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Abstract For the efficient analysis and optimization of flexible multibody systems, gradi-
ent information is often required. Next to simple and easy-to-implement finite difference
approaches, analytical methods, such as the adjoint variable method, have been developed
and are now well established for the sensitivity analysis in multibody dynamics. They al-
low the computation of exact gradients and require normally less computational effort for
large-scale problems. In the current work, we apply the adjoint variable method to flexible
multibody systems with kinematic loops, which are modeled using the floating frame of
reference formulation. Thereby, in order to solve ordinary differential equations only, the
equations of motion are brought into minimal form using coordinate partitioning, and the
constraint equations at position and velocity level are incorporated in the adjoint dynam-
ics. For testing and illustrative purposes, the procedure is applied to compute the structural
gradient for a flexible piston rod of a slider–crank mechanism.

Keywords Sensitivity analysis · Flexible multibody system · Floating frame of reference
formulation · Adjoint variable method

1 Introduction

The analysis and structural optimization of flexible multibody systems can be actively sup-
ported and facilitated providing sensitivity information. A simple and easy-to-implement
way to compute gradients is numerical differentiation. Employing this method, the flexible
multibody system can be treated as a black-box model, and no further information about the
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system is required. However, finite difference methods suffer from different deficiencies.
For instance, the gradient is only an approximation, the perturbation of the design variables
is not known a priori, and the computational effort increases proportionally with the num-
ber of design variables. The latter point is of special importance for structural optimization.
In particular, in large-scale topology optimization problems, the computational costs using
finite differences are prohibitively expensive.

Besides finite difference methods, analytical approaches such as the direct method and
the adjoint variable method have been developed for the gradient computation of rigid and
flexible multibody systems; see [2, 5]. The basic idea is to deduce from the variation of
the objective function and the dynamic problem a set of additional equations that allow an
exact gradient computation. Thereby, for systems with a large number of design variables,
the adjoint variable method is often computationally more efficient than the direct method.
For this reason, it is frequently used for the gradient computation in rigid multibody systems
and flexible multibody systems, which are modeled using nonlinear finite element methods;
see [4, 12, 16] for a recent survey. In this paper, contrary to previous works, the adjoint
variable method is applied for large-scale sensitivity analysis of flexible multibody systems,
which are modeled using the floating frame of reference approach. Such large-scale prob-
lems arise, for instance, in the topology optimization of flexible members of multibody
systems; see [10].

In the derivation of the adjoint variable method, the type and structure of the dynamic
problem determine the type and structure of the adjoint equations; see [3]. For instance,
if the equations of motion are ODEs and if they can be explicitly expressed in terms of the
generalized position and velocity coordinates, then applying the adjoint variable method also
yields a set of adjoint ODEs; see [6]. In contrast, if the bodies of the multibody system are
subjected to implicit constraint equations, for example, in the presence of kinematic loops,
then algebraic equations have to be considered in the adjoint problem.

In [8] these constraint equations are taken into account at the position level, which leads
to differential-algebraic equations (DAEs) for the adjoint problem. Alternatively, in [3] it is
shown that considering the constraint equations at acceleration level leads to a system of
adjoint ODEs and a set of auxiliary algebraic equations.

In this work, a further possibility for treating constraint equations in sensitivity analy-
ses is described. Provided that the multibody system with kinematic loops is transferred to
minimal coordinates by defining dependent and independent coordinates and applying a co-
ordinate partitioning, constraints can be incorporated in the adjoint problem. Therefore, the
variations of the dependent coordinates are systematically eliminated using the variations
of the constraint equations at position and velocity level. In this way, both the equations
of motion and the adjoint equations are ODEs only. The presented approach, however, can
also be applied to systems without kinematic loops, such as systems in chain or tree struc-
ture.

