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Abstract In this paper, the system dynamics of an overhead crane are inverted by servo-
constraints. The inversion provides a feedforward control for trajectory tracking of the
system output. The overhead crane is inherently underactuated and modeled as a two-
dimensional mechanical system with nonlinear system dynamics. Actuators are modeled as
first-order systems to simplify implementation and account for velocity-controlled drives.
The control based on servo-constraints is shown to be an effective method of trajectory con-
trol for overhead cranes. It will be demonstrated that the formulation is solvable in real-time
using linear implicit Euler integration. The feedforward solution is made robust by an aug-
mentation with LQR as well as a sliding mode controller. Experiments are conducted on a
laboratory crane of 13 m motion range.

Keywords Servo-constraints · Feedforward control · Overhead crane · Trajectory
tracking · Underactuated systems

1 Introduction

Overhead cranes are typical underactuated multibody systems since they possess less con-
trol inputs than degrees of freedom. Specifically, they pose demanding control problems
since the load swinging cannot be controlled directly. However, undesirable load swinging
is easily excited during motion. Many control strategies have been investigated to maneu-
ver the crane without inducing load swinging [1]. Due to the underactuated and nonlinear
dynamics of the crane system, feedforward control for load trajectory tracking based on
system inversion is not straightforward. The crane system analyzed in this paper is differen-
tially flat [10]. Hence, an analytical feedforward control can be derived, which depends on
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the desired output and a finite number of its derivatives. This property can also be used as
a basis for feedback linearization, where for the crane system dynamic extension needs to
be utilized and robustness issues need to be addressed [6]. However, the analytic derivation
of the flatness based inversion or feedback linearization is not straightforward and might
not be possible for more complex systems. An alternative and more general method of sys-
tem inversion is the concept of servo-constraints. The servo-constraints append the system
dynamics to form a set of differential algebraic equations (DAEs). A general framework
considering servo-constraints is presented in [4]. The method has been applied to underac-
tuated systems including cranes. Thereby it occurs that in crane problems often higher index
DAEs appear [8]. An alternative servo-constraints formulation based on the system dynam-
ics written in redundant coordinates is presented in [5]. Different methods for solving the
resulting higher index DAEs have been presented recently. Most of them include an index
reduction in the first step. Index reduction based on a coordinate projection and a coordinate
transformation are introduced in [4] and [14], respectively. Index reduction based on mini-
mal extension is proposed in [3]. For solving the reduced index problem, an implicit Euler
scheme is proposed in [4] and [3].

The numerical solution of the servo-constraints formulation yields the feedforward con-
trol inputs for the system output to follow a prescribed trajectory. If the system model is ac-
curate, the system output will move along the prescribed trajectory. In order to reject distur-
bances and account for modeling errors, additional feedback control is necessary. Therefore,
a stabilized servo-constraints formulation is proposed in [4]. Alternatively, a two-degree of
freedom controller design can be applied. For example, a simple feedback LQR controller
could be added to the feedforward controller to stabilize the system around the prescribed
trajectory [7]. Moreover, the servo-constraints solution could be used in combination with
traditional sliding mode control [15], or other approaches such as [9]. The sliding mode
control law requires information of the desired trajectory in state space. For underactuated
systems, it is normally not straightforward to obtain the desired state trajectory based on the
prescribed output trajectory. This normally makes the sliding mode controller difficult to ap-
ply. However, servo-constraints yield a simple and fast calculation of the desired trajectory
in state space and enable a straightforward application of sliding mode control.

So far, the servo-constraints control approach has been investigated theoretically and
verified by simulation. In this paper, it will be shown that the servo-constraints formulation
can be solved by a linear implicit Euler method in real-time. Thus, the scheme can be used
as an online feedforward controller which could allow online adaption of the desired load
trajectory. The effective combination of the servo-constraints controller with an LQR as well
as a sliding mode controller is also shown. All results are verified on an experimental test
bench of an overhead crane with 13 m motion range.

