variable Mean diff. ± SD p-value

Gait

Ankle plantar/dorsi flexion ROM (deg) 30.16±6.07 < 0.0001∗
Knee flexion/extension ROM (deg) 10.01±5.00 < 0.0001∗
Hip flexion/extension ROM (deg) 8.62±8.70 < 0.0001∗
Hip abduction/adduction ROM (deg) −1.13±4.05 0.1704

Hip internal/external rotation ROM (deg) −1.38±5.88 0.0983

Peak vertical GRF (% BW) −8.47±9.26 < 0.0001∗
Ankle peak resultant JRF (% BW) 7.77±121.56 0.4356

Knee peak resultant JRF (% BW) −129.69±144.98 < 0.0001∗
Hip peak resultant JRF (% BW) −387.10±264.50 < 0.0001∗
Gastrocnemius peak force (% BW) −12.02±60.82 0.1222

Vasti peak force (% BW) 5.84±30.30 0.5633

Glutei peak force (% BW) −40.11±24.16 < 0.0001∗

Shoulder abduction

Shoulder flexion/extension ROM (deg) 0.19±6.70 0.4046

Shoulder abduction/adduction ROM (deg) 2.60±15.28 0.7572

Shoulder internal/external rotation ROM (deg) 6.41±13.72 0.0044∗
Deltoideus peak force (% BW) −1.00±2.98 0.0099

Loaded shoulder abduction

Shoulder flexion/extension ROM (deg) −0.73±13.68 0.1322

Shoulder abduction/adduction ROM (deg) −0.30±4.83 0.5364

Shoulder internal/external rotation ROM (deg) −1.80±12.89 0.4436

Glenohumeral peak resultant JRF (% BW) −21.96±32.60 < 0.0001∗
Deltoideus peak force (% BW) −4.37±7.11 < 0.0001∗

With regards to the practical usability of the MLS, limitations were identified. Firstly,
the volume in which movement could be tracked was restricted, which required careful po-
sitioning of the two MKSs to enable tracking of a single gait cycle. Secondly, any alteration
in the background required recalibration of the system, which additionally complicates data
collection. Thirdly, since the automatic tracking by the iPi software utilizes the solution of
the previous frame as the initial guess for fitting the stick figure to the current frame, a large
movement from one frame to the next could cause the process to fail. To overcome this,
manual improvements of the initial guess for these frames were required. Although this did
not affect the estimated stick figure movements, it was a time-consuming task that must be
overcome before the system can be used on a larger scale. Finally, as regards the MLS’s use
in musculoskeletal modeling, the inability of the MLS for determining the relative position
of the force plates to the MKSs required the implementation of GRF prediction. Although
the PGRFs were overall similar to the MGRFs, this limitation could have implications due
to the MLS’s poor tracking of the feet, since it can potentially be challenging to accurately
determine when foot-ground contact is established.
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Table 3b Results of the Wilcoxon signed-rank test between the marked-based system with MGRFs and
PGRFs, listing the p-value, mean difference and standard deviation for joint ROMs and peak forces. Signifi-
cant differences are indicated with a ∗ for p < 0.0045

MBS (MGRF) vs. MBS (PGRF)

Variable Mean diff. ± SD p-value

Gait

Peak vertical GRF (% BW) −0.72±3.72 0.2477

Ankle peak resultant JRF (% BW) −71.77±49.87 < 0.0001∗
Knee peak resultant JRF (% BW) −75.34±46.26 < 0.0001∗
Hip peak resultant JRF (% BW) −66.86±50.98 < 0.0001∗
Gastrocnemius peak force (% BW) −46.93±24.07 < 0.0001∗
Vasti peak force (% BW) 5.64±4.48 < 0.0001∗
Glutei peak force (% BW) −4.38±4.34 < 0.0001∗

Table 3c Results of the Wilcoxon signed-rank test between the marked-based system with PGRFs and MLS,
listing the p-value, mean difference and standard deviation for joint ROMs and peak forces. Significant
differences are indicated with a ∗ for p < 0.0045