The paper is organized in the following way. Section 2 addresses the structural analysis
of flexible multibody systems. After a brief review of the floating frame of reference formu-
lation, the dynamic problem is formulated, whereby the equations of motion are represented
in minimal coordinates. Moreover, the dependencies of the dynamic problem on the design
variables in case of structural parameterization of the flexible bodies are shown. In Sect. 3,
the adjoint equations are derived for the given dynamic system. The procedure is tested by
means of a flexible slider–crank mechanism in Sect. 4. Finally, Sect. 5 concludes with a brief
summary and discussion.
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Fig. 1 Flexible multibody
system

2 Structural parameterized flexible multibody systems

The method of flexible multibody systems is a well-established approach to model and ana-
lyze mechanisms in which the single bodies undergo large rigid body motions and deforma-
tions. Next to rigid and flexible bodies, these systems are assembled from spring and damper
elements, actuators, and ideal joints; see Fig. 1. If the deformations are comparatively small,
then the floating frame of reference formulation can be used to efficiently incorporate flex-
ible bodies into the multibody system; see [18, 19]. In the following, the basic equations of
the floating frame of reference formulation are briefly reviewed, and the dynamic problem is
formulated in minimal coordinates using a coordinate partitioning. Thereby, we assume that
the flexible bodies are parameterized by the independent design variables x ∈ R

h, whose
influence on a scalar objective function ψ ∈R will be identified in the course of this work.

2.1 The floating frame of reference formulation

In the floating frame of reference formulation, the deformation of a flexible body i is de-
scribed with regard to a reference frame Ki

R, which undergoes large translational and rota-
tional motions; see Fig. 2. The absolute position vector r i

IP of a point P of the flexible body
can be displayed as

r i
IP = r i

IR + ci
RP + ui

P. (1)

Thereby, r i
IR represents the motion of the reference frame, ci

RP is the position with regard to
the undeformed configuration, and ui

P is the elastic displacement.
The rotation of a frame fixed in P is given by the rotation matrix Si

IP and can be repre-
sented by

Si
IP = Si

IR

(
β i

IR

)
Si

RP with β i
IR ∈R

3. (2)

Thereby, Si
IR and Si

RP describe the rotation of the reference frame Ki
R with respect to the

inertial frame and the rotation of Ki
P with respect to the reference frame Ki

R. Provided that
the rotations due to the deformation of the body are small, Si

RP can be displayed by the

rotation matrix S0i

RP, which represents the orientation of Ki
P in the undeformed configuration

and the elastic rotational vector ϑ i
P such that

Si
RP = S0i

RP

(
E + θ̃

i

P

)
. (3)
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Fig. 2 Kinematics of a flexible
body using the floating frame of
reference formulation

Here, E is the identity matrix, and the tilde defines a skew-symmetric matrix from the elastic
rotational vector θ i

P. Both the elastic displacement ui
P and rotation θ i

P are approximated using
a global Ritz approach,

ui
P

(
ci

RP, t
) = Φ i

(
ci

RP

)
q i

e(t),

θ i
P

(
ci

RP, t
) = Ψ i

(
ci

RP

)
q i

e(t),
(4)

as the product of global shape functions, which are gathered in the matrices Φ i and Ψ i , and
time dependent elastic coordinates q i

e. If in structural optimization the geometry and mate-
rial properties of the flexible bodies are parameterized, then the global shape functions de-
pend explicitly on the design variables x, and, thus, Φ i = Φ i (ci

RP,x) and Ψ i = Ψ i (ci
RP,x).

The position, velocity, and acceleration of each point P of the body is uniquely deter-
mined by the variables

yi
r =

⎡

⎣
r i

IR

β i
IR

q i
e

⎤

⎦ , zi
r =

⎡

⎣
vi

IR
ωi

IR

q̇ i
e

⎤

⎦ , and żi
r =

⎡

⎣
v̇i

IR

ω̇i
IR

q̈ i
e

⎤

⎦ . (5)

Thereby, vi
IR and ωi

IR are the velocity and angular velocity of the reference frame, v̇i
IR and

ω̇i
IR are time derivatives with regard to the reference frame, and, finally, q̇ i

e and q̈ i
e represent

the velocity and acceleration of the elastic coordinates. The connection between the time
derivatives of the redundant position coordinates ẏi

r and the redundant velocity coordinates
zi

r is given by

ẏi
r = Zi

(
yi

r

)
zi

r; (6)

see [17] for details.
Applying Jourdain’s principle, the virtual power of a free single flexible body i yields

δziT

r

{
M i żi

r + hi
ω + hi

e − hi
p − hi

b

} = 0, ∀δzi
r. (7)

Thereby, M i is the mass matrix of the body, hi
ω is the vector of Coriolis and centrifugal

forces, hi
e is the vector of inner forces, and hi

p and hi
b describe the applied surface and body

forces. Since Eq. (7) holds for all possible variations δzi
r , the equations of motion of the

single body are obtained as
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M i
(
yi

r,x
)
żi

r = hi
p + hi

b − hi
ω − hi

e = hi
a

(
t,yi

r,z
i
r,x

)
, (8)

whereby all right-hand-side vectors are gathered in hi
a.