The remainder of the paper is organized as follows. In Sect. 2, the crane model is derived
in generalized and redundant coordinates. The servo-constraints problem is formulated in
Sect. 3 for both coordinate formulations. A solution code for the formulated problem is
proposed in Sect. 4. An LQR and a sliding mode controller that can be combined with the
servo-constraints inversion are presented in Sect. 5. Section 6 presents experimental results
including analysis of the real-time capability of the various numerical formulations and the
accuracy of the different control strategies. Section 7 summarizes the paper.

2 Modeling of the crane test bench

The crane test bench is an overhead gantry crane with variable rope length, shown in
Fig. 1(a). Since the trolley moves along a linear axis, planar motion is assumed. Each of
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Fig. 1 Laboratory crane setup and its model. (a) Test bench. (b) Two-dimensional crane model

the four ropes connecting the load to the trolley is assumed to be massless and rigid. The
rope lengths are adjustable by synchronized winches on the trolley, which prevents the load
from rotating around itself. Thus, the model can be reduced to a point mass which is attached
to the trolley by a single rope, shown in Fig. 1(b). The model has n = 3 degrees of freedom,
namely the trolley position s, the rope length � and the swing angle ϕ. They are collected in
the vector of generalized coordinates y and velocities v

y =
[

ya

yu

]
=

⎡
⎣ s

�

ϕ

⎤
⎦ , v = ẏ =

[
ẏa

ẏu

]
=

⎡
⎣ ṡ

�̇

ϕ̇

⎤
⎦ , (1)

where the dashed lines denote the separation into actuated and unactuated coordinates ya,
va and yu, vu, respectively. The m = 2 system inputs are realized by trolley and winch
actuators. Due to m < n, the system is underactuated. In theory, the control inputs are the
actuator force on the trolley and actuator torque on the winch. However, force and torque
controlled actuators are difficult to realize and often pose robustness issues due to drive
train friction. Therefore, the test bench actuators are velocity-controlled. Hence, the system
control inputs us and u� are modeled as reference velocities of trolley and rope length,
respectively. The rope velocity �̇ and trolley velocity ṡ are then rheonomic constraints on
the system. This accelerates implementation and yields a more robust control design. The
inputs are collected in the vector

u =
[

us

u�

]
. (2)

The actuator dynamics are modeled as first-order dynamics

τss̈ + ṡ = us, (3)

τ��̈ + �̇ = u�, (4)

with the time constants τs and τ� of trolley and winch actuator, respectively. The time con-
stants can be identified experimentally on the test bench.

The equations of motion of a multibody system arise in the form

M(y, t)v̇ + k(y,v, t) = q(y,v, t) + Bu, (5)
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with the generalized mass matrix M , the vector of Coriolis, centrifugal and gyroscopic
forces k, the vector of applied forces q and the distribution matrix of the system inputs B .
For underactuated multibody systems, Eq. (5) can be split into an actuated and unactuated
parts

[
Maa Mau

Mua Muu

][
v̇a

v̇u

]
+

[
ka

ku

]
=

[
qa

qu

]
+

[
Ba

0

]
u. (6)

For the considered crane, the equation of motion (5) is derived with the Newton–Euler for-
malism for the swing angle ϕ, under rheonomic constraints of rope and trolley velocities.
Adding the actuator models of Eq. (3) and Eq. (4) yields the equations

⎡
⎣ τs 0 0

0 τ� 0

cosϕ 0 �

⎤
⎦

⎡
⎣ s̈

�̈

ϕ̈

⎤
⎦ +

⎡
⎢⎣

ṡ

�̇

2ϕ̇�̇

⎤
⎥⎦ =

⎡
⎣ 0

0

−g sinϕ

⎤
⎦ +

⎡
⎣1 0

0 1

0 0

⎤
⎦u, (7)

where the dashed lines denote the separation into actuated and unactuated parts. Due to the
inclusion of the actuator dynamics as first-order systems, the matrix M is not symmetric
anymore but is still non-singular. Note that the equations of motion only depend on the time
constants τs and τ� and the gravitational constant g. They depend on neither trolley mass
nor load mass. The output z of the crane model is defined as the load position

z = h(y) =
[

s + � sin(ϕ)

