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Abstract For beams undergoing large motions but small strains, the displacement field can
be decomposed into an arbitrarily large rigid-section motion and a warping field. When
applying beam theory to dynamic problems, it is customary to assume that all inertial ef-
fects associated with warping are negligible. This paper examines this assumption in de-
tails. It is shown that inertial forces affect the beam’s dynamic response in two manners:
(1) warping motion induces inertial forces directly, and (2) secondary warping arises that
alters the beam’s constitutive laws. Numerical examples demonstrate the range of valid-
ity of the proposed approach for beams made of both homogeneous isotropic and hetero-
geneous anisotropic materials. For low-frequency warping, it is shown that inertial forces
associated with warping and secondary warping resulting from inertial forces are negligi-
ble. To examine the dynamic behavior of beams over a wider range of frequencies, their
dispersion curves, natural vibration frequencies, and mode shapes are evaluated using both
one- and three-dimensional models; good correlation is observed between the two models.
Applications of the proposed beam theory to multibody problems are also presented; here
again, good correlation is observed between the prediction of beam models and of full three-
dimensional analysis.

Keywords Beam · Warping · Inertial forces · Anisotropic

1 Introduction

A beam is defined as a structure having one of its dimensions much larger than the other
two. The generally curved axis of the beam is defined along that longer dimension and the
cross-section slides along this axis. The cross-section’s geometric and physical properties
are assumed to be uniform along the beam’s span. Numerous components found in flexible
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multibody systems are beam-like structures: linkages, transmission shafts, robotic arms, etc.
Aeronautical structures such as aircraft wings or helicopter rotor and wind turbine blades
are often treated as beams.

Beam theories approximate three-dimensional beam-like structures with one-dimensional
models, while retaining, to the extent possible, an accurate representation of the local three-
dimensional stress and strain fields over the cross-section. Classical beam theories are based
on kinematic assumptions: for instance, the Timoshenko beam theory is based on the rigid
cross-section assumption [1]. When dealing with flexible multibody systems, beams un-
dergo large motion, calling for a more accurate kinematic description. Reissner [2] and
Simo [3, 4] developed the geometrically exact beam theory, which is also based on the
rigid cross-section assumption. In many applications, however, beams are complex build-
up structures presenting elaborate sectional geometries. In addition, laminated composite
materials have found increased use in many applications, leading to heterogeneous, highly
anisotropic structures. Furthermore, the beam’s axis may also be initially curved. For such
constructions, cross-section out-of-plane and in-plane warping have been shown [5–11] to
alter stress distributions and sectional stiffness properties significantly.

A rigorous beam theory should provide exact solutions for Saint-Venant’s problem [12,
13], that is, three-dimensional equilibrium should be satisfied at every point of the beam
except near its two ends. Numerous authors have attempted to solve Saint-Venant’s prob-
lem [14–20], but the work of Giavotto et al. [21] is a milestone because their approach is
applicable to realistic engineering problems: based on a two-dimensional finite element anal-
ysis of the cross-section, the beam’s sectional stiffness properties are evaluated and local,
three-dimensional stress fields are recovered for anisotropic beams of arbitrary geometric
configurations. Two types of solutions were identified: the central solutions, which are the
solutions of Saint-Venant’s problem, and the extremity solutions, which decay exponentially
away from the beam’s ends. The decay rates of the extremity solutions provide a quantifi-
cation of Saint-Venant’s principle. The same semidiscretization procedure was also adopted
by Borri et al. [5], Hodges [22, 23], Dong et al. [24], and El Fatmi and Zenzri [25] to solve
complex beam problems.

Zhong [17, 26] introduced the Hamiltonian formulation for elasticity and developed
novel analytical techniques based on Hamiltonian formalism. Based on this formulation,
Bauchau and Han [8] have shown that the central solutions are exact solutions of three-
dimensional elasticity and exist for uniform beams of general cross-sectional shape made
of anisotropic materials. The same is true for initially curved and twisted beams undergo-
ing large motion but small strains [9]. Saint-Venant’s problem deals with infinitely long,
uniform beams undergoing small strain deformation and subjected to loading at their end
sections only. Beams must be very long and loaded at their ends only to allow the effect of
the end solutions to vanish, leaving the central solutions as exact solutions of the problem.
The proposed approach provides a comprehensive analysis methodology for evaluating the
dynamic response of beams within the framework of multibody dynamics. Starting with
the three-dimensional equations of elasticity, a rigorous procedure based on Hamilton’s for-
mulation produces one-dimensional, beam-like equations. Once these equations are solved,
local, three-dimensional strain and stress fields are recovered.

The overall process is depicted in Fig. 1. The process starts with a linear, two-dimensional
analysis of the cross-section (box 1 of Fig. 1). This step, called “sectional analysis,” evalu-
ates the sectional compliance and mass matrices. Given the distribution of material proper-
ties and geometry of the cross-section, the sectional analysis provides the beam’s 6 × 6
sectional compliance and mass matrices. These sectional matrices take into account the
three-dimensional deformation of the beam’s cross-section stemming from complex sec-
tional geometries, material heterogeneity, and initial curvature of the reference line.
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Fig. 1 Integration of sectional analysis with multibody dynamic analysis

The second step of the process is a one-dimensional nonlinear analysis of the geometri-
cally exact beam problem (box 2 of Fig. 1). Typically, this analysis is performed via a finite
element discretization of the beam and time integration of the resulting discrete equations.
At the end of this process, time histories of the stress resultants are available for the entire
duration of the simulation. The sectional compliance and mass matrices obtained from the
sectional analysis are inputs to this process. The final step of the process is the recovery of
local three-dimensional strain and stress fields (box 3 of Fig. 1). The recovery relationships
are provided by the sectional analysis.

In summary, for small strain problems, the nonlinear three-dimensional elasticity prob-
lem splits into two simpler problems: the linear sectional analysis problem and the nonlinear
geometrically exact beam problem. As illustrated in Fig. 1, the sectional analysis is both a
pre- and post-processor for the beam analysis and is run once only, prior to the nonlinear
beam analysis.

Whereas the strategy has been applied to dynamic problems, little attention has been
devoted to inertial effects. The goal of this paper is to assess the range of validity of the
proposed beam theory when applied to dynamics problems. For static problems, the pro-
posed approach provides exact solutions of three-dimensional elasticity for uniform beams
of arbitrary geometric configuration and made of anisotropic composite materials. Yet, the
performance of these models in the dynamic regime has not been assessed.

Han and Bauchau [27] have investigated the problem of beams subjected to distributed
loads and have shown that these loads induce additional warping, called “secondary warp-
ing,” that affect the beam’s stiffness characteristics and local stress fields. In accordance
with d’Alembert’s principle, inertial forces can be considered to be a type of externally ap-
plied loading, and hence, they give rise to secondary warping. Consequently, when applying
the proposed beam theory to dynamic problems, two issues must be addressed: (1) what is
the warping field induced by inertial forces? (see the lower dashed ellipse of Fig. 1), and
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(2) what is the effect of the secondary warping induced by the distributed inertial forces
on the beam’s sectional stiffness and three-dimensional stress distributions? (see the upper
dashed ellipse of Fig. 1). This paper examines beams undergoing low-frequency warping.
Given this limitation, it will be shown that the inertial forces associated with warping and
the secondary warping induced by inertial forces are both negligible.