Regarding the structural parameterization, it should be mentioned that besides the explicit
dependencies of the mass matrix and the right-hand-side vectors on the design variables, the
state variables yi

r , zi
r , and żi

r depend implicitly on x, too.

2.2 Flexible multibody systems in minimal coordinates

Flexible multibody systems generally consist of p bodies, which are connected among
each other or to the inertial frame via joint or bearings. Therefore, in holonomic sys-

tems, the redundant position and velocity coordinates yr = [y1T

r ,y2T

r . . .y
pT

r ]T and zr =
[z1T

r ,z2T

r . . .z
pT

r ]T of the overall system are subjected to nc constraints, which can be for-
mulated implicitly as

c(yr, t,x) = 0, c ∈R
nc . (9)

It is important to point out that the constraint equations (9) do not only depend on the re-
dundant position coordinates yr and the time t but also on the design variables x. This is
due to the dependency of the global shape functions (4) on x. Together with the equations
of motion (8) of the p bodies, they form a system of DAEs that describe the dynamics of the
flexible multibody system.

In order to avoid the solution of the DAEs and to solve a system of ODEs instead, a
coordinate partitioning can be performed; see [21]. Thereby, the redundant position and
velocity coordinates yr and zr are split into generalized coordinates y,z ∈R

f and dependent
coordinates yd,zd ∈R

nc as

yr = B

[
y

yd

]
and zr = B

[
z

zd

]
, (10)

where B is a boolean matrix. In the current work, B is determined manually and remains
constant throughout the simulation. However, there are more advanced methods to determine
B as, for instance, those discussed in [11].

In addition to the splitting of the redundant coordinates, the constraint equations at ve-
locity and acceleration level are needed. For the constraint equations at velocity level, it
holds

ċ = ∂c

∂yr
ẏr + ∂c

∂t
= Cẏr + c = 0 (11)

with C being the Jacobian matrix of the constraints. With the kinematic relation (6), the
constraint equations at acceleration level read

c̈ = CZżr + ˙(CZ)zr + ∂c

∂t
= 0. (12)

Using the latter equation to express the dependent accelerations żd in terms of the indepen-
dent accelerations ż, the redundant accelerations żr can be written as

żr = B

[
E

−Γ −1
d Γ i

]

︸ ︷︷ ︸
J

ż + B

[
0

−Γ −1
d γ

]

︸ ︷︷ ︸
γ

(13)

with the partitioning (CZB) = [Γ i,Γ d] and the abbreviation γ = ˙(CZ)zr + ∂c/∂t .
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In the last step, the redundant accelerations żr and the variations of the redundant veloc-
ities δzr are substituted into the local equations of motion (7) for each body using Eq. (13)
and the variation of Eq. (11), respectively. As a result, the flexible multibody system can be
represented in minimal coordinates as

ẏ = Z(yr)zr, (14)

M(t,yr,x)ż + γ (t,yr,zr,x) = f (t,yr,zr,x), (15)

with the global mass matrix

M(t,yr,x) =
p∑

i=1

J iT
(t,yr,x)M i

(
yi

r,x
)
J i (t,yr,x), (16)

the vector of generalized local accelerations

γ (t,yr,zr,x) =
p∑

i=1

J iT
(t,yr,x)γ i (t,yr,zr,x), (17)

and the generalized right-hand-side vector

f (t,yr,zr,x) =
p∑

i=1

J iT
(t,yr,x)hi

a(t,yr,zr,x). (18)

It can be seen that in addition to the local equations of motion (8), the Jacobian matrices J i

and local acceleration vectors γ i also depend on x. This is due to the explicit dependency
of the constraint equations (9) on the design variables x.