� cos(ϕ)

]
. (8)

Alternatively to using minimal coordinates, a set of redundant coordinates yr in combination
with constraint equations can be used to describe the crane motion. This yields a system of
differential-algebraic equations

M r(yr, t)v̇r + kr(yr,vr, t) = q r(yr,vr, t) + QTλ + B ru, (9)

c(yr) = 0, (10)

where the vector λ contains the Lagrangian multipliers which arise to fulfill the geometric
constraints c(yr) [13]. The Jacobian of the constraints is

Q = ∂c(yr)

∂yr
. (11)

For the presented system, it is convenient to describe the load dynamics in redundant coor-
dinates. Then, the complete vector of redundant coordinates is

yr =
[

yr,a

yr,u

]
=

⎡
⎢⎢⎣

s

�

x2

z2

⎤
⎥⎥⎦ , ẏr = vr =

[
ẏr,a

ẏr,u

]
=

⎡
⎢⎢⎣

ṡ

�̇

ẋ2

ż2

⎤
⎥⎥⎦ , (12)

where x2 and z2 describe the load position in the coordinate system depicted in Fig. 1(b).
Once again replacing the trolley dynamics by the actuator dynamics of Eq. (3) and Eq. (4)
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yields the crane dynamics in DAE form

⎡
⎢⎢⎣

τs 0 0 0
0 τ� 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

s̈

�̈

ẍ2

z̈2

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

ṡ

�̇

0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0

0
g

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0

2(x2 − s)

2z2

⎤
⎥⎥⎦λ +

⎡
⎢⎢⎣

1 0
0 1

0 0
0 0

⎤
⎥⎥⎦u, (13)

z2
2 + (x2 − s)2 − �2 = 0, (14)

where the only Lagrangian multiplier represents the rope force FS to fulfill the rigid rope
constraint (14). The system output in redundant coordinates simply is

z = hr(yr) = yr,u =
[

x2

z2

]
. (15)

The control objective is to move the load along a trajectory prescribed in time and space. An
inverse model is derived in the following section to accomplish trajectory tracking.

3 Servo-constraints problem formulation

Servo-constraints impose additional constraints on the system formulations of either Eq. (7)
or Eqs. (13) and (14) by enforcing the desired output trajectory zd(t). The servo-constraints
therefore are

0 = h(y) − zd(t), (16)

where both coordinate definitions can be used. The servo-constraints Eq. (16) extend the
equations of motion to form a system of DAEs

ẏ = v, (17)

M(y, t)v̇ + k(y,v, t) = q(y,v, t) + QT(y)λ + Bu, (18)

0 = h(y) − zd(t), (19)

0 = c(y), (20)

for both formulations in generalized coordinates (1) and redundant coordinates (12). The
DAE setup in generalized coordinates will be abbreviated GC, while the formulation using
redundant coordinates will be abbreviated RC in the following. In case of GC, the geometric
constraints c(y) vanish. Note that the dependencies of the matrices on the state vectors are
omitted due to readability reasons in the following.

3.1 Formulation in generalized coordinates

For the crane system in generalized coordinates, the DAE system of Eqs. (17)–(20) is of
index 5 and will be referred to as GC5 formulation. It is analyzed in detail in [4], where
the formulation includes torque and force inputs in contrast to the reference velocity in-
puts used here. The inclusion of actuator dynamics does not change the index of the DAE.
A projection approach is proposed in [4] to reduce the formulation to an index 3 formula-
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tion. Equations (17)–(19) are projected into a constrained and unconstrained subspace. The
constrained subspace is spanned by the Jacobian of the output

C = ∂h

∂y
, (21)

while the unconstrained subspace is constructed as a complementary subspace. The uncon-
strained subspace is spanned by the matrix D, which is constructed by demanding

CD = 0. (22)

Following [4], a premultiplication of the DAE system in Eqs. (17)–(19) by the matrix
[DT CM−1]T yields a new set of index 3 DAEs

ẏ = v, (23)

DTMv̇ = DT(q − k) + DTBu, (24)

0 = CM−1(q − k) + CM−1Bu − z̈d + Ċv, (25)

0 = h − zd. (26)

This formulation will be referred to as GC3 formulation. Note that here, Eq. (23) is of
dimension n = 3, Eq. (24) of dimension n − m = 1, and Eqs. (25) and (26) are of dimen-
sion m = 2. The total number of equations, 2n + m = 8, matches the number of unknowns,
which are the desired state states yd, its derivatives vd, and the corresponding inputs ud. The
desired input trajectory ud poses the feedforward control input.