This paper is organized as follows: the kinematics and governing equations of dynamic
beam problems are presented in Sects. 2 and 3, respectively. The construction of a projec-
tive transformation is discussed in Sect. 4 and leads to the reduced, beam-like equations
presented in Sect. 5. To illustrate the results, the linear problem is presented in Sect. 6, and
three-dimensional stress recovery relations are discussed in Sect. 7. Integration of the pro-
posed sectional analysis with multibody dynamic analysis is summarized in Sect. 8. Finally,
numerical examples are presented in Sect. 9.

2 Kinematics of the problem

Figure 2 depicts the reference and deformed configurations of a naturally curved and twisted
beam. The beam is generated by sliding its cross-section A along reference lines C0 and C
of the reference and deformed configurations, respectively.

In the reference configuration, the reference line C0 is defined by parametric equation
rB0(α1), where rB0 is the position vector of point B with respect to the origin of the reference
frame FI = [O,I = (i1, i2, i3)], and α1 is the arc-length coordinate along the curve C0. The
cross-section is defined by the frame F0 = [B0,B0 = (b10,b20,b30)]. The plane of the cross-
section is determined by two mutually orthogonal unit vectors b20 and b30.

In the deformed configuration, the parametric equation of the reference line C becomes
rB(α1). Typically, the material plane of the cross-section is now distorted and warped. For
convenience, a fictitious plane of the cross-section is introduced, which is determined by
two mutually orthogonal unit vectors b2 and b3, as depicted in Fig. 2. The fictitious rigid
cross-section is defined by the frame FR = [B,BR = (b1,b2,b3)], and the displacement

Fig. 2 Configuration of a curved
beam
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field over the cross-section is decomposed into an arbitrarily large rigid-section motion and
an arbitrary warping field.

The following motion tensors [28] are defined to represent the finite rigid-body motion
from the frame FI to F0 and FR , respectively:

C0(rB0,R0) =
[

R0 r̃B0R0

O R0

]
, (1a)

CR(rB,R) =
[

R r̃BR
O R

]
, (1b)

where R0 and R are the rotation tensors that bring the basis I to B0 and BR , respectively.
The beam’s generalized curvature tensor in its initial and deformed configurations are

κ̃0 = C−1
0 C′

0 =
[

k̃0 t̃0

O k̃0

]
, (2a)

κ̃R = C−1
R C′

R =
[

k̃ t̃
O k̃

]
, (2b)

where the notation (·)′ indicates a derivative with respect to α1. The notation ˜(·) indicates the
3 × 3 skew-symmetric matrix constructed from the components of vector (·) of size 3 × 1.
When applied to a vector of size 6 × 1, the same notation indicates the upper-triangular
matrix defined by Eqs. (2a)–(2b). The notation axial(·) indicates the vector form of a 3 × 3
skew-symmetric matrix ˜(·). The curvature vectors associated with rotation fields R0(α1)

and R(α1) are k0 = axial(RT
0 R′

0) and k = axial(RT R′), respectively; the components of the
tangent vectors to the reference lines in the reference and fictitious rigid configurations are
t0 = r′

B0 and t = r′
B , respectively. The notation Axial(·) indicates the vector form of the

6 × 6 upper-triangular matrix shown in Eqs. (2a)–(2b). The generalized curvature vectors in
the reference and deformed configurations are denoted κ0 = Axial(C−1

0 C′
0) = {kT

0 , tT0 }T and
κR = Axial(C−1

R C′
R) = {kT , tT }T , respectively.

For dynamic problems, the motion tensor CR is a function of time t . The components of
the beam’s generalized velocity vector, resolved in material basis, are

υ̃R = C−1
R ĊR =

[
ω ṽ
O ω̃

]
, υR = Axial

(
C−1

R ĊR

) =
{

RT ṙB

axial
(
RT Ṙ

)
}

=
{

v
ω

}
, (3)

where the notation ˙(·) indicates a derivative with respect to time. The velocity vector υR

combines the velocity vector v of the cross-section’s reference point and its angular velocity
ω = axial(RT Ṙ), both resolved in material basis B.

2.1 Acceleration components

Let α2 and α3 denote the in-plane material coordinates along the directions of unit vectors
b20 and b30, respectively. The position vector of an arbitrary material point P of the beam in
its reference configuration becomes

r0(α1, α2, α3) = rB0(α1) + R0(α1)q, (4)

where the vector q = {0, α2, α3}T . After deformation, the position vector of a material point
becomes

r(α1, α2, α3, t) = rB(α1, t) + R(α1, t)
[
q + w(α1, α2, α3, t)

]
, (5)
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where w is the warping field with its components resolved in basis B denoted wi , that is,
w = w1b1 + w2b2 + w3b3.

The velocity vector of the point P becomes

ṙ = ṙB + R
[
ω̃(q + w) + ẇ

] = R
[
v + ẇ + ω̃(q + w)

]
. (6)

Taking the second time derivative yields the components of the acceleration vector, resolved
in the material basis, as

a = RT r̈ = v̇ − q̃ω̇ + ω̃v + ω̃ω̃q + ẅ + 2ω̃ẇ + ( ˙̃ω + ω̃ω̃)w. (7)

The first line of this equation lists the acceleration terms stemming from the rigid-section
motion, and the second line those originating from warping deformation; hence, the warping
induced inertial forces are fIW = ρ[ẅ + 2ω̃ẇ + ( ˙̃ω + ω̃ω̃)w], where ρ is the material density.

Textbooks on vibration establish that the frequency of beam bending vibrations is
Ω2

n ∝ n4H/(mL4), where n is the mode number, L the beam’s length, H its bending
stiffness, and m its mass per unit span. If a is a representative dimension of the cross-
section, then these quantities can be estimated as H ∝ Ea4 and m = ρa2. Furthermore,
λn = L/n is a good estimate of the wave length of the associated vibration mode shape, lead-
ing to Ω2

n ∝ Ea2/(ρλ4
n). If the beam is vibrating at this frequency, then ‖fIW‖ ≈ ρΩ2

n(1 +
‖ω‖/Ωn)

2‖w‖ ≈ ρΩ2
n‖w‖, where the norm of the angular velocity vector is assumed to be

of the same order of magnitude as the vibration frequency to obtain the last result. Finally,
the norm of the inertial force vector can be estimated as ‖fIW‖ ≈ (a/λn)

4E‖w‖/a2. For
beams undergoing torsional vibration, a similar reasoning yields Ω2

n ∝ E/(ρλ2
n), leading to

‖fIW‖ ≈ (a/λn)
2E‖w‖/a2.

The warping induced strains are estimated as εW ≈ ‖w‖/a, the corresponding stresses as
σW = EεW , and stress gradients as ∇σW = σW/a. This leads to ‖fIW‖ ≈ (a/λn)

4∇σW and
‖fIW‖ ≈ (a/λn)

2∇σW for beam undergoing bending and torsional vibrations, respectively.
Clearly, for low-frequency vibrations, λn � a, and hence, ‖fIW‖ � ∇σW . Because the dy-
namic equilibrium condition states that ∇σW +‖fIW‖+ rigid-section motion-induced inertial
forces = 0, the warping-induced inertial forces can be neglected.