The redundant coordinates yr and zr remain as auxiliary variables in the system and have
to be computed in each time step from the constraint equations at position and velocity level.
Therefore, the flexible multibody system is completely described by Eqs. (9), (11), (14),
and (15) and the initial conditions

φ0
(
t0,y0

) = 0,

φ̇
0(

t0,y0,z0
) = 0

(19)

for the generalized position and velocity coordinates.

3 Sensitivity analysis using the adjoint variable method

In the following, the adjoint variable method is applied to flexible multibody systems mod-
eled with the floating frame of reference approach and given in the form of Eqs. (9), (11),
and (14)–(19). First, the key idea is briefly introduced, and both the objective function and
the dynamic equations are given in a variational form. Then, the adjoint differential equa-
tions and the gradient equation are derived. Finally, the efficient evaluation of the gradient
equation is discussed.
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3.1 Variation of objective function and dynamic equations

The key idea of analytical approaches, such as the adjoint variable method, is to use varia-
tional calculus to unveil all explicit and implicit dependencies of the objective function ψ

on the design variables x. In the current work, we consider integral-type objective functions
of the form

ψ(x) =
t1∫

t0

F(yr,x)dt. (20)

They can be used to formulate, for instance, minimal compliance or tracking error problems.
Even though the structure of ψ is comparatively simple, it is well suited to demonstrate the
basic procedure. A more general objective function formulation can be found, for example,
in [2].

Provided that the initial time t0 and the final time t1 are constant, the variation of objec-
tive functions in the form of Eq. (20) yields

δψ =
t1∫

t0

(
∂F

∂y
δy + ∂F

∂yd
δyd + ∂F

∂x
δx

)
dt. (21)

Thus, the variation of ψ depends, on the one hand, on the variations of the design variables
δx and, on the other hand, on the variations of the redundant position coordinates δyr. The
latter are split into the variations of the generalized position coordinates δy and the variations
of the dependent position coordinates δyd.

There are different ways to handle the variations of the dependent position coordi-
nates δyd. In [8] the adjoint system is augmented by the constraint equations at position
level, which leads to a set of adjoint DAEs. In contrast, considering the constraint equations
at acceleration level as in [3], the adjoint dynamics is represented by ODEs and a set of
auxiliary algebraic equations.

In the current work, the variations of the redundant coordinates are eliminated instead
of augmenting the adjoint system. Therefore, the constraint equations at position level are
varied,

∂c

∂y
δy + ∂c

∂yd
δyd + ∂c

∂x
δx = 0, (22)

and used to express the variations of the dependent position coordinates as

δyd = −
(

∂c

∂yd

)−1
∂c

∂y
δy −

(
∂c

∂yd

)−1
∂c

∂x
δx. (23)

Thus, δyd is expressed in terms of the variations of the minimal coordinates δy and the
design variables δx only. Then substituting δyd into Eq. (21) yields

δψ =
t1∫

t0

(R1δy + R2δx)dt, (24)
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where R1 ∈R
1×f and R2 ∈R

1×h are defined as

R1 = ∂F

∂y
− ∂F

∂yd

(
∂c

∂yd

)−1
∂c

∂y
and

R2 = ∂F

∂x
− ∂F

∂yd

(
∂c

∂yd

)−1
∂c

∂x
.

(25)

Even though the variations of the dependent position coordinates are eliminated in Eq. (24),
the latter still depends on the variations of the position coordinates δy. These variations have
to be eliminated next using either a direct or an adjoint approach; see [3]. In both approaches,
the variations of the kinematic relation (14) and the equations of motion (15) are required.

