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Abstract Multibody models of scoliotic spine have shown great promise in planning scol-
iosis surgery by providing predictive information concerning the surgery outcome. To pro-
vide good predictive information, it is important that the kinematic models underlying the
movement of the spine models would be personalized to give good estimates of the spine in
different positions, which is lacking in the existing literature. This paper aims to develop a
patient-specific multibody kinematic model of the scoliotic spine to represent its movement
in frontal plane of the human body. The model is an open-chain mechanism comprising rigid
links interconnected with rotary joints. To represent the movement, the mechanism lays on
the spine curve and estimates the curve and the location and orientation of vertebrae. To
personalize the mechanism for a patient, a minimization problem is defined to give the num-
ber of the links and their length by using X-rays of different spine positions. The feasibility
and capabilities of our patient-specific model are tested by using the data from preoperative
X-rays of five positions of 10 AIS (adolescent idiopathic scoliosis) patients; three of the X-
rays are routine in scoliosis standard care. The mechanism is personalized to each patient by
using the three routine X-rays, and it is used to estimate all the five positions. Root-mean-
square-errors (RMSE) of the curve, location, and orientation are 2e–5 mm, 0.27 mm, and
0.25°, respectively. The small RMSEs imply that our kinematic model is capable of esti-
mating the scoliotic spine positions in the frontal plane and thus of describing the scoliotic
spine movement in this plane. Our personalization using X-rays of three spine positions
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helps to set better values for the kinematic parameters (such as the length of the links) for
more accurate estimates of the spine in the frontal plane.

Keywords Adolescent idiopathic scoliosis · Patient specific kinematic model · Scoliotic
spine · Scoliotic spine curve · Scoliotic spine movement

1 Introduction

Scoliosis is a complex three-dimensional (3D) structural deformity of the human spine.
Surgery is often required to correct the severe deformities [1]. There is no consensus in sur-
gical planning because the scoliosis is a complicated patient-specific deformity [2]. In this
regard, biomechanical multibody models of scoliotic spine are effectively helpful in provid-
ing predictive information that gives surgeons a rough idea of the surgery outcome [3, 4]. In
creating the multibody models of the scoliotic spine, development of patient-specific kine-
matic models underlying the movement of the models is one of the most important steps [5].
The kinematic models define a joint-link configuration for the spine to define the degree-
of-freedom (DOF) of the bodies (e.g. vertebrae and intervertebral discs) and the constraint
to their movement [6]. It is important that the kinematic parameters (e.g. the length of the
links) of the kinematic models would be personalized for more accurate estimation of the
spine. The kinematic models are required to accurately place the vertebrae at their respec-
tive location and orientation to better represent the spine positions and, accordingly, the
spine movement (considering the movement as the sequence of the positions). Incapability
of the kinematic models to represent the spine movement negatively affects the prediction
of the surgery outcome [5, 7].

In the existing kinematic models, the spine (including intact and scoliotic) is typically
considered as a chain of functional spinal units [8]; a functional unit includes two succes-
sive vertebrae and the intervertebral disc [9]. The vertebrae are typically considered as rigid
bodies [10, 11]. The intervertebral discs are generally modeled as articulated mechanisms
and/or flexible beam elements represented by stiffness matrices. Several studies have con-
sidered the intervertebral discs as 3-DOF rotary joints (spherical joint) [12–14]. De Zee et
al. [15] and Christophy et al. [8] have placed the center of rotation of the joint on the su-
perior endplate of the lower vertebra of a functional unit. Petit et al. [16] in a study on 82
patients with AIS found that the center of rotation could be at the posterior extremity of the
superior endplate. In these models, in a functional unit (Fig. 1a), the spherical joint connects
the lower vertebra to the upper one by using a rigid link (the upper vertebra is attached to
the link). Figure 1b exemplifies1 the performance of this mechanism in a real situation. The
situation is described by using the X-ray of a functional unit of a scoliotic spine in the frontal
plane. As is shown, the mechanism cannot place the upper vertebra (red four-sided shape)
on its measured location and orientation (black four-sided shape). The reason for this per-
formance of the mechanism is depicted in Fig. 1c, where the link and joint of the functional
unit are placed in their measured location and with their measured orientation. As is clear,
there is an offset between the joint and the point O where the link must be connected to the
joint. The offset is due to the fact that the stretch of the intervertebral disc is not considered

1The examples are based on the measurements done on the X-rays of the scoliotic patients included in this
study. The measurements and their accuracy and reliability are explained in Sect. 5.1.
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Fig. 1 (a) The mechanism of a functional spinal unit comprising the spherical joint, (b) exemplification of
the performance of the mechanism, and (c) illustration of the offset

Fig. 2 (a) The mechanism of a functional unit comprising the flexible beam element, (b) the relative location
of the endpoints of the beam element, and (c) the force and moment applied to the endpoint in the erect
position

in the mechanism. As such, this mechanism cannot make the possible movement of a ver-
tebra in relation to its adjacent vertebrae. Therefore, the kinematic model that considers the
intervertebral disc as a spherical joint may not give a good representation of the scoliotic
spine movement. To address the mentioned deficiency, consideration of the intervertebral
disc as a beam element can be a viable alternative [17].