In summary, for beams undergoing low-frequency vibration, defined as vibration for
which λn � a, the warping-induced inertial forces can be neglected. The low-frequency
assumption is not an additional one. Indeed, even for static problems, beam theory is valid
only if stresses vary slowly along its span. Clearly, beam theory can only predict accurately
low-frequency modes, and for such modes, the warping-induced inertial forces are negli-
gible. For high-frequency vibration, a three-dimensional elasticity model should be used,
and warping-induced inertial forces should be included. Finally, it should be noted that in
many practical applications, structures respond in their lowest-frequency modes only; lit-
tle vibratory energy is associated with the high-frequency modes, which can be neglected
altogether.

When the warping-induced inertial forces are negligible, the acceleration vector in Eq. (7)
reduces to

a ≈ v̇ − q̃ω̇ + ω̃v + ω̃ω̃q = zυ̇R + ψΩR = πaR. (8)

The matrix z = [I,−q̃], the matrix π = [z,ψ], and the following quantities were defined:

ψ =
⎡
⎣1 0 0 0 0 0 α3 α2

0 1 0 −α2 0 α3 0 0
0 0 1 0 −α3 α2 0 0

⎤
⎦ , aR =

{
υ̇R

ΩR

}
. (9)
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Let vi and ωi , i = 1,2,3, denote the ith components of velocity of the cross-section’s
reference point and its angular velocity v and ω, respectively. The array ΩT

R = {v3ω2 −
v2ω3, v1ω3 − v3ω1, v2ω1 − v1ω2,ω

2
1 + ω2

3,ω
2
1 + ω2

2,ω2ω3,ω1ω3,ω1ω2} and array aR col-
lects all components related to the acceleration of the rigid section.

2.2 Strain components

Because sectional warping generates strains that are of the same order as those due to rigid-
section motion, warping effects must to be taken into account when evaluating the strain
field. Assuming small warping and strain components, the Green–Lagrange strain tensor
reduces to

γ ≈ Aw′ + Bw + zεR, (10)

where εR stores the beam’s sectional strains due to the fictitious rigid cross-section motion

εR = κR − κ0. (11)

These sectional strain measures are identical to those derived by Reissner [2] and Simo [3].
Let ti0 and ki0 denote the ith components of the tangent and curvature vectors t0 and k0,

respectively. In Eq. (10), the following differential operators were defined:

A = 1√
g

[
I
O

]
, B =

[
DO

DI

]
, (12)

where the scalar
√

g = t10 − k30α2 + k20α3 is the determinant of the metric tensor in the
reference configuration. In Eq. (12), differential operators DO and DI were defined as

DO =
⎡
⎢⎣

d −k30 k20

k30 + √
g ∂

∂α2
d −k10

−k20 + √
g ∂

∂α3
k10 d

⎤
⎥⎦ , DI =

⎡
⎢⎣

0
√

g ∂
∂α2

0

0 0
√

g ∂
∂α3

0
√

g ∂
∂α3

√
g ∂

∂α2

⎤
⎥⎦ , (13)

where the scalar d = −(t20 − k10α3)∂(·)/∂α2 − (t30 + k10α3)∂(·)/∂α3. A more detailed
derivation of the strain components is given by Han and Bauchau [9].

2.3 Semidiscretization of the warping field

The following semidiscretization of the displacement field is performed:

w(α1, α2, α3) = N(α2, α3)ŵ(α1), (14)

where the matrix N(α2, α3) stores the two-dimensional shape functions used in the dis-
cretization, and the array ŵ(α1) stores the nodal values of the displacement field. The no-
tation ˆ(·) indicates the nodal quantities of the discretized variables. Let 
 be the number of
nodes used to discretize the beam’s cross-section, and n = 3
 be the total number of degrees
of freedom. Introducing this discretization into Eq. (6) and (10) yields the components of
the acceleration vector and strain tensor as

a = NΠaR, (15a)

γ = ANŵ′ + BNŵ + NZεR, (15b)

where the matrices Z and Π stack the rows of the matrices z and π , respectively, for each
of the nodes over the cross-section.
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3 Governing equations

The beam’s governing equations will be derived based on the Hamiltonian formalism. The
inertial forces are derived in Sect. 3.1, followed by the investigation of strain energy of the
system in Sect. 3.2, and, finally, governing equations are obtained.

3.1 Inertial forces

The beam is assumed to be made of linearly elastic anisotropic materials. The cross-sectional
distribution of materials is arbitrary but remains uniform along the beam’s span. In view of
Eq. (15a), the nodal inertial forces are

fI = −
∫
A

NT NΠaRρ
√

g dA = −MΠaR = −mυ̇R + υ̃T
RmυR, (16)

where ρ is the mass density of the material, and the mass matrix, of size n × n, is
M = ∫

A ρNT N
√

g dA. Because the inertial effects due to warping are ignored, the beam’s
sectional mass matrix m, of size 6 × 6, becomes

m = ZT
MZ. (17)

Due to the nature of the problem, matrix m is of the following structure:

m =

⎡
⎢⎢⎢⎢⎢⎢⎣

m00 0 0 0 m00α3m −m00α2m

0 m00 0 −m00α3m 0 0
0 0 m00 m00α2m 0 0
0 −m00α3m m00α2m m11 0 0

m00α3m 0 0 0 m22 −m23

−m00α2m 0 0 0 −m23 m33

⎤
⎥⎥⎥⎥⎥⎥⎦

. (18)

The sectional mass per unit span is m00 = ∫
A ρ

√
g dA; the coordinates of the sectional cen-

ter of mass with respect to the reference point are m00α2m = ∫
A ρα2

√
g dA and m00α3m =∫

A ρα3
√

g dA; the sectional mass moments of inertia per unit span about unit vectors b2

and b3 are m22 = ∫
A ρα2

3
√

g dA and m33 = ∫
A ρα2

2
√

g dA, respectively; the sectional cross-

product of inertia per unit span is m23 = ∫
A ρα2α3

√
g dA; finally, the polar moment of iner-

tia per unit span is m11 = m22 +m33. The following identity is used to yield the last equality
in Eq. (16):

−υ̃T
RmυR = ZT diag(ω̃)MZ = Ψ Ω. (19)

3.2 Strain energy

The strain energy density of the beam is

L = 1

2

∫
A

γ T Dγ
√

g dA, (20)

where the components of the 6×6 material stiffness matrix resolved in the material basis are
denoted as D. Introducing the discretized components of the strain tensor given by Eq. (15b),
the strain energy density becomes

L = 1

2

(
Zε + ŵ′)[M(

Zε + ŵ′) + CT ŵ
] + 1

2
ŵT

[
C

(
Zε + ŵ′) + Eŵ

]
. (21)
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The matrices M, C, and E, each of size n × n, are

M =
∫
A

(AN)T D(AN)
√

g dA, (22a)

C =
∫
A

(AN)T D(BN)
√

g dA, (22b)

E =
∫
A

(BN)T D(BN)
√

g dA. (22c)

Given the distribution of material stiffness properties, these matrices can be evaluated by
integration over the cross-section.