The variation of the kinematic relation (14) in implicit form yields

δẏ − ∂v

∂y
δy − ∂v

∂yd
δyd − ∂v

∂z
δz − ∂v

∂zd
δzd = 0, (26)

where v = Z(yr)zr. It can be seen that Eq. (26) does not only depend on the variations of the
dependent position variables yd but also on the dependent velocity variables δzd. However,
the latter can be replaced using the variation of the constraints at velocity level (11), which
reads

∂ ċ

∂y
δy + ∂ ċ

∂yd
δyd + ∂ ċ

∂z
δz + ∂ ċ

∂zd
δzd + ∂ ċ

∂x
δx = 0. (27)

Substituting into Eq. (27) the variations of the dependent position coordinates using Eq. (23)
and solving for the variations of the dependent velocity coordinates yield

δzd = −
((

∂ ċ

∂zd

)−1
∂ ċ

∂y
−

(
∂ ċ

∂zd

)−1
∂ ċ

∂yd

(
∂c

∂yd

)−1
∂c

∂y

)
δy

−
(

∂ ċ

∂zd

)−1
∂ ċ

∂z
δz

−
((

∂ ċ

∂zd

)−1
∂ ċ

∂x
−

(
∂ ċ

∂zd

)−1
∂ ċ

∂yd

(
∂c

∂yd

)−1
∂c

∂x

)
δx.

(28)

Then, substituting the variations of the dependent positions and velocities into Eq. (26) using
(23) and (28), respectively, gives

δẏ + S1δy + S2δz + S3δx = 0 (29)

with three auxiliary matrices S1 ∈R
f ×f , S2 ∈R

f ×f , and S3 ∈R
f ×h defined as

S1 = − ∂v

∂y
+ ∂v

∂yd

(
∂c

∂yd

)−1
∂c

∂y
+ ∂v

∂zd

(
∂ ċ

∂zd

)−1
∂ ċ

∂y

− ∂v

∂zd

(
∂ ċ

∂zd

)−1
∂ ċ

∂yd

(
∂c

∂yd

)−1
∂c

∂y
,

S2 = −∂v

∂z
+ ∂v

∂zd

(
∂ ċ

∂zd

)−1
∂ ċ

∂z
, and (30)
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S3 = ∂v

∂yd

(
∂c

∂yd

)−1
∂c

∂x
+ ∂v

∂zd

(
∂ ċ

∂zd

)−1
∂ ċ

∂x

− ∂v

∂zd

(
∂ ċ

∂zd

)−1
∂ ċ

∂yd

(
∂c

∂yd

)−1
∂c

∂x
.

By analogy the variation of the equations of motion is determined, and the variations
of the dependent position and velocity coordinates are substituted. Defining ODE :=
M(t,yr,x)ż + γ (t,yr,zr,x) − f (t,yr,zr,x), for the variation of the kinetic equation (15),
we have

Mδż + ∂ODE

∂z
δz + ∂ODE

∂zd
δzd + ∂ODE

∂y
δy + ∂ODE

∂yd
δyd + ∂ODE

∂x
δx = 0. (31)

Substituting the variations of the dependent position and velocity coordinates yields

Mδż + T 1δy + T 2δz + T 3δx = 0 (32)

with the auxiliary matrices T 1 ∈ R
f ×f , T 2 ∈R

f ×f , and T 3 ∈R
f ×h defined as

T 1 = ∂ODE

∂y
− ∂ODE

∂yd

(
∂c

∂yd

)−1
∂c

∂y
− ∂ODE

∂zd

(
∂ ċ

∂zd

)−1
∂ ċ

∂y

+ ∂ODE

∂zd

(
∂ ċ

∂zd

)−1
∂ ċ

∂yd

(
∂c

∂yd

)−1
∂c

∂y
,

T 2 = ∂ODE

∂z
− ∂ODE

∂zd

(
∂ ċ

∂zd

)−1
∂ ċ

∂z
, and (33)

T 3 = ∂ODE

∂x
− ∂ODE

∂yd

(
∂c

∂yd

)−1
∂c

∂x
− ∂ODE

∂zd

(
∂ ċ

∂zd

)−1
∂ ċ

∂x

+ ∂ODE

∂zd

(
∂ ċ

∂zd

)−1
∂ ċ

∂yd

(
∂c

∂yd

)−1
∂c

∂x
.

3.2 Adjoint variable method

In the adjoint variable method, the dependent variations δy are eliminated by augmenting
the varied objective function (24) with two zero terms, which are multiplied by arbitrary
time-dependent adjoint variables μ(t) ∈ R

f and ν(t) ∈ R
f . The first zero term is the varied

kinematic relation (29), and the second one is the variation of the equations of motion (32).
Then, all terms in δy can be eliminated by choosing the adjoint variables properly.