3.2 Formulation in redundant coordinates

In redundant coordinate formulation, the DAE system of Eqs. (17)–(20) is also of index 5
and will be referred to as RC5 formulation. It is even more straightforward to set up the
servo-constraints

0 = yr,u − zd, (27)

because the load position is directly part of the coordinate vector. It was proposed in [5] to
substitute Eq. (27) into the original crane dynamics of Eqs. (13)–(14), yielding

ẏr,a = vr,a, (28)
⎡
⎢⎢⎣

τs 0 0 0
0 τ� 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

s̈

�̈

ẍ2d

z̈2d

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

ṡ

�̇

0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0

0
g

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0

2(x2d − s)

2z2d

⎤
⎥⎥⎦λ +

⎡
⎢⎢⎣

1 0
0 1

0 0
0 0

⎤
⎥⎥⎦u, (29)

z2
2d + (x2d − s)2 − �2 = 0. (30)

The last two equations of Eq. (29) are now algebraic instead of differential equations, and the
original servo-constraints are removed from the set of equations. This reduces the number
of equations and unknowns by m = 2 equations. Note that the substitution of the servo-
constraints already yields an index 3 DAE which will be referred as RC3. Another projection
is not necessary.
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The approach of using redundant coordinates has some advantages since the derivation
of the equations of motion is easier and a projection to obtain an index 3 DAE is not nec-
essary in this case. Moreover, the rope force FS is contained in Eq. (29) in terms of λ and
is therefore one of the unknowns of the system. This is convenient for checking feasible
trajectories by demanding FS(t) > 0 ∀t . On the other hand, the servo-constraints solution
does not contain the desired generalized coordinates yd anymore. If necessary for feedback
control, it has to be generated from the desired output zd and desired redundant coordinates
yr,d during post-processing.

4 Solution code

In Sect. 3, four servo-constraints formulations were introduced, namely index 5 formulations
in generalized (GC5) and redundant coordinates (RC5) and index 3 formulations in general-
ized (GC3) and redundant coordinates (RC3). All formulations can be solved by numerical
schemes. For notational simplicity, the DAE system is collected in the vector

F (v,y,u, v̇, ẏ,λ) = 0 (31)

for all formulations. Different numerical schemes can be applied to solve Eq. (31) [11].
An implicit Euler scheme is applied here as also proposed in [4] for such servo-constraints
problem. All derivatives at time tk+1 are approximated by finite differences

ẏk+1 ≈ yk+1 − yk

�t
, (32)

where the indices k + 1 and k denote the corresponding values at time tk+1 and time tk ,
respectively. In total, a set of nonlinear equations arises as follows:

F

(
vk+1,yk+1,uk+1,

vk+1 − vk

�t
,
yk+1 − yk

�t
,λk+1

)
= 0, (33)

which is solved for the solution vector

xk+1 =

⎡
⎢⎢⎣

vk+1

yk+1

uk+1

λk+1

⎤
⎥⎥⎦ (34)

at each time step tk+1. Note that for GC, the vector λk+1 vanishes. Newton’s method is
applied to solve the nonlinear equations in Eq. (33). The solution of the previous time step
xk is chosen as an initial guess x0

k+1 for the next iteration. Theoretically, convergence of
Newton’s method within the available control loop step time cannot be assured. Therefore,
only one Newton iteration is proposed to solve Eq. (33). This is equivalent to the linear
implicit Euler scheme [11]. In Sect. 6, the accuracy of the linear implicit Euler scheme
is compared to the implicit Euler scheme. For the implicit Euler scheme, the convergence
criterion of Newton’s method is chosen as the absolute criterion

‖F‖max < 1.0 · 10−9. (35)
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However, to ensure fast computation, Newton’s method is stopped after a maximum of imax

iterations. Computational speed is further increased by symbolically precalculating the Ja-
cobian

J F = ∂F

∂xk+1
=

[
∂F

∂vk+1

∂F
∂yk+1

∂F
∂uk+1

∂F
∂f r

r,k+1

]
. (36)

Real-time applicability of the proposed scheme will be investigated in detail in Sect. 6.