Various studies [18–20] have considered the intervertebral discs as flexible beam ele-
ments represented by 6 × 6 stiffness matrices. Such configuration of the functional units,
that is, rigid vertebrae interconnected with flexible beam element, can describe the location
and orientation of the vertebrae in 3D space [17, 21]. However, this configuration is not
without limitations in representing the scoliotic spine movement. We explain one limitation
through an example∗ of a real situation (Fig. 2). In the example, we make a comparison be-
tween the movement directions of the beam element and scoliotic spine in the frontal plane.
To represent the movement of the beam element, we consider the movement of its endpoints.
The endpoints are the points at which the beam element is attached to its adjacent vertebrae
at the middle of the superior and inferior endplates of the vertebrae of a functional unit [3,
22] (Fig. 2a). Figure 2a shows X-rays of a functional unit in the left and right bending po-
sitions of a scoliotic spine. The relative location of the endpoints is shown in Fig. 2b in a
larger scale for easier illustration. As is clear, the upper endpoint of the beam element in the
right bending position (red circle) is in the left side of the upper endpoint in the left bending
position (blue circle). Thus, the upper endpoint moved to the left (right) side in the right
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(left) bending position. In other words, the upper endpoint of the beam element moved to
the direction opposite to the direction of the scoliotic spine movement. The opposite move-
ment direction implies that this configuration may not give a good representation of the
scoliotic spine movement. The reason is described in the following. The left (right) bending
position of the scoliotic spine has been made by exerting a leftward (rightward) force on the
spine model in the erect position [23]. The force is applied to the uppermost vertebra of the
spine [24]. As is clear in Fig. 2c, the impact of the force, that is, the horizontal component
of the force (F ) and moment (τ ), at the upper endpoint (black circle) of the beam element
in the erect position must move the endpoint (black circle) to the direction of the bending
positions. However, in real situations, the endpoint (black circle) is moved to the direction
opposite to the bending direction (blue and red circles). As such, the beam element may not
place the upper vertebra of the functional unit on the red/blue four-sided shape representing
the measured locations and orientations of the vertebra (Fig. 2a). This shows a mismatch
between the simulated bending and the measured scoliotic spine.

The existing kinematic models (e.g. [23, 25, 26]) have been typically personalized (e.g.
specification of length of links) by minimizing the errors in estimating the location and ori-
entation of the vertebrae of the spine in the erect position. Personalization by using more
positions can be helpful to improve the ability of the kinematic models in representation of
the spine movement. Such personalization can offer better values for the kinematic param-
eters (such as the length of the links) for more accurate estimates of the spine curve and
the location and orientation of vertebrae in the frontal plane, resulting in better representa-
tion of the spine position and thus of the spine movement. However, such a patient-specific
kinematic model is considerably lacking in previous studies [5].

The purpose of this paper is to develop a patient-specific kinematic model of the scoli-
otic spine to represent its movement in the frontal plane. Considering the movement as the
sequence of the scoliotic spine positions, the kinematic model represents the movement by
describing the positions. In this paper, the positions are described by estimating the scoliotic
spine curve and the location and orientation of the vertebrae. We personalize our kinematic
model to a patient by using X-rays of a number of spine positions in the frontal plane,
whereas the existing kinematic models have been typically personalized by using X-rays
of only the erect position. We use X-rays because they are gold standard to describe the
spine in a position [27–33]. In this study, we focus on AIS, the most common deformity at
adolescents that mostly occurs in female [34].

The paper is organized as follows. Section 2 briefly explains the scoliotic spine and de-
fines the terminologies. In Sect. 3, the problem is defined and formulated. The proposed
kinematic model is introduced in Sect. 4. Section 5 evaluates the accuracy of the model.
This is followed by a discussion in Sect. 6 on the feasibility and capabilities of the model to
represent the scoliotic spine movement. Section 7 concludes the paper.

2 Scoliotic spine

This section briefly describes the scoliotic spine and its evaluation. Scoliosis is a complex
3D structural deformity of the spine affecting between 1.5 % and 3 % of the population
[1, 35]. It is defined as a side-to-side curvature of the spine with a twisting of the vertebral
column about its axis (Fig. 3a) [36]. This deformity affects the thoracic and lumbar regions
of the spine, that is, from the fifth vertebra (L5) of the lumbar region to the first vertebra
(T1) of the thoracic region.
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Fig. 3 Scoliotic spine in the erect position in the frontal plane: (a) spine regions and (b) Cobb angles

The scoliosis is normally evaluated by measuring Cobb angles on two-dimensional (2D)
radiographs [37]. Cobb angles are measured in the frontal plane between the inflection ver-
tebra2 and the end vertebrae3 (Fig. 3b) [39]. The severity of the scoliosis is determined by
the Cobb angle; the Cobb angle greater than 45° corresponds to the severe scoliosis. Surgical
correction is often required for the severe scoliosis.

To describe the geometry of the scoliotic spine in the frontal plane, we define the fol-
lowing terms. The definitions are based on the concept of vertebral body line proposed by
Scoliosis Research Society (SRS) (Item #2 in [40]).

Term 1. Global coordinate system. The system (G) is represented by XYZ defined on the
lowest vertebra (LV) in the spine model (Figs. 4a and b) and has its origin at the
midpoint of the vertebral body of LV (Fig. 4b). The midpoint of a vertebra is the
intersection of the line drawn from the upper left corner to the lower right of the
vertebral body and the line drawn from the upper right to the lower left of the
vertebral body (Fig. 4c shows an example for T9) [38]. The X-axis and Y-axis
define the anterior and left directions. The Z-axis is parallel to the line that passes
through the center of the upper and lower endplates of LV (an example of the line
is shown for T9 in Fig. 4c). The plane YZ is the frontal plane of the human body
(Fig. 4b).

Term 2. Location of a vertebra. It is the location of the midpoint of the vertebral body in
the frontal plane (Fig. 4c).

Term 3. Orientation of a vertebra. It is the angle between the Z-axis and the line (Fig. 4c)
passing through the center of the upper and lower endplates of the vertebra in the
frontal plane (Item #27 in [40]).

Term 4. Scoliotic spine curve. The curve in the frontal plane is the curved line that passes
through the midpoints of the vertebral bodies projected on this plane (Fig. 4a) (Item
#2 in [40]).

Term 5. Spinal length. The length in the frontal plane is the arc length of (part of) the spine
curve projected on this plane.

2The inflection vertebra is where the spine curve changes the direction from convex to concave and vice
versa [38].
3The vertebrae that define the ends of the spine curve in the frontal or sagittal planes [38].
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Fig. 4 Description of the geometry of the scoliotic spine in the frontal plane: (a) the scoliotic spine curve
shown on an X-ray of the scoliotic spine in the erect position, (b) the global coordinate system, (c) the location
and orientation of a vertebra

Term 6. Scoliotic spine position. The position in the frontal plane is a term for a configura-
tion of the scoliotic spine in this plane, such as erect (Fig. 4a) and neutral positions.

Term 7. Scoliotic spine movement. In scoliotic spine movement, the spine starts from a po-
sition and ends in another position. The movement is the sequence of the scoliotic
spine curves representing the first, intermediate, and last positions of the spine in
the context of this paper.