3.3 Governing equations

For this problem, the strain energy density is also the Lagrangian of the system. The nodal
forces are introduced:

p̂ = ∂L

∂(ŵ′ + ZεR)
= M

(
ŵ′ + ZεR

) + CT ŵ. (23)

The nodal displacements and forces are dual variables in Hamilton’s formalism. The
Hamiltonian of the system, denoted H , is defined via Legendre’s transformation [29] as
H = p̂T (ZεR + ŵ′) − L, and tedious algebra reveals that H = −1/2 x̂T (JH)x̂, where the
array x̂ stores the nodal displacements and forces x̂T = {ŵT p̂T }, and matrices H and J, both
of size 2n × 2n, are defined as

H =
[ −M−1CT M−1

E − CM−1CT CM−1

]
, and J =

[
O I
−I O

]
. (24)

The matrix H is Hamiltonian, that is, (JH) = (JH)T .
Hamilton’s principle provides two sets of equations for the problem. The first set

ŵ′ + ZεR = ∂H/∂p̂ is identical to Eqs. (23), that is, defines the nodal forces. The second
set p̂′ = −∂H/∂ŵ + MΠaR provides the governing equations of the problem. The com-
bination of the two sets defines 2n first-order ordinary differential equations with constant
coefficients

x̂′ = J
∂H

∂ x̂
= Hx̂ −

[
Z
O

]
εR +

[
O

MΠ

]
aR, (25)

where the identity JT J = I was used. The corresponding homogenous problem x̂′ = Hx̂
provides the governing equations of the associated linear static beam problem.

Equations (25) are the governing equations for geometrically nonlinear dynamic three-
dimensional beam problems. Although it can be solved directly, the computational cost is
usually too high for practical beam problems. A proper utilization of the beam’s span-wise
uniformity leads to a significant reduction of problem size. Clearly, the solution of Eq. (25)
is determined by the nature of the eigenvalues of the Hamiltonian matrix H, as discussed by
Zhong [26] and Han and Bauchau [9, 11].

For linear static beam problem, that is, x̂′ = Hx̂, the twelve null and purely imaginary
eigenvalues of the Hamiltonian give rise to polynomial and trigonometric solutions [11],
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respectively, corresponding to the solution of Saint-Venant’s problem. Finally, the eigenval-
ues of the Hamiltonian matrix presenting nonvanishing real parts give rise to exponentially
decaying solutions, which can be usually ignored because their effect is significant near the
beam’s ends only.

Equations (25) show that nonlinear dynamics beam problems are represented by a non-
homogeneous Hamiltonian system. As expected from d’Alembert’s principle, inertial forces
can be viewed as externally distributed loads: the matrix MΠ and array aR store the load-
ing pattern over the cross-section and the corresponding load distribution along the refer-
ence line, respectively. Consequently, dynamic beam problems form a particular case of
Almansi–Michell’s problem discussed by Han and Bauchau [27]. Clearly, the solutions not
only depend on the eigenvalues of the matrix H but also on the nonhomogeneous terms re-
lated to inertial forces. To reduce problem size, the three-dimensional governing equations
will be projected onto a subspace spanned by the twelve generalized eigenvectors of the
Hamiltonian matrix associated with its null and purely imaginary eigenvalues and with a set
of secondary warping modes related to the inertial forces.

4 Dimensional reduction

To solve Almansi–Michell’s problem, Han and Bauchau [27] expanded the applied load
distribution function in Taylor series taking into account accordingly the secondary warping
modes associated with the various orders of expansion. For simplicity, only the 0th-order
expansion of the inertial force is considered here. The augmented projection is constructed
as follows:

x̂ = Xg + QaR, (26)

where the matrix X, the matrix Q, and the array g are defined as follows:

X =
[

Z W
O Y

]
, Q =

[
U
V

]
, g =

{
u
f

}
. (27)

The matrix X, of size 2n × 12, is symplectic because it stores the eigenvectors and general-
ized eigenvectors of the matrix H (see details in [9, 27]), implying the identities

ZT Y = I and WT Y = O. (28)

The matrices W and Y, each of size n × 6, are interpreted as the nodal warping and forces,
respectively, associated with unit sectional stress resultants. The matrices U and V, each of
size n × 11, are yet undetermined, and their ith columns store the secondary warping and
nodal forces, respectively, induced by the unit values of the ith entry of the acceleration
array aR . Finally, the array gT = {uT fT } stores the six components of the infinitesimal rigid-
section motion u and stress resultants f, both resolved in the material basis.

Using projection (26), the Hamiltonian matrix reduces to

HX = X
[−κ̃R S

O κ̃T
R

]
, (29a)

H
[

U
V

]
=

[
W
Y

]
ZT

MΠ −
[

O
MΠ

]
. (29b)
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Equation (29a) is the governing equation for the nodal warping and forces stored in matrices
W and Y, respectively, and is obtained by considering the homogeneous part of the problem
only; Eq. (29b) is the governing equation for the secondary warping U and is obtained from
the nonhomogeneous part of the problem, assuming that the matrices W and Y are known.
The matrix S will be interpreted later as the sectional compliance matrix.

As will be shown in Sects. 5 and 7, secondary warping affects the beam’s reduced govern-
ing equations and the stress recovery process. Numerical examples will show that the effects
of secondary warping are typically small for beam undergoing low-frequency vibration.

5 The one-dimensional beam equations

Introducing coordinate transformation (26) in governing equations (27), pre-multiplying by
XT J, and using the symplectic orthogonal property (28) lead to the reduced equations

{
u
f

}′
=

[−κ̃R S
O κ̃T

R

]{
u
f

}
+

{
SGaR − εR

mυ̇R − υ̃T
RmυR

}
, (30)

where sectional mass matrix m is defined by Eq. (17) and matrix G = −ZT V results from
the secondary warping. Identity (19) is used to derive Eq. (30).

The last six equations of this set provide the equilibrium equations f′ + κ̃Rf = mυ̇R −
υ̃T

RmυR , where the right-hand sides are the distributed inertial forces due to rigid-section
motion. The first six equations define the sectional constitutive laws ε = εW + εR = S(f +
GaR), where the sectional strains due to warping are defined as

εW = u′ + κ̃Ru, (31)

and the symmetric matrix S stores the components of the sectional compliance matrix re-
solved in the material basis.

To complete the formulation, sets of strain- and velocity-displacement relationships must
be developed. The motion of the cross-section combines the motion associated with the
fictitious rigid-section (see Eq. (1b)) with the additional infinitesimal rigid-section motion u
included in the warping field

C(α1) = CR(I + ũ). (32)

For the infinitesimal motion u, the corresponding motion tensor is found as the exponential
map exp(ũ) and can be approximated by I + ũ. The motion tensor C describes the average
motion of the deformed cross-section including warping.