5 Stabilizing control

If the system model represented the overhead crane perfectly and no disturbances occurred,
the feedforward input ud would be sufficient for trajectory tracking. However, due to model
errors and disturbances, feedback control is necessary to stabilize the system around the
prescribed trajectory. The feedback channel makes use of the desired state trajectories yd

and vd which result from the servo-constraints solution. A linear quadratic regulator (LQR)
and a sliding mode controller are designed for stabilizing.

In order to apply the LQR optimization problem, the cost function J is defined as

J = 1

2

∫ ∞

t0

x(t)TQx(t) + u(t)TRu(t)dt, (37)

where Q ∈ R
6×6 and R ∈ R

2×2 are weighting matrices used for tuning [7]. The system dy-
namics are linearized around the final state of the trajectory to apply the LQR. The obtained
gains are then used for the entire trajectory. Solving the LQR problem yields a linear time
invariant gain matrix K ∈R

m×2n. It is used in the feedback law

uLQR = K

[
ỹ

ṽ

]
, (38)

where the tilde denotes the error between desired and measured trajectory of the generalized
coordinates

ỹ =
[

ỹa

ỹu

]
= y − yd, ṽ = v − vd. (39)

The feedback control uLQR accounts for small variations around the prescribed trajectory.
The main control action for following the trajectory is provided by the feedforward con-
trol ud. This results in less noise amplification in the feedback loop. Alternatively to the
constant gain matrix, one might use a linearization around the prescribed trajectory yd. This
yields a linear time variant system for each trajectory. Solving the corresponding Riccati
differential equation yields a time variant gain matrix K(t). A comparison with the simple
time-invariant approach shows no advantage for the presented system [12].

Additionally, a sliding mode controller is compared to the LQR controller. The sliding
mode controller is set up for the underactuated multibody system as proposed in [2]. A slid-
ing surface s of dimension n = 2 is defined as

s = Θ ãva + Λaỹa + Θ ũvu + Λuỹu (40)

= Θava + Θuvu −Θavd,a − Θuvd,u + Λaỹa + Λuỹu︸ ︷︷ ︸
sp

. (41)
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The surface parameters Θa,Λa ∈R
2×2, and Θu,Λu ∈R

2×1 are chosen to yield stable slid-
ing mode surfaces [2]. Stable sliding mode surfaces can, for example, also be obtained by
singular LQ surface design; see [9]. The control law for the sliding mode input uSMC is
obtained from ṡ = 0, so that

uSMC = −M−1
s

(
f s + ṡp + κsat

(
sΦ−1

))
, (42)

where the matrices M s and f s are defined as

M s = ΘaM
′−1
aa − ΘuM

′−1
uu MuaM

′−1
aa , (43)

f s = ΘaM
′−1
aa f ′

a + ΘuM
′−1
uu f ′T

u , (44)

and

M ′
aa = Maa − MauM

T
uuMua, (45)

f ′
a = (qa − ka) − MauM

T
uu(qu − ku), (46)

M ′
uu = Muu − MuaM

T
aaMau, (47)

f ′
u = (qu − ku) − MuaM

T
aa(qa − ka). (48)

Hereby the partition of the equations of motion (6) is used. For the detailed derivation,
see [2]. The gains κ in Eq. (42) are chosen to ensure that the sliding surface is reached in fi-
nite time [2, 15]. The width Φ of the saturation function is tuned to minimize the error while
avoiding chattering. The desired states yd, ẏd, and ÿd are necessary to calculate Eq. (42).
They are obtained from solving the servo-constraints formulation. The second derivatives of
the state trajectory ÿd are obtained by finite differences

ÿd,k+1 ≈ vd,k+1 − vd,k

�t
. (49)

Both the LQR feedback control uLQR in combination with the feedforward law ud and the
sliding mode control uSMC are tested in experiments.