3 Problem definition

Despite recent attempts made to classify the scoliotic deformity by using 3D classifica-
tion [41], to the best of our knowledge, there is no consensus in interpretation of 3D clas-
sification and validation for the surgical treatment guidelines. The current standard care
for surgical treatment of 3D scoliotic deformity relies heavily on the use of 2D radiographs
taken in the frontal plane [42, 43]. In planning the surgery, the spinal flexibility in the frontal
plane is one of the key parameters to identify the correct spinal fusion levels and the extent
of spinal instrumentation required to correct the scoliotic deformity [2, 23]. The flexibility
is the difference of spinal excursion (movement) from the erect to lateral bending posi-
tions [42]. Various clinical tests have been made to assess the spinal flexibility since the
onset of scoliosis surgical correction [2]. These include 2D radiographs of the spine in the
erect position and 2D radiographs of the lateral bending positions [44], 2D fulcrum bending
radiographs [45], 2D supine traction [46], and/or 2D push prone radiographs [47]. More-
over, in evaluating the outcome of scoliosis surgical correction, one of the main parameters
is the straightness of the spine curve in the frontal plane [1]. To measure the straightness,
the Cobb angles are measured on post-operative 2D radiograph of the erect spine. Therefore,
these parameters from the scoliotic spine in the frontal plane are of primary importance in
planning and evaluation of the scoliosis surgical correction. By using analytical methods
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these parameters, important for surgery planning and evaluation, can be measured on the
spine curves provided by the simulated spines [40, 48, 49]. As such, in order that multibody
models of the scoliotic spine be of great help in surgery planning, it is essential that the
kinematic models offer good estimates of the spine curve in the frontal plane. One crucial
step in this regard is to personalize the kinematic parameters (such as the length of the links)
to a given patient for more accurate estimation of the patient’s spine curves [5]. Overall, for
“surgical correction prediction” application, we found it more proper to develop a 2D multi-
body kinematic model of the scoliotic spine whose kinematic parameters are personalized
by using X-rays of a number of spine positions to give good estimates of the spine curve in
the frontal plane.

This section formulates the problem of 2D kinematic modeling of the scoliotic spine and
describes the input, the output, and the relationships between the input and output.

3.1 Input: the scoliotic spine curve

The scoliotic spine curve projected on the frontal plane is the input of our model. To obtain
the curve, X-rays are used because they are considered as the gold standard in the spine
modelling and validation [27–29].

The curve in the frontal plane (YZ, Fig. 4b) is a mathematical function f of Z. The
curve of position i is given by Y = fi (Z), i = 0,1, . . . ,∞. The zero position (the reference
position in this paper) corresponds to the posterior–anterior erect position (or simply erect
position) of the scoliotic spine. We consider the erect position as the reference because it
is the reference position for the scoliosis evaluation and its surgical correction planning.
Besides, the X-ray taken from the spine in the erect position is a part of the standard care for
monitoring scoliosis [29].

The locations of the vertebrae in a position are defined by the ordered pairs of (Y, Z).
The orientations of the vertebrae are given by the first derivative of f at the location of the
vertebrae, that is, λj = df (Z)/dZ at Zj , where j denotes the j th vertebra. Since G has its
origin at the midpoint of LV in all positions, the location of LV is (Y1,Z1) = (0,0). The
orientation of LV is λ1 = f ′(0) = 0 since the line showing its orientation is the Z-axis of G.

3.2 Output: the patient-specific kinematic model

The output is the kinematic model of the scoliotic spine of a patient in the frontal plane.
The kinematic model is an open-chain mechanism that lays on the scoliotic spine curve.
To characterize the mechanism, a multibody configuration of the joints and links is to be
defined. The mechanism has n 1-DOF rotary joints.

The mechanism in each position estimates the scoliotic spine curve and the location and
orientation of the vertebrae. (Y∗

j ,Z∗
j ) and λ∗

j give the estimated locations and orientations of
the j th vertebra, respectively. The estimated curve is the curve fitted to these estimates, and
it is represented by Y∗ = f ∗

i (Z) for position i.

3.3 Problem formulation

To represent the scoliotic spine movement in the frontal plane, the kinematic model should
be capable of representing the scoliotic spine positions. In this regard, the model is required
to estimate the scoliotic spine curve and the location and orientation of the vertebrae in
the positions. Three criteria (1) are defined to determine the accuracy of the estimates:
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RMSE between the scoliotic spine curve and its estimate and RMSE between the loca-
tions/orientations of the vertebrae and their estimates.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RMSE of the curve =
√
√
√
√ 1

Q

Q∑

q=1

(
f ∗

i (Zq) − fi(Zq)
)2

,

RMSE of the location =
√
√
√
√1

k

k∑

j=1

((
Y∗

j − Yj

)2 + (
Z∗

j − Zj

)2
)

,

RMSE of the orientation =
√
√
√
√1

k

k∑

j=1

(
λ∗

j − λj

)2
,

(1)

where Q is the total number of data points (Y∗,Z) considered on the estimated curve to be
compared with the data points (Y, Z) on the curve, (Y1,Z1) and (YQ,ZQ) are the locations
of LV and the uppermost vertebra in the model, respectively, and k is the total number of the
vertebrae in the model.

4 Description of the kinematic model

4.1 Assumption

To develop the model, we make the following assumption: “the change in the spinal length
(Term 5, Sect. 2) from L4 to T2 is negligible during the movement.” The assumption indi-
cates that the spinal lengths (L) of all the positions are equal, that is, L0 = L1 = · · · = L∞.
In this paper, the assumption is considered valid if |L0 − Li | for i = 1,2, . . . ,∞ is less than
0.5 % of L0, where | · | denotes the absolute operation. The assumption and the constraint
(0.5 %) will be supported in Sect. 5.5.