The components of beam’s curvature vector in its deformed configuration are

κ̃ = [
CR(I + ũ)

]−1[
CR(I + ũ)

]′ ≈ κ̃R + ε̃W, (33)

where higher-order terms are neglected. Using Eq. (31) then results in κ − κ0 =
εR + εW = ε. The components of beam’s generalized velocity are

υ̃ = [
CR(I + ũ)

]−1 ∂

∂t

[
CR(I + ũ)

] ≈ υ̃R + u̇. (34)

Because u is infinitesimal, it is reasonable to assume that κ ≈ κR , υ ≈ υR , and a = aR ,
where the array a stores the acceleration-related terms for the average rigid-section motion.
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The nonlinear equations for three-dimensional dynamic beam problems, Eqs. (25), have
been reduced to a set of 24 equations:

υ = Axial
(
C−1Ċ

)
, (35a)

ε = Axial
(
C−1C′) −Axial

(
C−1

0 C′
0

)
, (35b)

ε = S(f + GaR), (35c)

f′ − κ̃T f = mυ̇ − υ̃T mυ. (35d)

Kinematic equations (35a) and (35b) define the sectional velocity and strain measures
for the rigid-section motion. Equations (35c) and (35d) are constitutive and equilibrium
equations, respectively, for nonlinear dynamic beam problems. The term GaR in Eq. (35c)
represents the effects of secondary warping. Introducing constitutive equations (35c) into
equilibrium equations (35d) leads to (S−1ε)′ − κ̃T S−1ε = mυ̇ − υ̃T mυ − (GaR)′ + κ̃T GaR .
Clearly, the relative magnitudes of matrices G and m reveal the relative importance of con-
tributions from rigid-section inertial forces and secondary warping induced inertial effects.
Further, in the numerical examples, we will show that the matrix G is several orders magni-
tude smaller than the matrix m and, hence, can be ignored.

When the secondary warping due to the acceleration GaR is neglected, governing equa-
tions (35a)–(35d) becomes identical to those derived by Reissner [2] and Simo and cowork-
ers [3, 4]. The present paper has underlined the assumptions required to obtain these equa-
tions. Furthermore, because it is based on a two-dimensional model of the cross-section, the
present approach provides an accurate expression for the sectional compliance matrix and
allows recovery of the three-dimensional stress state at any point in the beam; see Sect. 7.

6 The linear problem

The previous developments are valid for beams undergoing large motion but small strain.
For linear problems, the beam undergoes small motion only, an important problem in its own
right. The linear problem is obtained by setting CR = I, which implies εR = 0 and υR = 0.
Moreover, the acceleration given by Eq. (7) reduces to a = ẅ, and the beam’s governing
equations become

x̂′ = Hx̂ +
{

O
M ¨̂w

}
. (36)

The strain- and velocity-displacement relationships, Eqs. (35a) and (35b), now become
υ = u̇ and ε = u′ + κ̃u, respectively. The acceleration components simply reduce to Ü , and,
finally, the reduced governing equations of the problem, Eq. (35a)–(35d), become

u′ = −κ̃u + Sf, (37a)

f′ = mü + κ̃T f. (37b)

The wave solutions of Eqs. (36) are expressed in terms of exponential functions:
x̂(α1, t) = x̄ exp j (kα1 − ωt), where x̄T = {w̄T p̄T } stores the amplitude of the variables,
j = √−1 is the imaginary unit, the complex number k = kr + jki is the wavenumber, and
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ω is the circular frequency. Introducing this solution into Eq. (36) gives the following eigen-
value problem:

jk

{
w̄
p̄

}
=

(
H −

[
O O

ω2
M O

]){
w̄
p̄

}
. (38)

The dispersion relationship, that is, the relationship between ω and k, is obtained easily
by solving this eigenvalue problem: for a given frequency ω, the wave numbers k are the
eigenvalues of Eq. (38). Because the system is Hamiltonian, the eigenvalues come in groups
of four in the form k = ±kr ± jki . Equivalently, eliminating p̄ from Eq. (38) yields the
Hermitian eigenvalue problem

[
k2M + jk

(
C − CT

) + E − ω2
M

]
w̄ = 0. (39)

The same procedure is applied to obtain the dispersion curves of reduced prob-
lem (37a)–(37b): introducing the wave solutions u(α1, t) = ū exp j (kα1 −ωt) and f(α1, t) =
f̄ exp j (kα1 − ωt) leads to the following eigenvalue problem:

jk

{
ū
f̄

}
=

[ −κ̃ S
−ω2m κ̃T

]{
ū
f̄

}
. (40)

Eliminating the sectional stress resultant then yields the Hermitian eigenvalue problem

[
k2S−1 + jk

(
κ̃T S−1 − S−1κ̃

) + κ̃T S−1κ̃ − ω2m
]
ū = 0. (41)

For a given frequency ω, 2n and 12 eigenvalues result from the original (Eq. (39)) and
reduced (Eq. (41)) eigenproblems, respectively. Note that exp j (kα1 − ωt) = exp(−kiα1) ×
exp j (krα1 − ωt), and hence, the coefficient ki can be interpreted as the spatial decay rate
of the corresponding mode: the modes with the smallest |ki | are the most important because
they affect the largest portion of the beam. Accordingly, the dispersion relations provide a
simple way of validating the dimensional reduction process: in the low-frequency range, the
12 dispersion curves of the reduced system should coincide with their 12 counterparts of the
original system associated with the lowest magnitude of ki . Achenbach [30] has shown that
the dispersion relationships predicted by the planar Timoshenko beam theory are in good
agreement with those resulting from two-dimensional elasticity in the low-frequency range.
Volovoi et al. [31] compared the dispersion relationships for composite beams based on the
variational asymptotic method with those obtained from three-dimensional elasticity; they
reported good correlation in the low-frequency range. This validation will be performed
numerically in Sect. 9.1 for a set of more complex beam problems based on the proposed
model.

7 Local stress recovery

Combining Eqs. (26) and (27) yields the nodal displacement and force fields as

ŵ = Zu + Wf + Wf aR, (42a)

p̂ = Yf + Yf aR, (42b)

where Wf = U − WZT V and Yf = V − YZT V. The first two terms on the right-hand side
of Eq. (42a) describe the contributions of the rigid-section motion and stress resultants,
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respectively. The third term describes the effects of inertial forces and can be ignored for
beams undergoing low-frequency motion.

Introducing the nodal displacements and their derivatives into Eq. (15b) yields the three-
dimensional strain field γ = AN(Zu′ + Wf′) + BN(Zu + Wf). This expression can be sim-
plified with the help of Eqs. (35a)–(35d) and the fact that rigid-body motion creates no
strains, ANZ + BNZ = O, to find

γ = [
AN

(
ZS + Wκ̃T

) + BNW
]
f. (43)

Finally, the three-dimensional stress field is obtained from the constitutive laws as τ = Dγ .
Introducing the orthogonality condition (28) into Eq. (42a) leads to u = YT ŵ, which implies
that the rigid-section motion is an average of the nodal displacements.

Another approach to validation of the dynamic model is to perform a modal analysis
for the reduced one-dimensional model and compare the resulting mode shapes with those
obtained from three-dimensional FEM analysis. Furthermore, the three-dimensional stress
field recovered from the one-dimensional model can be compared with its counterpart ob-
tained from the three-dimensional model. Such validation will be presented for specific
beam problems in Sect. 9.2.

8 Overall analysis strategy

The overall analysis strategy is summarized in this section. In the first step, the sectional
analysis uses standard finite element tools to evaluate the Hamiltonian of the system,
Eq. (24), based on the stiffness matrices M, C, and E defined by Eqs. (22a)–(22c). The sec-
tional analysis yields the recovery matrix W defined in Eq. (26), which represents the nodal
warping associated with unit sectional stress resultants. The sectional compliance and mass
matrices S and m are also provided by the sectional analysis. The second step of the process
is a one-dimensional nonlinear analysis of the geometrically exact beam problem defined by
Eqs. (35a)–(35d). In the final step, Eq. (43) is used to recover the three-dimensional stress
field through a simple matrix multiplication. The inertial forces induced by warping are neg-
ligible compared to the inertial forces due to the rigid-section motion, as proved in Sect. 2.1.
The secondary warping effects indicated by the matrix U in Eq. (26), GaR in Eq. (35c), and
Wf in Eq. (42a) are also negligible. The numerical examples presented in Sect. 9 all use
this solution procedure.