However, the product of the adjoint variables μT(t) and the variation of the kinematic
relation (29)

μT[δẏ + S1δy + S2δz + S3δx] = 0 (34)

is in a different form compared to Eq. (24). Therefore, Eq. (34) has to be integrated over the
simulation time, yielding

t1∫

t0

μT[δẏ + S1δy + S2δz + S3δx]dt = 0. (35)
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Moreover, since δẏ is not included in the varied objective function (24), the time derivative
in δẏ has to be moved to the adjoint variables. Thus, using integration by parts, the first
integrand can be transformed to

t1∫

t0

μTδẏ dt = μ1T
δy1 − μ0T

δy0 −
t1∫

t0

μ̇Tδy dt. (36)

Since the initial conditions (19) are assumed to be design independent, the variations of the
initial generalized coordinates δy0 are zero. Therefore, Eq. (35) can be written as

μ1T
δy1 +

t1∫

t0

[(−μ̇T + μTS1

)
δy + μTS2δz + μTS3δx

]
dt = 0. (37)

In the same way, the second augmentation term is obtained. Here, the variation of the
equations of motion (32) is multiplied from the left by arbitrary adjoint variables νT(t):

νT[Mδż + T 1δy + T 2δz + T 3δx] = 0. (38)

Integrating over the time domain,

t1∫

t0

νT[Mδż + T 1δy + T 2δz + T 3δx]dt = 0, (39)

and applying integration by parts to remove the time derivative of the variations of the ve-
locity variables δż yields

t1∫

t0

νTMδż dt = ν1T
M

1
δz1 − ν0T

M
0
δz0 −

t1∫

t0

(
ν̇TM + νTṀ

)
δz dt. (40)

Considering that the initial conditions are independent of the design variables and, hence,
δz0 = 0, it is possible to rewrite Eq. (38) as

ν1T
M

1
δz1 −

t1∫

t0

[(
ν̇TM + νTṀ − νTT 2

)
δz − νTT 1δy − νTT 3δx

]
dt = 0, (41)

which is a suitable form to augment the variation of the objective function δψ .
Subtracting Eq. (37) and (41) from Eq. (24) and rearranging the result in terms of the

dependent variations δy and δz and independent variations δx yield

δψ = −μ1T
δy1

+
t1∫

t0

(
R1 + μ̇T − μTS1 − νTT 1

)
δy dt
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− ν1T
M

1
δz1

+
t1∫

t0

(−μTS2 + ν̇TM + νTṀ − νTT 2
)
δz dt

+
{ t1∫

t0

(
R2 − μTS3 − νTT 3

)
dt

}
δx. (42)

It can be seen that the term in curly brackets corresponds to the sought gradient ∇ψ , pro-
vided that the adjoint variables are chosen such that the dependent variations δy and δz

vanish at all times, including the final time t1. From this condition and provided that the
global mass matrix M is symmetric, the following equations can be derived for the adjoint
variables:

μ1 = 0,

M
1
ν1 = 0,

μ̇ = ST
1 μ + T T

1 ν − RT
1 ,

Mν̇ = ST
2 μ − Ṁν + T T

2 ν.

(43)

The adjoint system (43) is a final value problem for ODEs, which has to be solved for the
adjoint variables μ and ν by integrating backward in time starting at the final conditions
μ1 = 0 and ν1 = 0. Thereafter, the gradient can be evaluated by

∇ψ =
t1∫

t0

(
R2 − μTS3 − νTT 3

)
dt. (44)

It is worth mentioning that the dimension of the adjoint differential equations and hence
the computational effort to solve them do not depend on the number of design variables.
Therefore, the adjoint variable method is favorable for structural optimization problems with
a large number of design variables x.

3.3 Augmented standard input data

For the evaluation of Eq. (44), among others, the derivatives of the equations of motion (15)
with regard to the design variables x are constantly required. Therefore, on the one hand,
the derivatives of the Jacobian matrices J i and the local acceleration vectors γ i with regard
to the design variables x have to be computed. On the other hand, the derivatives of the local
equations of motion (8) with regard to x are needed.