6 Experimental results

The crane test bench is set up at the Institute of Mechanics and Ocean Engineering at Ham-
burg University of Technology and is depicted in Fig. 1(a). The nominal physical parameters
are listed in Table 1. Trolley and winches are actuated by synchronous servo-motors. The
motion range lies within 13 m and 9 m for trolley and ropes, respectively. Additional kine-
matic constraints are shown in Table 2.

A LABVIEW program running on a real-time computer controls the test bench. The real-
time computer runs a 32 bit version of the NATIONAL INSTRUMENTS real-time operating
system PHAR LAB 13.1. The LABVIEW control loop is running with a time step size of
�t = 10 ms. Absolute angle encoders measure the current trolley position s and the rope
length �. The swing angle is estimated by an unscented Kalman filter based on measurements
of rope length and rope force. The estimated angle ϕ̂, the measured trolley position ŝ and
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Table 1 Physical parameters of
the container crane test bench

Parameter Nominal value

load dimension (0.35 × 0.37 × 0.86) m

load mass m = 12.9 kg

trolley mass mT = 270 kg

time constant trolley τs = 0.03 s

time constant winch τ� = 0.02 s

Table 2 Kinematic parameters
of the container crane test bench

Parameter Admissible range

swing angle ϕ ∈ [−0.2,0.2] rad

angular velocity ϕ̇ ∈ [−0.25,0.25] rad
s

rope length � ∈ [3,12] m

rope velocity �̇ ∈ [−2,2] m
s

trolley position s ∈ [0,13] m

trolley velocity ṡ ∈ [−3,3] m
s

measured rope length �̂ determine the estimated load position ẑ by

ẑ =
[

ŝ + �̂ sin(ϕ̂)

�̂ cos(ϕ̂)

]
. (50)

For control performance evaluation, the estimated load trajectory ẑ(t) is compared to the de-
sired trajectory zd(t). In the experiments, the desired trajectory is a straight path or semicir-
cle defined by an initial and final load position p0 = [x20 y20 z20]T and pf = [x2f y2f z2f]T,
respectively, defined in the coordinate system depicted in Fig. 1(b). Every point p(s) on the
straight path is parameterized by the scalar σ so that

p(σ ) = p0 + σ

σt
(pf − p0), σ ∈ [

0, σt
]
, (51)

where the parameter σt is the total arc length σt = ‖pf − p0‖2. The temporal sequence is
defined by a timing law σ = σ(t). The parameter σ(t) must be four times continuously
differentiable and is given by

σ(t) =
(

126

(
t

tf

)5

− 420

(
t

tf

)6

+ 540

(
t

tf

)7

− 315

(
t

tf

)8

+ 70

(
t

tf

)9)
σt, (52)

where the initial time is t0 = 0 s and the transition time is tf; see, e.g., [4].

6.1 Analysis of servo-constraints solution

Firstly, the solution code proposed in Sect. 4 is analyzed with respect to its accuracy. For
this purpose, the servo-constraints solution is compared to the analytical feedforward solu-
tion uflat based on differential flatness [10]. The trajectory error e(t) is defined as the largest
difference of the feedforward control inputs at each time instant

e(t) = max
i

∥∥ud,i (t) − uflat,i (t)
∥∥. (53)
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Fig. 2 Maximum error emax between numerical and analytical solution for different time step sizes �t

The maximum error emax is the maximum of the error e(t) over time

emax = max
t

(
max

i

∥∥ud,i (t) − uflat,i (t)
∥∥)

= max
t

(
e(t)

)
. (54)

Both formulations in generalized and redundant coordinates are solved in index 3 and
index 5 configuration. All four formulations are solved with the linear implicit Euler
(imax = 1) and the implicit Euler with at most imax = 10 Newton iterations. The simula-
tions are performed for a linear trajectory with initial position p0 = [15 0 4]T m, final po-
sition pf = [11 0 7]T m and transition time tf = 10 s.