The proposed methodology presented here provides a unified analysis procedure for com-
plex beam model in flexible multibody dynamics. The assumptions made in the derivations
above and their implications are summarized as follows. (1) The beam undergoes large mo-
tion, but the strains and warping displacements remain small. (2) The beam undergoes low-
frequency motion. For such problems, both of the warping induced inertial forces and the
secondary warping resulting from inertial forces can be ignored. (3) Beam properties remain
uniform along its span although sectional material properties and geometric configuration
are arbitrary. (4) The beam’s span is much larger than a representative dimension of the
cross-section. Consequently, the developments focus on the central solution because the
contributions of the extremity solutions are negligible away from the beam ends.

9 Numerical examples

To validate the proposed approach, we present a set of numerical examples. The procedure
described in the previous section will be used for the solution of the examples.
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Fig. 3 Configuration of two
cross-sections

9.1 Dispersion curves of two typical cross-sections

Figure 3 depicts two cross-sections: (a) a solid section and (b) a box section. The square
solid section is of dimension b = 0.1 m and is made of steel with Young’s modulus E =
207 GPa, Poisson’s ratio ν = 0.3, and the mass density ρ1 = 7800 kg m−3. The square box
section is of dimension b = 0.1 m, and the wall consists of a single ply of graphite/epoxy
material of thickness tp = 0.018 m. The material mass density is ρ2 = 1600 kg m−3, and the
material stiffness properties are: longitudinal modulus EL = 181 GPa, transverse modulus
ET = 10.3 GPa, shearing modulus GLT = 7.17 GPa, and Poisson’s ratios νLT = 0.28 and
νTN = 0.33. The lay-up angle is 30◦; 0◦ fibers are aligned with the axis of the beam, and a
positive ply angle indicates a right-hand rotation about the local outer normal to the wall.

The proposed approach used meshes of 36 and 20 eight-node two-dimensional ele-
ments for the analyses of solid and box cross-sections, respectively. The dispersion curves
of the following four beam configurations were investigated: (1) P1: a straight beam
with the isotropic solid section, (2) P2: a pretwisted beam (kT = {π,0,0} m−1) with the
isotropic solid section, (3) P3: a straight beam with the heterogeneous box section, and
(4) P4: a pretwisted beam (kT = {π,0,0} m−1) with the heterogeneous box section.

To generate the dispersion curves, the following procedure was used. The wave numbers
are evaluated at discrete frequencies ωk = k
Ω , k = 0,1,2, . . . ,N . The Arnoldi algorithm
is used to extract the eigenvalues of the system. For the reduced beam equations, all 12
eigenvalues are extracted; for the three-dimensional model, the 60 eigenvalues with the low-
est absolute values are obtained. To draw the dispersion curves, the eigenvalues of the three-
dimensional model must be tracked properly. For k = 0, the 20 eigenvalues with the lowest
norm are retained. For the next frequency, k = 1, 20 eigenvalues are selected from the pool
of the 60 eigenvalues with the lowest norm. The selection procedure identifies 20 eigenval-
ues that are in the close neighborhood of those selected at k = 0. The distances between
the 20 eigenvalues at step k = 0 and all the eigenvalues obtained at k = 1 are evaluated; the
distance is defined as the norm of the difference between the complex wave numbers. The
sum of the distances of the 20 eigenvalues selected at k = 1 is the smallest for all choices of
20 eigenvalues within the pool of 60. A multiobject tracking algorithm is used for this task.
The process then repeats for the successive values of k.

The dispersion curves for these four problems are shown in Figs. 4, 5, 6, and 7. The dis-
persion curves for the one- and three-dimensional beam models were obtained, as presented
in Sect. 6. The wave numbers were normalized by the sectional dimension as bk, and the
frequencies were normalized as ω/Ω , where Ω = √

E/(ρ1b2) and Ω = √
EL/(ρ2b2) for

the solid and box sections, respectively. Because the eigenvalues appear in groups of four in
the form k = ±kr ± jki , the figures show the positive real and negative imaginary parts of
the wave number only.

For each mode, the six stress resultants can be evaluated by integrating the out-of-plane
stress components over the cross-section. Based on this information, the modes fall into two
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Fig. 4 Dispersion curves for
beam P1. 1D model: dashed line,
3D model: solid line.
Extension–torsion: (�) and (�);
bending–shearing: (◦), (�), and
(×)

Fig. 5 Dispersion curves for
beam P2. 1D model: dashed line,
3D model: solid line.
Extension–torsion: (�) and (�);
bending–shearing: (◦), (�), and
(×)

Fig. 6 Dispersion curves for
beam P3. 1D model: dashed line,
3D model: solid line.
Extension–torsion: (�) and (�);
bending–shearing: (◦), (�), and
(×); extremity modes: (
)

Fig. 7 Dispersion curves for
beam P4. 1D model: dashed line,
3D model: solid line.
Extension-torsion: (�) and (�);
bending-shearing: (◦), (�), and
(×); extremity modes: (
)
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Table 1 Multiplicity of the eigenvalues k and their low-frequency limit bkr0 = limω→0 bkr (ω). Nature of
the deformation: extension (E), torsion (T), bending (B), shearing (S)

(E) (T) (E–T) (B–S) (B–S)

ki = 0 ki = 0 ki = 0 ki = 0 ki �= 0

Mult. bkr0 Mult. bkr0 Mult. kr0 Mult. bkr0 Mult. bkr0

P1 2× 0 2× 0 0× 4× 0 4× 0

P2 0× 0× 4× 0 4× b‖k‖ 4× b‖k‖
P3 0× 0× 4× 0 4× 0 4× 0

P4 0× 0× 4× 0 4× b‖k‖ 4× b‖k‖

groups: the first group of modes, called the “extension–torsion” modes, present stress re-
sultants involving extension forces and twisting moments only, the second group of modes,
called the “bending–shearing” modes, present stress resultants involving bending moments
and shear forces only. For static problems, the twelve modes with vanishing real parts form
four Jordan chains [11]. Two chains, each of size two, are associated with deformation
modes of the structure when subjected to the unit extension force and torque, respectively.
The other two chains, each of size four, capture the deformation modes of the structure-
subjected unit bending moments and shear forces in the two transverse directions.

Low-frequency dynamics problems can be viewed as small perturbations of static prob-
lems, but for dynamics problems, Luongo [32] pointed out that the Jordan chains break
down. The two Jordan chains of length two degenerate into two pairs of real eigenvalues of
opposite signs, and the corresponding modes exhibits both extension and torsion for prob-
lems P2, P3, and P4. For problem P1, the extension and torsion modes are decoupled. The
two chains of length four degenerate into pairs of complex conjugate eigenvalues and two
pairs of real eigenvalues of opposite signs, and the corresponding modes exhibit both shear-
ing and bending. The multiplicities of each eigenvalue are listed in Table 1.