4.2 Configuration of the model

In the context of mathematics, a curve can be approximated by a piecewise linear curve
consisting of a number of straight lines of equal length. In relation to this statement, two
curves of equal length can be approximated by the same number of the lines if the length of
the lines is sufficiently small. The Appendix briefly explains the approximation and the term
sufficiently small lines. Therefore, referring to the assumption, the scoliotic spine curves in
different positions can be approximated by the same number (n) of the sufficiently small
lines. Thus, we define the kinematic model as a chain of n rotary segments. A rotary seg-
ment (Fig. 5a) consists of a rigid straight link (corresponding to the straight lines) and a
1-DOF rotary joint (corresponding to the connecting points of the successive lines). The
links of the rotary segments are equal in length (Lseg in the Appendix). The chain lays on
the scoliotic spine curve to estimate the curve (Fig. 5b). The chain is constrained at the first
rotary segment attached to the midpoint of LV. The first rotary segment cannot translate with
respect to the midpoint of LV. The last rotary segment corresponds to the midpoint of the
uppermost vertebrae. The kinematic model is characterized by n rotary segments if Lseg is
sufficiently small. In Sect. 4.3, we specify the term sufficiently small and explain how Lseg

and n are obtained.
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Fig. 5 The configuration of the
proposed kinematic model and
the coordinate systems:
(a) a rotary segment and its
location and orientation defined
in G and (b) the chain of rotary
segments laid on the spine curve

Table 1 The DH parameters
θ° d (mm) a (mm) α°

90 0 0 −90

−90 0 0 0

θ1 0 Lseg 0

θ2 0 Lseg 0
.
.
.

.

.

.
.
.
.

.

.

.

θn−1 0 Lseg 0

θn 0 Lseg 0

We adopt the Denavit–Hartenberg (DH) convention [50] to represent the chain. The co-
ordinate systems in Fig. 5 are attached according to the DH convention. The rotation axes
of the joints are parallel to each other and perpendicular to the frontal plane. The location of
a rotary segment is the location of the origin of its coordinate system (xy in Fig. 5a) in G.
The orientation of the rotary segment is the orientation of the x-axis of its coordinate system
with respect to the Z-axis of G.

Table 1 illustrates the DH parameters [50]. The first two rows of Table 1 are for transfor-
mation of G to the coordinate system x0y0z0. Referring to the configuration of the model,
the offsets along the previous z to the common normal (d) are zero, and the angles about
the common normal (α) are zero for transformation of the coordinate system of a rotary
segment to the next one. The scoliotic spine positions are defined by specifying θ1 to θn.

4.3 Personalization of the model

The model is personalized by specifying n and Lseg. As the chain represents the spine curve,
the length of the chain (n · Lseg) should estimate the spinal length in all the positions. We
consider that the acceptable estimation error (i.e. |L0 − ni · Lseg|) is less than 0.5 % of L0

according to the assumption. Besides, Lseg should be sufficiently small to result in the same
number of rotary segments in all the positions, i.e. n0 = n1 = · · · = n∞. It should be noted
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that ni may be different due to the differences |L0 − Li |. Therefore, to find a sufficiently
small Lseg, the linear programing problem (or simply the minimization problem) in (2) is
defined. The minimization problem finds Lseg and ni such that

∑ |n0 − ni | is minimized.
Each Lseg on the spine curve of position i gives an ni . After solving the minimization prob-
lem, a sufficiently small Lseg is obtained, and n is the number of segments obtained for the
erect position (n0).

min |n0 − n1| + |n0 − n2| + · · · + |n0 − n∞|
subject to constraints

∣
∣L0 − n0 ·Lseg

∣
∣ < 0.005L0∣

∣L0 − n1 ·Lseg

∣
∣ < 0.005L0

...∣
∣L0 − n∞ ·Lseg

∣
∣ < 0.005L0

(2)

After personalization of the model, the rotary segments with the location closest (Euclidean
distance) to the location of the vertebrae are specified on the chain in the erect position.
The location and orientation of these rotary segments, labeled by s, are the estimates of the
location and orientation of the vertebrae in all the positions. The estimated locations (Y∗

j ,
Z∗

j ) and orientations λ∗
j of the j th vertebra are given by the locations and orientations of sj ,

respectively.

5 Proof-of-concept

The feasibility and capability of the proposed kinematic model are shown by representing
the spine movement of our cohort of 10 patients. The accuracy of the model in representing
the spine movement is tested. The assumption is also tested.

5.1 Materials and data acquisition

After obtaining domain-specific review board approval, preoperative X-rays of 10 patients
with AIS were used for the study. The X-rays were taken in five posterior–anterior positions
in the frontal plane, one erect position and four prone positions: left bending, right bending,
neutral, and traction positions that are the positions 1, 2, 3, and 4, respectively. The patients
had no neurological deterioration, and they were admitted to hospital for surgical treatment.
Table 2 illustrates descriptive data of the patients. There were eight female and two male
patients with age ranging from 13 to 19 years (mean age of 15 years); LV and the uppermost
vertebra in this study were L4 and T2. It should be noted that L5 and T1 were excluded since
the X-rays at these vertebrae were often suboptimal for the measurement. L0 was calculated
from L4 to T2 and tabulated in Table 2. The average and median Cobb angles of the main
curves were 52° and 53°, respectively.

The preoperative X-rays were analyzed to extract the location and orientation of the
vertebrae from L4 to T2. The limit of accuracy (δ) of measurements of the locations was
0.1 mm, and that (�) of the orientations was 0.1°. The orientations were obtained by utiliz-
ing the tangent formula. To do this, the line showing the orientation of the vertebra (Fig. 4c)
and Z-axis of G were considered as the hypotenuse and cathetus (B) of a right triangle,
respectively (Fig. 6a). The length of B was considered 100 mm. Thus, by measuring the
length of the other cathetus (A), the orientation is given by tan−1 (A/100). The δ of mea-
surements of A and B was 0.1 mm. As such, � is given by (3). The greatest � was almost
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Table 2 Descriptive data of the patients

Patient Gender Age (year) L0 (mm)
from L4 to T2

Lenke
classification
[58]

Thoracic
Cobb angle
(°)

Thoracolumbar/
lumbar Cobb
angle (°)

1 F 13 372.30 1A 49 24

2 F 14 318.62 2C 55 54

3 F 16 444.34 1C 32 43

4 F 13 403.54 2A 38 53

5 F 19 417.07 2C 48 43

6 F 16 382.78 2B 53 35

7 M 19 358.51 2B 48 26

8 F 15 349.37 3A 54 59

9 M 14 370.64 2A 47 59

10 F 15 320.02 1B 53 39

Fig. 6 (a) Measurement of the orientation of the vertebrae and (b) the limit of accuracy of the orientation
against the measured A

0.07° (Fig. 6b). Thus, � was considered 0.1°. It should be noted that the largest measured
A was around 60 mm.