First-order convergence of the implicit Euler method is demonstrated in Fig. 2, where
the maximum error emax is plotted over the step size �t . For all formulations except RC5,
the maximum error emax of the linear implicit Euler scheme is comparable to the error of the
implicit Euler scheme with possibly more than one iteration. Therefore, the linear implicit
Euler scheme is applicable on the test bench. This ensures real-time applicability. Moreover,
all index 3 formulations and all index 5 formulations, except for RC5 with imax = 1, yield
comparable errors emax, respectively. The index 5 formulations run into numerical rounding
errors for time step smaller than �t = 10 ms. Both formulations RC3 and GC3 are stable
for time steps larger than �t = 0.5 ms for the simulated scenario. The results show that a
time step �t = 10 ms, which is available on the test bench, is sufficient for the accuracy of
the numerical solution in both index 3 formulations. The maximum error emax ≈ 1 ·10−3 m/s
is small compared to inaccuracies, e.g., due to actuator friction. This justifies the usage of
the Euler scheme. Note that since the system is differentially flat, numerical effects such
as numerical damping do not significantly influence the solution. Therefore, both index 3
formulations GC3 and RC3 are used for experiments.

Note that the maximum error emax does not grow over integration time. There is no drift-
off effect of the algebraic variables, since the servo-constraints are fulfilled exactly at po-
sition level in each integration step. This is demonstrated in Fig. 3. This is an important
property concerning long-term applicability.
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Fig. 3 Error e(t) over time for
both index 3 formulations with
time step �t = 10 ms

Table 3 Control parameters of the feedback and sliding mode control, where I i denotes the identity matrix
of size i

Parameter R Q Θa Λa Θu Λu κ Φ

Value 100I2
[ 1000I3 0

0 1000I3

]
I2 0.5I2

[ 1.5
0

] [−5.0
0

] [ 1
1

]
I2

Fig. 4 Experimental results for the load swing reduction experiment

6.2 Experiments

In experiments, the pure servo-constraints feedforward controller (SC), the feedforward con-
troller stabilized by LQR (SC+LQR), and the sliding mode controller (SMC) proposed in
Sect. 5 are compared. Note that for the servo-constraints feedforward controller, both for-
mulations in GC3 and RC3 are implemented and compared. It is also noted that the SMC
uses the desired state trajectories yd, vd from the servo-constraints inverse model which
is also solved for the SMC online. The tuning parameters of LQR and SMC are shown in
Table 3. The stability properties of both LQR and SMC are demonstrated independently
from the feedforward loop in the first experiment. For this purpose, the trolley is disturbed
with a constant step velocity us = −0.5 m/s for 3 s. This induces load swinging. After a
waiting time of another 3 s, the feedback controllers are turned on to dampen the induced
load swinging of ϕ0 ≈ 5.2◦ and bring the system to rest. The input u and estimated angle
ϕ̂ are shown in Fig. 4. The corresponding load swinging of the free system is also shown.
Both feedback controllers are able to dampen the load swinging efficiently compared to the
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Fig. 5 Experimental results for the straight trajectory 1

free system. The sliding mode controller shows superior performance compared to the LQR
controller. It reduces load swinging much faster.

After verification of the stabilizing properties of the feedback controller, trajectory track-
ing is analyzed. For the straight trajectory defined in Sect. 6.1, called trajectory 1, the esti-
mated load position ẑ and the input and state trajectories are shown in Fig. 5. All proposed
controllers are able to follow the prescribed trajectory. Note that only the angle ϕ̂ is shown
for all three experiments because the other trajectories are not distinguishable in the plots.