For isotropic beams, problems P1 and P2, the dispersion curves of the one- and three-
dimensional models are in close agreement with each other for ω/Ω ∈ [0,2] or ω ∈
[0,103] kHz. For composite beams, problems P3 and P4, good agreement is observed for
ω/Ω ∈ [0,0.06] or ω ∈ [0,6.38] kHz. As frequency increases, one pair of extremity modes,
that is, modes with vanishing resultants, becomes dominant because the associated Im(k)

is very small. Clearly, both geometric configuration and material properties affect the range
of validity of the one-dimensional beam model. As observed in these examples, the range
of validity of the proposed dynamic analysis procedure is far smaller for beams made of
anisotropic materials than for those made of isotropic materials. Clearly, the term “low-
frequency vibration” must be quantified if it is to be used as a criterion for assessing the
accuracy of beam models.

9.2 Modal analysis of a composite beam

To further assess the validity of the proposed beam model in the dynamic regime, a can-
tilevered composite beam of length L = 2.0 m with the untwisted box section described in
Sect. 9.1 was investigated. The proposed approach used 20 eight-node two-dimensional el-
ements for the sectional analysis and 8 four-node one-dimensional elements for the beam
analysis. A reference solution was obtained with ABAQUS using 20-node three-dimensional
brick elements: 20 elements were used over the cross-section, and 80 along the beam’s
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Fig. 8 Configuration of the
composite box

Table 2 Eigenvalues for the bending modes (Hz)

1st 2nd 3rd 4th 5th 6th 7th

Proposed 22.069 135.64 366.47 687.23 1080.1 1529.7 2025.0

ABAQUS 22.220 137.00 372.00 704.11 1117.5 1598.7 2135.7

span, as depicted in Fig. 8. Sectional analysis provides the beam’s mass properties as
m00 = 9.446 kg/m and m22 = 0.01096 kg m. The predicted sectional stiffness matrix is

S∗−1

105
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3840 0 0 −66.71 0 0

0 626.6 0 0 37.11 0

0 0 626.6 0 0 37.11

−66.71 0 0 2.246 0 0

0 37.11 0 0 4.573 0

0 0 37.11 0 0 4.573

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (44)

where units of the entries are as follows: N m−1 for i, j = 1,2,3, N m for i, j = 4,5,6, and
N for the other entries. Material anisotropy causes extension–twisting and shearing–bending
coupling to arise, resulting in the off-diagonal terms of the sectional stiffness matrix.

As discussed in Sect. 5, the distributed inertial forces generate secondary warping charac-
terized by the matrix G appearing in Eq. (30), and such effects are usually negligible. These
arguments can be validated by evaluating the matrix G and noticing that the magnitude of
this matrix is 3 to 4 orders smaller than the mass matrix m for this example.

Modal analysis was performed for both the proposed and ABAQUS models. Table 2 lists
the first seven bending modes predicted by the two models; good correlation is observed
between the two sets of predictions. Each natural frequency in bending listed in the table
has two associated bending modes with eigenvectors in two orthogonal planes. In most
cases, the natural frequencies predicted by the beam model were slightly lower than those
predicted by the ABAQUS model. This stems from a difference in the boundary conditions:
for the ABAQUS model, all displacement components at all nodes of the root section are
constrained, whereas for the proposed model, average sectional displacement is constrained,
but warping is allowed. Consequently, the beam model is more compliant than its three-
dimensional counterpart, resulting in lower frequencies.

The bending mode shapes associated with the natural frequencies listed in Table 2 are
depicted in Figs. 9 to 15. Each figure shows the two mode shapes predicted by the beam
model (dashed lines) and the ABAQUS model (solid lines).
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Fig. 9 First bending mode
shapes: beam model, dashed line;
ABAQUS model, solid line

Fig. 10 Second bending mode
shapes: beam model, dashed line;
ABAQUS model, solid line

Fig. 11 Third bending mode
shapes: beam model, dashed line;
ABAQUS model, solid line

Fig. 12 Fourth bending mode
shapes: beam model, dashed line;
ABAQUS model, solid line

Table 3 lists the first six torsion modes predicted by the two models; good correlation
is observed between the two sets of predictions. The corresponding mode shapes are de-
picted in Figs. 16 to 21; for clarity of the figures, only the twist angle θ1 is shown, although
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Fig. 13 Fifth bending mode
shapes: beam model, dashed line;
ABAQUS model, solid line

Fig. 14 Sixth bending mode
shapes: beam model, dashed line;
ABAQUS model, solid line

Fig. 15 Seventh bending mode
shapes: beam model, dashed line;
ABAQUS model, solid line

Table 3 Eigenvalues for the
torsion modes (Hz) 1st 2nd 3rd 4th 5th 6th

Proposed 258.71 776.13 852.24 1293.6 1811.0 2328.7

ABAQUS 258.00 775.76 855.97 1291.9 1806.3 2318.1

other displacement and rotation components do not vanish due to elastic coupling terms; see
Eq. (44).

As a final validation effort, the distributions of axial stress component over the cross-
section at α1 = 1.6 m were evaluated. The distributions associated with the first bending
mode are shown in Figs. 22 and 23 for the proposed and ABAQUS models, respectively.
Figures 24 and 25 show the corresponding results for the seventh bending mode. Excellent
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Fig. 16 First torsion mode
shapes: beam model, dashed line;
ABAQUS model, solid line

Fig. 17 Second torsion mode
shapes: beam model, dashed line;
ABAQUS model, solid line

Fig. 18 Third torsion mode
shapes: beam model, dashed line;
ABAQUS model, solid line

Fig. 19 Fourth torsion mode
shapes: beam model, dashed line;
ABAQUS model, solid line

correlation is observed for the first mode, whereas differences appear for the seventh mode.
Indeed, as frequency increases, beam theory becomes less accurate. For this specific prob-
lem, the magnitudes of warping induced by distributed inertial forces Wf aR (see Eq. (42a))
are 2 to 3 orders smaller than those due to stress resultants Wf. In many practical appli-
cations, the excitation amplitudes of the high-frequency modes are far smaller than those
of the low-frequency modes, and hence, only the latter need to be known accurately. The
proposed approach is ideally suited for such cases because it then provides an efficient and
accurate solution of the problem.
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Fig. 20 Fifth torsion mode
shapes: beam model, dashed line;
ABAQUS model, solid line

Fig. 21 Sixth torsion mode
shapes: beam model, dashed line;
ABAQUS model, solid line

Fig. 22 Axial stress component
σ11, the distribution for the 1st
bending mode at α1 = 1.6 m,
beam model

Fig. 23 Axial stress component
σ11, the distribution for the 1st
bending mode at α1 = 1.6 m,
ABAQUS model

Fig. 24 Axial stress component
σ11, the distribution for the 7th
bending mode at α1 = 1.6 m,
beam model
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Fig. 25 Axial stress component
σ11, the distribution for the 7th
bending mode at α1 = 1.6 m,
ABAQUS model

Fig. 26 Configuration of the four-bar mechanism

9.3 The four-bar mechanism

The last example deals with a multibody dynamics application: the flexible four-bar mech-
anism shown in Fig. 26 is investigated. Bar 1 is of length 0.12 m and is connected to the
ground at point A by means of a revolute joint. Bar 2 is of length 0.24 m and is connected
to bar 1 at point B with a revolute joint. The cross-section of bar 2 is pretwisted uniformly
by 2π along its axial line. Finally, bar 3 is of length 0.12 m and is connected to bar 2 and
the ground at points C and D, respectively, by means of two revolute joints. Bars 1 and 2 are
of square cross-section of size 16 by 16 mm; bar 3 has a square cross-section of size 8 by
8 mm. The three bars are made of steel: Young’s modulus E = 207 GPa and Poisson’s ratio
ν = 0.3. This benchmark problem has been treated by numerous researchers [33].