� = max

(∣
∣
∣
∣tan−1

(
A ± δ

B ± δ

)

− tan−1

(
A

100

)∣
∣
∣
∣

)

. (3)

Two experts familiar with spine X-rays manually performed the measurements three times.
Then, the mean values of the measurements were considered for this study. All the mea-
surements were supervised by G. Liu, who is an experienced scoliosis surgeon working at
National University Hospital, Singapore. The intra- and inter-observer reliabilities of the
measurements were evaluated by using Pearson correlation analysis. The intra-observer cor-
relation coefficients were 0.95 ± 0.04 for expert 1 and 0.92 ± 0.03 for expert 2. These
agreements are excellent according to [51] and can demonstrate the repeatability of the mea-
surements. The inter-observer coefficient was 0.90. Overall, the strong correlations indicate
the repeatability and reliability of the measurements.
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5.2 The scoliotic spine curve representation

To represent the spine curve, a polynomial was fitted to the measured location and orienta-
tion of the vertebrae by using the linear least squares method. The order of the polynomials
was adjusted to find the best fitting, that is, the least RMSE of the locations and orientations.

The curves (f ) are estimated by the polynomial in (4); f has no first-degree and constant
terms because f (0) = 0 and f ′(0) = 0 (Sect. 3.1). Equation (5) gives the coefficients of f in
terms of the measured parameters. β and Y are the vectors of the coefficients and measured
parameters, respectively, and Z is the design matrix. Equation (6) gives β , Z, and Y. The
upper and lower halves of Y and Z correspond to the measured locations and orientations,
respectively.

f (Z) = βtZ
t + βt−1Zt−1 + · · · + β2Z2, (4)

where βt , . . . , β2 are the coefficients, and t is the order of the polynomial.

β = (
ZTZ

)−1
ZTY, (5)

where T sign stands for transpose operation.
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, (6)

where k = 15 in this study.
Table 3 shows the order t and RMSE of the locations and orientations for each patient.

RMSE calculated for the locations was 0.19 ± 0.10 mm and for the orientations was 0.16
± 0.07°. The small RMSEs show that the fitted polynomials can give good estimates of the
locations and orientations of the vertebrae.

5.3 Kinematic models for the individual patients

Before solving the minimization problem, first, we tested whether the spinal lengths of the
individual patients satisfied the assumption in Sect. 4.1. The difference between the lengths
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Table 3 The data of polynomials, including the orders and the fitting errors

Patient t of Pi (P0, P1,
P2, P3, P4)

RMSE (mean ± SD)
of location (mm)

RMSE (mean ± SD)
of orientation (°)

1 (17,10,17,17,13) 0.20 ± 0.05 0.15 ± 0.04

2 (14,10,14,14,10) 0.16 ± 0.03 0.16 ± 0.04

3 (18,15,19,19,18) 0.25 ± 0.13 0.18 ± 0.05

4 (15,15,15,15,15) 0.16 ± 0.07 0.12 ± 0.02

5 (14,14,14,14,14) 0.26 ± 0.13 0.24 ± 0.09

6 (21,9,21,21,14) 0.21 ± 0.11 0.11 ± 0.03

7 (21,12,21,21,14) 0.11 ± 0.06 0.10 ± 0.08

8 (15,15,15,15,15) 0.24 ± 0.08 0.21 ± 0.03

9 (15,15,15,15,15) 0.15 ± 0.02 0.17 ± 0.02

10 (16,12,16,16,14) 0.17 ± 0.04 0.13 ± 0.05

Table 4 The change in the
length of the scoliotic spine
curves with respect to L0

Patient E1 (%) E2 (%) E3 (%) E4 (%)

1 −0.20 0.17 0.10 −0.01

2 −0.15 −0.09 0.09 0.26

3 0.04 −0.00 −0.04 −0.03

4 0.00 −0.08 0.05 0.09

5 −0.03 −0.27 −0.25 0.03

6 −0.27 0.01 0.02 −0.22

7 0.03 −0.13 −0.24 −0.02

8 −0.07 −0.17 0.03 0.31

9 0.01 0.08 0.08 −0.20

10 −0.11 0.04 −0.04 0.16

in the erect and other positions (Ei = 100× (L0 −Li)/L0) was in the range of [−0.27,0.31]
for all the patients (Table 4); Ei = ±0.5 % corresponds to the marginal acceptable L0 − Li .
As such, the assumption |L0 − Li | < 0.005L0 is satisfied for all the patients. Therefore,
for each patient, there exists an Lseg that satisfies the constraints in the minimization prob-
lem (2). Therefore, the model is personalized in the following.

The kinematic model was personalized by using the curves of three positions: erect,
left bending, and right bending. These three positions were chosen because their X-rays
are routinely taken for the scoliosis monitoring and the surgical correction planning. Then,
using the personalized models, we estimated the spine curves of all the five positions. This
was done to evaluate the feasibility and capability of our kinematic model in representing
the scoliotic spine movement (will be discussed in detail in Sect. 6).

To personalize, Lseg and n were computed by solving the minimization problem (2). To
solve (2), the spinal lengths of the three positions (erect, left bending, and right bending)
were used. For each Lseg satisfying the constraints (i.e. |L0 − ni × Lseg| < 0.005L0; note
that ni is the round of Li/Lseg to the nearest integer), the chain was laid on f0, f1, and f2

to obtain n0, n1, and n2 respectively. After that, Lseg was chosen the one that minimizes
|n0 − n1| + |n0 − n2|, and n obtained for the erect position (i.e. n0) was considered for the
model. After personalization of the model, sj for j = 1,2, . . . ,15 were found in the erect
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Fig. 7 Representation of the
scoliotic spine curve by the
proposed kinematic model (this
figure is only for the illustration
purpose and does not represent a
real situation in terms of shape of
the spine curve and location and
orientation of a vertebra with
respect to its inferior one)

position (position 0). In our patient cohort, n ranged from 994 to 1003 (999 ± 3), and Lseg

was between 0.32 and 0.44 mm (0.37 ± 0.04 mm). The estimation error of the spinal length
(ei = Li − n0 · Lseg) for the positions included in the personalization (positions 0, 1, and 2)
was 0.28 ± 0.40 mm, and e was 0.13 ± 0.44 mm for the other two positions. These small
errors show that the mechanism can estimate the spinal length in the frontal plane. The error
e will be discussed in detail in Sect. 6.