In terms of numerical accuracy, it is shown in Fig. 2 that both formulations GC3 and
RC3 yield similar numerical errors. This results in similar performance in terms of tracking
accuracy. Regarding real-time capability, the calculation time tcalc,k which is necessary to
solve the servo-constraints formulation in each time step k is measured on the real-time
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Fig. 6 Mean and twice the
standard deviation of
10 measurements each of the
mean calculation time t̄calc for
each time step for trajectory 1
with transition time tf = 10 s

target with a resolution of 1 µs for both Gc3 and RC3. The mean calculation time for each
trajectory is calculated by

t̄calc = 1

N

N∑
k=1

tcalc,k, (55)

where N is the maximum amount of steps N = 100tf due to a time step size �t = 10 ms.
To estimate measurement errors, the mean calculation time t̄calc is measured 10 times for
each formulation. Its mean and twice the standard deviation is shown in Fig. 6 for the linear
implicit Euler and the implicit Euler with at most imax = 10 iterations for both RC3 and GC3.
For comparison, the time necessary to evaluate the analytical solution uflat is shown as well.
Due to possibly more Newton iterations, the implicit Euler schemes are at most 22% slower
than the linear implicit Euler schemes. This difference is rather small because Newton’s
method converges within 2 to 3 iterations for this experiment. The mean calculation time t̄calc

of the servo-constraints formulation GC3 and RC3 is approximately 74% and 113% larger
compared to the analytical solution, respectively. However, all mean calculation times are
orders of magnitude smaller than the available control loop step time �t = 10 ms, proofing
again the real-time capability. Therefore, online generation of feedforward inputs is possible.
Moreover, there is enough time for far more complex systems to be solved in real-time.

Controller robustness is analyzed by introducing an initial trolley position error
s� = 0.5 m to trajectory 1. For this experiment, the actual initial position is chosen as
p0 = [11 0 4.5] m and the final position is pf = [15 0 6] m, while the transition time is
tf = 15 s. This is called trajectory 2. The measured load position ẑ and the input and state
trajectories are shown in Fig. 7. The pure feedforward control SC cannot detect the initial
error and finishes the trajectory with the same error s�. The controllers which include a
feedback loop detect the initial position error. The LQR controller provides a large initial
input us to reduce the initial error quickly. This results in load swinging, which is reduced
during the course of the trajectory. On the other hand, the SMC has a slower reaction to
the initial error. Less load swinging is introduced. However, convergence to the desired
trajectory is slower and the trajectory error e(t) is larger compared to the LQR controller.

With the presented problem formulation, trajectory control is not only possible for
straight but also for various other trajectories. For example, a semicircular trajectory can
be used for collision avoidance. Experimental results are shown for a semicircle with ra-
dius r = 0.95 m in Fig. 8, where the initial position is p0 = [9.65 0 4.5] m and the transi-
tion time tf = 9 s. This is called trajectory 3. Figure 8(a) shows that all controllers are able
to follow this trajectory. The sliding mode controller shows some performance drawbacks
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Fig. 7 Experimental results for the straight trajectory 2 with initial error s� = 0.5 m

for this trajectory. The feedforward controller augmented by LQR yields the best tracking
results here. It reduces the small tracking errors initiated by the feedforward controller. An
overlay of videos frames of the experiment is shown in Fig. 8(b).

In total, the sliding mode controller shows superior performance in load swing damping,
but the combination of servo-constraints feedforward and LQR control yields better results
in trajectory tracking.

7 Conclusion

Servo-constraints are applicable to underactuated multibody systems described in either
generalized or redundant coordinates. For the presented system, the formulation in general-
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Fig. 8 Experimental results for tracking a semicircle with radius r = 0.95 m applicable for collision avoid-
ance, trajectory 3. (a) Measured position ẑ. (b) Overlayed video frames of the experiment

ized coordinates yields an index 5 DAE which has to be reduced to index 3. By formulating
the system dynamics in redundant coordinates, a more simple representation of the servo-
constraints is possible. By directly applying these constraints to the equations of motion,
an index 3 DAE system arises. No further projection is necessary. Servo-constraints pose a
simple method to design a feedforward tracking controller. Experiments with an overhead
crane test bench show that the servo-constraints formulation can be solved in real-time us-
ing a linear implicit Euler scheme. The servo-constraints solution can be augmented with an
LQR feedback controller for a robust controller performance. Moreover, it can also be used
as a basis for sliding mode control.

Compliance with ethical standards The authors declare that they have no conflict of interest.
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