In the reference configuration, the bars of this mechanism intersect each other at 90
degree angles, and the axes of rotation of the revolute joints at points A, B, and D are
normal to the plane of the mechanism. The axis of rotation of the revolute joint at point C
is rotated by +5 degrees about the unit vector i2 indicated in Fig. 26 to simulate an initial
defect in the mechanism. The angular velocity at point A of bar 1 is prescribed as

Ω(t) =
{

0.3[1 − cos(πt)] rad/s, 0 ≤ t ≤ 1 s,

0.6 rad/s, t ≥ 1 s.
(45)

For reference, a full three-dimensional FEM analysis was performed using ABAQUS.
The two end-sections of each bar were enforced to remain rigid using multipoint constraints
in ABAQUS. The four revolute joints are modeled using connector elements in ABAQUS.
The meshes used in the proposed approach and ABAQUS are summarized in Table 4. The
computational costs for both the proposed and ABAQUS analyses are also shown Table 4. In
both cases, the main cost per iteration is the factorization of the stiffness matrix, which can
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Table 4 Meshes in the proposed and ABAQUS analyses

Proposed 3D FEM (ABAQUS)

Sectional analysis 1D analysis

Bars 1 & 3 9, 8-node 2D 2, 4-node beam 36 × 25, 20-node brick

Bar 2 9, 8-node 2D 4, 4-node beam 9 × 50, 20-node brick

Cost negligible 162 × 422 = 2.9 × 105 8520 × 4562 = 1.8 × 109

Table 5 Predicted sectional stiffness property

C11 (MN) C22 (MN) S33 (MN) C44 (Nm2) C55 (Nm2) C66 (Nm2)

Bar 1 52.992 16.913 16.913 735.94 1130.5 1130.5

Bar 2 52.410 16.878 16.878 748.06 1103.2 1103.2

Bar 3 13.248 42.282 42.282 45.996 70.656 70.656

be estimated [34] as C ∝ nm2, where n is the size of the stiffness matrix, and m its average
half-bandwidth. The cost for sectional analysis is negligible because it is performed once
only at the onset of the simulation, as discussed in Sect. 8. For this example, the proposed
approach is four orders of magnitude more efficient than three-dimensional FEM analysis.

The sectional analysis yielded the following sectional mass properties: m00 = 1.9968
and 0.4992 kg/m for bars 1 and 2 and for bar 3, respectively, and the corresponding mass
moments of inertia per unit span are m22 = 42.598 and 2.6624 mg m2/m, respectively. The
entries of the sectional stiffness matrix are denoted Cij , and the nonvanishing entries are
listed in Table 5. Due to the pre-twist of bar 2, extension–twisting and shearing–bending
coupling terms appear, resulting in the off-diagonal entries C14 = 8255.7 N m and C25 =
C36 = −5204.0 N m.

The simulation was run for 36 s, starting from initial conditions at rest. The time step
sizes for the proposed and ABAQUS analyses were 
t = 4 and 2 ms, respectively. For
the beam analysis, larger time step sizes could be used without compromising accuracy
significantly; ABAQUS did not converge for time step sizes 
t > 2 ms. Figures 27 and 28
show the axial force F1 along the unit vector b1 and the bending moment M2 about the unit
vector b2, respectively, at point A of bar 1, for the proposed and ABAQUS models. Due
to the small size of the brick elements, high-frequency numerical oscillations are observed
in the ABAQUS simulation. For this problem, the largest entries of the matrix G are about
3 to 4 orders smaller than their counterparts in the matrix m. Consequently, the associated
inertial terms in Eq. (30) have negligible effect on the beam solutions.

The distributions of axial and shear stress components σ11 and σ13, respectively, over
the cross-section of bar 2 at 0.08 m from point B were evaluated at time t = 9.12 s using
the beam and ABAQUS models and are shown in Fig. 29. The corresponding results for
the cross-section of bar 2 at 0.16 m from point B were evaluated at time t = 30 s and
are shown in Fig. 30. The beam model agrees well with the three-dimensional ABAQUS
predictions. For this problem, the magnitudes of warping induced by distributed inertial
forces (the term Wf aR in Eq. (42a)) are 2 orders smaller than those of warping due to stress
resultants Wf. Consequently, secondary warping has little effect on the three-dimensional
stress distributions.
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Fig. 27 Reaction force F1 at joint A. Proposed: dashed line; ABAQUS: thinner solid line

Fig. 28 Reaction force M2 at joint A. Proposed: dashed line; ABAQUS: thinner solid line

Fig. 29 Distribution of the stress component over cross-section at α1 = 0.08 m at time t = 9.12 s
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Fig. 30 Distribution of the stress component over cross-section at α1 = 0.16 m, at time t = 30 s

10 Conclusions

Most beam theories have been developed for application to dynamic problems, yet surpris-
ingly little attention has been devoted to inertial effects. Warping deformation is known to
affect sectional stiffness and stress distributions significantly and, hence, is included in the
evaluation of the strain energy. On the other hand, cross-sections are assumed to remain
rigid when evaluating the kinetic energy.

This paper has assessed the validity of beam theory proposed by the authors when applied
to dynamic problems by answering two questions: (1) what is the warping field induced by
inertial forces and (2) what is the effect of the secondary warping induced by the distributed
inertial forces of the beam’s sectional stiffness and three-dimensional stress distributions?

Dispersion curves provide a powerful tool for describing the dynamic behavior of struc-
tures. To validate the proposed model, dispersion curves were computed for straight and
pretwisted beams made of isotropic or anisotropic materials. In all cases, the dispersion
curves computed by the proposed beam models were found to be in good agreement with
those obtained from three-dimensional models in the low-frequency range. These examples
show that the term “low-frequency warping” must be defined precisely: the beam’s geomet-
ric configuration and the nature of the materials it is made of alter the range of validity of
the model.

The inertial forces induced by warping deformation were proved to be negligible com-
pared to elastic forces. Numerical examples were used to assess the importance of secondary
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warping. For low-frequency warping, the effects of secondary warping were found to be neg-
ligible. To further assess the accuracy of the proposed model, the twenty lowest modes of
a cantilevered beam-like structure were computed using both beam and three-dimensional
models. The frequencies, mode shapes, and associated stress distributions predicted by the
two models were found to be in good agreement.

With the proposed approach, the nonlinear dynamic three-dimensional equations of
beams are decomposed into a linear sectional analysis and a nonlinear one-dimensional
analysis along the beam’s span. The proposed approach can be integrated into the existing
nonlinear beam models easily. It provides the beam’s sectional stiffness matrix that includes
the effect of warping deformation. Furthermore, it enables the accurate evaluation of three-
dimensional stress fields. The complete process is three to four orders of magnitude more
computationally efficient than three-dimensional finite element analysis.
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