5.4 Accuracy of the model

To compute the accuracy, first, the personalized model was laid on the spine curves of the
five positions (Fig. 7). Second, (Y∗,Z∗) and λ∗ were determined for the 15 vertebrae. RMSE
of the location and orientation were calculated by (1). Third, RMSE of the curve was cal-
culated between f and the curve estimated by the model (f ∗) by (1); f ∗ was obtained by
considering the chain as a continuous piecewise function of Z. To do this, the joints of the
chain were considered as points on f ∗, and their intermediate points were interpolated by
using straight lines connecting the joints.

For the three positions included in the personalization, RMSEs of the locations and ori-
entations are 0.30 mm and 0.25° respectively (Table 5). For the two positions not included
in the personalization, the RMSEs are 0.23 mm and 0.24°, respectively. RMSE of the curves
(for both cases) is 3e–5 mm. As is clear, RMSEs are quite small for the locations and orienta-
tions, and particularly for the curves. The small RMSEs imply that the model can accurately
estimate the scoliotic spine curve and the location and orientation of its vertebrae not only in
the three positions used for the personalization but also in the other two positions. As such,
our patient-specific kinematic model can give good estimates of the spine positions. Besides,
the proposed personalization method can offer good personalization of our kinematic model
by using a few positions. Figure 8 shows an example of the chain in the five positions for
one of the patients. A visual comparison shows that the curves, locations, and orientations
estimated by the chain agree well with the measured ones. Overall, it can be concluded that
our kinematic model is feasible and capable of representing the scoliotic spine positions and
thus of describing the scoliotic spine movement in the frontal plane. The feasibility and the
capability will be discussed in detail in Sect. 6.
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Table 5 RMSE obtained for the scoliotic spine curves and the location and orientation of the vertebrae

Patient RMSE for the positions included in
the model personalization

RMSE for the positions not
included in the model
personalization

RMSE
of
curves
(°) <Location (mm) Orientation (°) Location (mm) Orientation (°)

0 1 2 0 1 2 3 4 3 4

1 0.25 0.23 0.37 0.30 0.31 0.25 0.30 0.20 0.27 0.29 2e−5

2 0.30 0.26 0.23 0.26 0.28 0.17 0.25 0.25 0.23 0.21 4e−5

3 0.24 0.24 0.56 0.25 0.27 0.29 0.28 0.16 0.34 0.21 2e−5

4 0.20 0.22 0.28 0.26 0.29 0.17 0.21 0.16 0.19 0.19 3e−5

5 0.15 0.33 0.44 0.24 0.36 0.24 0.29 0.19 0.33 0.13 2e−5

6 0.59 0.25 0.20 0.24 0.21 0.22 0.23 0.20 0.25 0.38 6e−5

7 0.27 0.13 0.08 0.35 0.11 0.05 0.08 0.28 0.09 0.21 3e−5

8 0.24 0.41 0.39 0.28 0.28 0.34 0.29 0.19 0.34 0.26 1e−5

9 0.23 0.25 0.18 0.30 0.15 0.03 0.20 0.31 0.07 0.18 2e−5

10 0.30 0.16 0.29 0.11 0.34 0.21 0.27 0.19 0.20 0.15 3e−5

Fig. 8 (a) the measured scoliotic spine positions, (b) the estimated scoliotic spine positions by the proposed
kinematic model

5.5 Support of the assumption

To support the assumption (Sect. 4.1), statistical analysis was performed on the data of the
change in the spinal length from L4 to T2 (E, Table 4) and RMSEs of the spine curve and
the location and orientation of the vertebrae (Table 5). The results of the statistical analysis
are depicted by box charts (Fig. 9). Shapiro–Wilk’s test [52] showed that the data of E

were significantly drawn from a normally distributed population NE (mean = −0.02, SD2 =
0.132) at 1 % significance level. In addition, Anderson–Darling’s test [53] demonstrated that
the data of the RMSEs (the red, blue, and magenta charts) could be described by the gamma
distribution 	 (shape, scale) at 1 % significance level. According to the distribution functions
and with 99 % confidence interval, E is between −0.36 and 0.32 mm, and such change in
the spinal length causes RMSEs less than 6e–5 mm, 0.52 mm, and 0.53° for the spine curve
and the location and orientation of the vertebrae, respectively. These small RMSEs show
that the proposed kinematic model can give good estimates the spine positions, even though
the spinal length is changed by 0.36 %. Therefore, the assumption, underlying neglecting
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Fig. 9 The box charts of the data

the change in the spinal length, can be valid for representing the scoliotic spine movement
in the frontal by the proposed patient-specific kinematic model.

The reasons for considering the coefficient 0.5 % for neglecting E and for the constraints
in the minimization problem (2) are explained as follows. First, from NE it was found that
the chance of getting |E| < 0.5 % was around 99.99 %, which is quite high. Besides, it
was shown that E drawn from NE (Fig. 9) caused small RMSEs in representing the spine
curve and location and orientation of the vertebrae. Therefore, we considered the change of
less than 0.5 % in the spinal length as a negligible change. Second, for the minimization
problem, on the one hand, it is important that the coefficient of L0 be large enough so
that all the constraints are satisfied. On the other hand, it is important that the coefficient
value be small to reduce the computational expense incurred by the minimization problem
(note that increase in the value exponentially increases the computational expense). The
coefficient value of 0.5 % could make a trade-off between these conflicting conditions. It
was considered as the smallest value for the remarkable chance (99.99 %) of satisfying all
the constraints in (2).