MBS (PGRF) vs. MLS

Variable Mean diff. ± SD p-value

Gait

Peak vertical GRF (% BW) −7.75±9.02 < 0.0001∗
Ankle peak resultant JRF (% BW) 79.55±121.19 0.0004∗
Knee peak resultant JRF (% BW) −54.36±142.41 0.0599

Hip peak resultant JRF (% BW) −320.25±263.98 < 0.0001∗
Gastrocnemius peak force (% BW) −34.92±55.83 0.0006∗
Vasti peak force (% BW) 0.20±30.45 0.7881

Glutei peak force (% BW) −35.73±24.12 < 0.0001∗

Shoulder abduction

Deltoideus peak force (% BW) −1.00±2.98 0.0099

Loaded shoulder abduction

Glenohumeral peak resultant JRF (% BW) −113.14±36.71 < 0.0001∗
Deltoideus peak force (% BW) −33.81±8.75 < 0.0001∗

During data collection, additional functional trials were collected, but these were later ex-
cluded due to largely inaccurate movement reconstruction in iPi; the excluded movements
were counter-movement jump and forward lunge. For the counter-movement jump trials,
large errors were observed during movement reconstruction, particularly for the lower body,
which caused the procedure to fail completely. It was simply not possible to obtain accurate
kinematics for this high-velocity movement due to the relatively low sampling frequency of
the MLS (30 Hz). The lunge trials were successfully reconstructed, but the results were asso-
ciated with large errors, mainly caused by a very poor tracking of the ankle flexion/extension
angle. Because of the joint constraints imposed by the musculoskeletal model, this error
additionally caused poor reconstruction of the knee flexion/extension angle. Hence, large
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discrepancies were observed between the two systems for all variables associated with the
ankle and knee. As similar tendencies were observed during gait, we assessed that the for-
ward lunge trials did not provide additional meaningful information to the investigation.

This study contains a number of limitations. First, we used a MBS for validation. MBSs
are associated with limitations regarding their accuracy, especially due to soft tissue arte-
facts, and do not possess the accuracy of a golden standard such as bone pins [31] or 3D
fluoroscopy [32]. However, the differences observed for instance in knee flexion/extension
angles in the present investigation exceed the associated differences between MBSs and
bone pins reported by Benoit et al. [31]. In addition, the application of bone pins or 3D
fluoroscopy would have been unsuitable, as the investigation aimed at assessing the MLS’s
ability to track full-body motion. Although the MBS is associated with limitations, it would
be a valuable result to establish comparable accuracy between the MLS and MBS, especially
due to the portability and the low price of the MLS.

Second, retro-reflective skin markers were attached to the subjects during the data ac-
quisition with the MKSs. Since these markers reflect infrared light, they affect the light
measured by the MKSs and, consequently, the estimated depth map. Although the influence
of the markers was not specifically investigated, we did not observe any noticeable effect
in the depth maps and we anticipate that the effect is either minor or negligible. It would,
however, be worth investigating this effect in a future study.

Third, since the stick figure and musculoskeletal models have slightly different joint con-
straint definitions, the applied tracking approach results in an imperfect tracking of the stick
figure and hence, the resulting movement of the musculoskeletal model may deviate from
the depth measurements. To overcome this, future research should explore direct tracking
of the depth map by the musculoskeletal model applying for instance a similar approach as
proposed by Sandau et al. [33].

In summary, the results for the vertical GRF, shoulder abduction/adduction angles and
ROMs, glenohumeral resultant JRFs and deltoideus forces were encouraging, but the MLS
revealed limitations, particularly for tracking the lower body. Considering these results, the
MLS could be applied to track simple upper-body movements, and further development of
this technology towards its application in motion analysis seems warranted, as the MLS
provides a portable and significantly cheaper (<1000 USD) solution compared to MBSs.
Therefore, future work should focus on assessing the ability of the system to track other
simple upper-body movements relevant for diagnostics and ergonomics.
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