In order to compute the latter derivatives efficiently, it is recommended to augment the
so-called standard input data. The concept of the standard input data is suggested in [20] and
used to facilitate the evaluation of the equations of motion of flexible bodies. Therefore, a
set of body integrals, which do not depend on the elastic coordinates, is computed before the
actual time simulation. In the same way, in the current work, the SID are augmented by their
derivatives with regard to the design variables x to facilitate the computation of Eq. (44).
The computational effort, however, is still considerably high for large-scale problems.
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This is due to the fact that a large number of body integrals have to be computed and
differentiating the SID, the derivatives of the global shape functions with regard to the design
variables ∂Φ i/∂x and ∂Ψ i/∂x have to be provided. In the following application example,
the global shape functions are found from modal truncation and are thus the first eigenmodes
of the underlying finite element model of the flexible body. For the precise and efficient
derivation of the eigenmodes, however, Nelson’s method [14] can be used as also proposed
in [5].

4 Application example

In order to test the gradient computation procedure, the structural sensitivity of a flexible
piston rod of a slider–crank mechanism is analyzed. The sensitivity information can be used,
for instance, in the topology optimization of the piston rod; see [10].

4.1 Flexible slider–crank mechanism

The flexible slider–crank mechanism, which is used as an application example, consists of
a rigid crank and a flexible piston rod; see Fig. 3. The eccentricity ε of the crank is 0.1 m
and the distance l between the bearings of the piston rod is 1 m. Since no sliding-block is
attached to the system, the loading on the piston rod in motion originates only from its own
inertia. As shown in [9], in this case, it is crucial to provide exact gradients in order to obtain
viable optimization results.

The motion of the system is composed of two phases and applied via a rheonomic con-
straint of the crank angle ϕ as

ϕ(t) =

⎧
⎪⎨

⎪⎩

i=7∑

i=0
ait

i , 0 s ≤ t ≤ 2 s,

Ω1t + ϕ1, 2 s < t ≤ 3 s.
(45)

In the first phase, the crank is accelerated within two seconds from a resting position until
a constant angular velocity is reached. Then, in the second phase, the angular velocity is
kept constant for another second. For a jerk-free transition at the beginning and the end of
the first phase, the polynomial coefficients ai are chosen such that the following boundary
conditions hold:

t0 = 0 s : ϕ = ϕ̇ = ϕ̈ = ...
ϕ = 0,

t1 = 2 s : ϕ = ϕ1 = 12π rad,

ϕ̇ = Ω1 = 12π Hz,

ϕ̈ = ...
ϕ = 0.

(46)

4.2 Parameterization and formulation of the objective function

In the slider–crank mechanism, the piston rod is assumed to be flexible. To determine a set of
global shape functions Φ , which describe the elastic deformations of the rod, a finite element
model is generated. Therefore, a reference domain of dimension (1.0 × 0.06 × 0.01) m is
meshed using 6 × 100 planar 4-node bilinear elements; see Fig. 4.
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Fig. 3 Flexible slider–crank
mechanism

Fig. 4 SIMP parameterized FE
model of the design domain

In order to analyze the design of the rod, both the density ρ and the stiffness E of the
elements are not constant but parameterized using the solid isotropic material with penal-
ization (SIMP) approach; see [1]. In this popular topology optimization strategy, continuous
density-like design variables xi ∈ (0,1] are introduced for each finite element. Then, fol-
lowing, for instance, the SIMP approach suggested in [15], the density and stiffness of an
element i are computed as

ρi =
{

cx
q

i ρ0 for xmin = 0.01 ≤ xi < 0.1,

xiρ0 for 0.1 ≤ xi ≤ 1,

Ei = x
p

i E0,

(47)

where ρ0 and E0 are the density and the stiffness of the solid material, whereas c, p, and q

are scalar parameters. For the modeling of the flexible piston rod, the parameters are chosen
as ρ0 = 8750 kg/m3, E0 = 0.5 · 1011 N/m2, c = 105, p = 3, and q = 6. With the exception
of the first and last columns, which are assumed to be rigid interfaces, all elements of the
model are parameterized; compare Fig. 4. Hence, the number of design variables x is 588.