5.6 Representation of the lateral bending movement of the scoliotic spine

The developed kinematic model represents the scoliotic spine movement by the trajectory of
its joint variables (θ ). The amount of rotation (�θ ) of the joints with respect to the neutral
position was calculated for the left and right bending positions for all the patients (Table 6).
The neutral position was used as the substitute for the erect position because the neutral, left
bending, and right bending X-rays were taken in the same laying position (prone), whereas
the erect was a stand-up position. Therefore, we found it more proper to use neutral X-ray
for the assessment of the performance of the model. The results in Table 6 show that more
than 98 % of the total amount of the rotation occurs toward the direction of the bending (i.e.
toward the horizontal component of the applied force for making the bending movements).
This means that our model is able to give good estimates of the lateral bending positions
when the force is applied toward the direction of the bending.
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Table 6 The amount of the rotation of the joints in the left and right bending positions

Patient Sum of the rotation of joints in the left
bending (°)

Sum of the rotation of joints in the
right bending (°)

Toward direction of
bending (left)

Toward opposite
direction of bending
(right)

Toward direction of
bending (right)

Toward opposite
direction of bending
(left)

1 32.34 0.01 34.06 0.71

2 26.54 1.21 29.48 0.00

3 40.33 0.00 51.07 0.02

4 46.59 0.00 24.62 0.02

5 37.18 1.93 41.74 0.76

6 45.36 0.00 25.71 0.00

7 29.51 0.41 35.27 0.00

8 41.23 0.05 56.48 0.00

9 34.56 0.24 43.25 0.04

10 44.69 0.82 48.20 0.56

Total 378.33 (≈98.78 %) 4.67 (≈1.22 %) 389.88 (≈99.46 %) 2.11 (≈0.54 %)

Fig. 10 �θ in the lateral bending positions

Figure 10 shows an example done for a patient. �θ is shown by a 2D area drawn with
respect to the spine curve in the left and right bending positions. The curves of the positions
were considered as the reference lines for the direction of the rotation, that is, �θ in the
left (right) side of the reference curve means the amount of the rotation toward the left
(right) side. The blue and magenta colors correspond to the amount of the rotation of the
rotary segments between two successive vertebrae. The area of �θ between two successive
vertebrae is the amount of the rotation of the superior vertebra with respect to its inferior
one. Furthermore, the area of �θ is the amount of the rotation of T2 with respect to L4. As
can be seen, almost the total amount of the rotation is toward the direction of the bending
except the quite small area in the left bending position.
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6 Discussion

To demonstrate the feasibility and capability of the proposed patient-specific kinematic
model, first, the model was personalized by using three routine X-rays taken in the erect
and lateral bending positions, and the personalized models were used to represent the spine
in two other positions and in the three positions. It was shown that the model could give
good estimates of the spine curves and the locations and orientations of the vertebrae in all
the positions. Besides, the assumption made to develop the kinematic model was also sup-
ported by performing statistical analysis on the estimation errors. The minimization problem
(2) was proposed to personalize the values of the kinematic parameters by using X-rays of
several spine positions. This distinguishes our patient-specific kinematic model from the
existing ones, whose kinematic parameters are typically obtained by using X-rays of only
erect position. Involving X-rays of more spine positions helps setting better values of the
kinematic parameters for more accurate estimates of the spine positions.

The feasibility of the proposed kinematic model traces back to the minimization prob-
lem (2). The minimization problem has a solution for the “sufficiently small” length for a
given patient if and only if the area limited to the constraints is not null. In Sect. 5.5, through
statistical analysis, it was shown that at 99.99 % confidence interval, the change in the spinal
length is less than 0.5 % of the length of the erect spine. This can confirm that at least one
Lseg exists to specify an n for all the spine positions of a given patient, and thus the model
can be feasible. Moreover, in practice, only a few positions are available to solve the min-
imization problem. Thus, to have a more complete examination of the feasibility, we need
to show that “the model that is personalized by a few positions can give good estimates of
all the spine positions.” In this regard, we performed the personalization by using X-rays of
three positions, and then we showed that the personalized models could accurately estimate
the other two positions not included in the personalization as well as the three positions.
Besides, the X-rays of the three positions are routine in scoliosis standard care. Therefore,
our model personalized by using the routine X-rays has the potential to represent the sco-
liotic spine movement. Overall, it can be concluded that the developed kinematic model is
feasible.

The capability of the model for representing the scoliotic spine movement was demon-
strated by testing the accuracy of the model in estimation of the five positions. RMSE of
50 curves was not significant (less than 6e–5 mm), and RMSEs of the location and orienta-
tion of 750 vertebrae were less than 0.59 mm and 0.38°, respectively (Table 5). These small
RMSEs for the five positions can show that our model can accurately estimate the spine po-
sitions. Therefore, the model can be capable of representing the scoliotic spine movement by
estimating a sequence of the spine positions. In addition, the small RMSEs of the locations
and orientations imply that the rotary segments s can be accurate estimates of the vertebrae
in terms of their locations and orientations.

In general, a 2D spine model in the frontal plane does not include the information relat-
ing to the torsion, kyphosis, and lordosis angles of the spine. This can have negative effects
on the accuracy of the 2D model in estimating the parameters such as the curvature an-
gle (measured by the analytic Cobb method) [40] and spinal flexibility and mobility. These
are the key parameters measured in the frontal plane for surgical planning [23]. To mea-
sure/calculate the parameters by using analytic methods [48, 49, 54], the first derivative of
the spine curve is required. It was demonstrated that the proposed model estimated the curve
with small RMSE of 3e–5 mm (Table 5), showing that the shape of the curve is preserved.
Besides, the small RMSEs of the orientations of the vertebrae (0.25°, Table 5) show that the
first derivatives of the estimated curves at the midpoints of the vertebrae were good estimates
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Fig. 11 Illustration of ec and
em: (a) em < 0 and (b) em > 0

of those on the measured curves. Therefore, it can be concluded that the first derivative of
the estimated curves can correspond well with the first derivative of the measured curves.
Overall, the proposed model is able to give good estimates of the key parameters without
taking into consideration the torsion, kyphosis, and lordosis angles.

The proposed kinematic model neglects the change in the spinal length and considers the
links as rigid bodies according to the assumption. It was demonstrated that these concepts
could not significantly influence the accuracy of the kinematic model. In the following,
we discuss that the concepts may also not raise major issues in a dynamic model that is
based on the developed kinematic model. Regarding the concept of neglecting the length
change, it was shown that the model could estimate the spinal length with the error e =
0.22 ± 0.43 mm in Sect. 5.3; e is the sum of two errors, namely ec and em. The former is
the error of approximating parts of the curve with straight lines (Fig. 11a), and ec is the sum
of differences between Lpart and Lseg from L4 to T2, and it is always positive. ec was 0.21 ±
0.18 mm, and the differences (Lpart − Lseg) were 2e–4 ± 2e–4 mm. Such small differences
from L4 to T2 can show that the rotary segments correspond to their associated spine parts.
Thus, ec may not significantly affect the accuracy of the dynamic model that is based on
the proposed kinematic model. The second error (em) is the distance between the locations
of the midpoint of T2 and the last rotary segment; em is negative (Fig. 11a) when the last
rotary segment adds extra length to the curve; otherwise, it is positive (Fig. 11b). em was
0.02±0.26 mm. Studies that model the spine joints as 3D spherical joints (see Introduction)
neglect the change in the spinal length and accordingly ec and em in their kinematic models.
The errors ec and em in these models can be greater than the errors in our model because
the models approximate much larger parts (functional units) of the spine with rigid links in
comparison with our model. Neglecting such larger errors has had no significant effect on
the accuracy of the dynamic models [8, 15, 23]. As such, our kinematic model with such
smaller errors may not raise major issues in dynamic modeling. The concept of rigidity of
the links was formulated according to studies of Panjabi et al. [18] and Oxland et al. [55]
on the stiffness of the thoracic and thoracolumbar spine, respectively. They found that the
stiffness in the axial direction is high, and thus, the impact of this stiffness on the dynamics
is negligible, showing that the assumption of the rigid links may not raise major issues
in dynamic modeling as well. As a future work, we are in the process of creating a patient-
specific multibody dynamic model of the scoliotic spine by utilizing the developed kinematic
model.

The developed patient-specific kinematic model represents the scoliotic spine curve by
the chain of small rotary segments (0.37±0.04 mm in our sample). The model is well suited
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to do the in-depth analysis of the kinematics of the scoliotic spine in the frontal plane, as
the model provides the changes of the spine curve during the spine movement [56, 57]. This
analysis can help to improve the knowledge of the scoliotic spine movement before surgery,
which is considerably limited in the literature [29, 57]. Such knowledge is important for
the preoperative planning of scoliosis surgery [43, 58]. The proposed model can provide
useful information about intriguing relationships between the flexibility and degree of the
deformity in different parts of the spine, especially in each functional unit, for example,
relationships that show impacts of the deformity of the functional units in different spine
regions on the flexibility of the spine. Another study that can be carried out by using the
model is to determine whether there exists a relationship between the range of motions of
the functional units of the scoliotic spine in different positions. If such a relationship is
identified, then a spine curve of a position can be estimated by using the information from a
curve of another position. This may help to decrease the total number of the X-rays required
for the scoliosis monitoring and then to reduce the patients’ exposure to the radiation [59],
which is an important topic in scoliosis.

In this study, we focused on the scoliotic spine in the frontal plane because of the reasons
mentioned in Sect. 3. A reason is that the straightness of the spine curve in the frontal plane
is one of the main aims of the surgical correction. Apart from the straightness in the frontal
plane, the sagittal configuration of the scoliotic spine (i.e. the kyphosis and lordosis angles)
is another factor that can be taken into account in scoliosis surgical treatment. Thus, extend-
ing the developed kinematic model to a 3D model can help to study the sagittal configuration
as well. As a future work, we aim to extend the model from 2D to 3D.

The sample of patients in this study consisted of the scoliotic deformities with curve
types 1, 2, and 3 according to the Lenke classification [58], considering that these types
affect around 75 % of the population of the scoliotic patients [60]. The developed kinematic
model may not work for the other curve types.

7 Conclusion

We developed a patient-specific multibody kinematic model of the scoliotic spine for repre-
sentation of the scoliotic spine movement in the frontal plane. The feasibility and capability
of the model were tested by using five pre-operative X-rays of 10 patients with AIS. Three
of the X-rays were used for the personalization of the model, and the other two were used to
examine the feasibility and capability of the model. The results showed that our kinematic
model is able to give a good representation of the scoliotic spine movement in the frontal
plane. We defined a minimization problem to personalize the values for the kinematic pa-
rameters (such as the length of the links) based on X-rays of a number of spine positions.
This distinguishes our patient-specific kinematic model from the existing ones, whose kine-
matic parameters are typically defined by using X-rays of only the erect position. Our per-
sonalization by involving X-rays of more spine positions helps to set better values for the
kinematic parameters to allow more accurate estimates of the spine curve and location and
orientation of the vertebrae in the frontal plane. Furthermore, our kinematic model provides
the changes of the spine curve during the movement by using the small (0.37 ± 0.04 mm)
rotary segments. Such a detailed information about the changes can improve the knowledge
of the kinematics of the scoliotic spine.
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Fig. 12 Approximation of a curve by using polygonal chains, (a) segmentation on the z-axis and (b) param-
eterization by equal-length line segments

Appendix

A 2D curve (y = f (z)) can be approximated by a polygonal chain (a piecewise linear curve
or polyline [61]. The chain is obtained by connecting a finite number of points on the curve
using line segments. The points (z, y) can be defined by segmentation of the z-axis, for
example, z0, z0 + t , z0 +2t, . . . , and t is a real number and positive (Fig. 12a). Alternatively,
the points can be specified by parameterization of the curve [62]. The parameterization by
equal-length line segments (Fig. 12b) can be given by

(zi − zi−1)
2 + (yi − yi−1)

2 = L2
seg, i = 1,2, . . . , n, (A.1)

where Lseg is the length of the lines, and n is the total number of the lines.
Rectification gives the length (L) of a curve by adding up the length of the line segments

[63]. For example, for the parameterized curve in Fig. 12b, the length (L) of the curve is
n · Lseg. Indeed, the rectification gives a good approximation of the curve length if Lseg is
sufficiently small. Thus, the parameterization of two curves of equal length (i.e. L1 = L2)
can result in the same number of the equal-length line segments (i.e. n1 = n2 → L1 = n1 ·
Lseg = L2 = n2 · Lseg) if Lseg is sufficiently small.
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