Assembling the global mass matrix Me, the global stiffness matrix Ke, and the global
vector of applied forces f e, the linear equations of motion of the finite element model can
be obtained as

Meü + Keu = f e. (48)

Even though the number of nodal degrees of freedom u is comparatively small in the current
model, it is not efficient to consider all of them in the multibody simulation. Therefore, the
dimension of Eq. (48) is reduced to nq = 6 elastic degrees of freedom qe by applying modal
truncation; see [7] for details. To each of these six elastic degrees of freedom a global shape
function φi is assigned. It should be noted that since the finite element model depends on
the vector of design variables x, the global shape functions, which are gathered in Φ(x) =
[φ1(x), . . . ,φnq(x)], depend on the design variables, too.

After the flexible body is parameterized, the choice of an appropriate objective func-
tion is discussed. In this work, being a typical example of objective functions in topology
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optimization [1, 9], the integral compliance

ψ(x) =
t1∫

t0

(Φqe)
TKeΦqe dt (49)

is chosen to assess the performance of the design. The structure of Eq. (49) is the same as
that of the general objective function (20). The integrand depends via the elastic coordinates
qe on the redundant coordinates yr and via the stiffness matrix Ke and the global shape
functions Φ on the design variables x.

4.3 Gradient evaluation

The gradient ∇ψ of the objective function (49) is evaluated at the point xi = 0.5, i =
1 . . .588, using two different approaches. On the one hand, the adjoint variable method
is employed as described in this work. On the other hand, in order to verify the results,
the finite central difference method is used, whereby each design variable is perturbed by
0.1. Thereby, the forward integration of the equations of motion is always performed using
the implicit MATLAB solver ode15s; see [13]. Thereby the absolute and relative integra-
tion tolerances are 10−12 and 10−10, respectively. The backward integration of the adjoint
ODEs is also performed using the ode15s-solver and the absolute and relative integration
tolerances 10−10 and 10−8.

In Figs. 5 and 6, the results of both methods are visualized as surfaces above the reference
domain of the flexible piston rod. Thus, the x-axis ranges from 0.01 to 0.99 m and the y-axis
from −0.03 to 0.03 m.

First of all, it can be noted that the resulting gradients are in good agreement and are
reasonable. Whereas the gradients are negative for the upper and lower elements of the
piston rod, they are positive for the inner elements of the structure. This is due to the fact
that the piston rod is loaded by its own inertia only. The upper and lower elements support
the piston rod against bending. Here, increasing the amount of material, the compliance of
the piston rod can be reduced. In contrast, the inner elements in the domain −0.01 m ≤
e2 ≤ 0.01 m contribute little to the stiffness but cause loading due to their inertia. As a
consequence, the gradient is positive in this area.

The maximal absolute error between the solutions obtained with the adjoint variable and
the finite difference method max(|∇ψavm| − |∇ψfd|) is 2.5 · 10−4 and, hence, only about
3.4 % of the maximal absolute value max(|∇ψavm|) = 7.4 · 10−3. Whereas both methods
suffer from numerical errors made, for instance, in the modal reduction, the computation of
the standard input data, or the time integration, there is an additional approximation error in
the finite difference method. As a consequence, the adjoint variable method returns a smooth
gradient, whereas this is not the case for the finite difference method. Also, comparing the
computational times, we can see the superiority of the adjoint variable method. The overall
gradient computation using the adjoint approach requires less than 5 min, whereas it takes
roughly 12 h with the central finite difference method.

5 Summary and conclusion

Employing the adjoint variable method, it is possible to perform large-scale sensitivity anal-
yses in flexible multibody systems modeled with the floating frame of reference approach
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Fig. 5 Topological gradient
using the adjoint variable method

Fig. 6 Topological gradient
using the finite difference method

such as they occur, for instance, in topology optimization. For the general case of flexible
multibody systems with kinematic loops, it is shown that both the equations of motion and
the adjoint differential equations can be derived and solved as ODEs only. Therefore, on the
one hand, a coordinate partitioning is used to represent the equations of motion in minimal
coordinates. On the other hand, deriving the adjoint equations, the variations of the depen-
dent position and velocity coordinates have to be substituted. The necessary equations are
found from the variations of the constraint equations at position and velocity level.

The procedure is tested evaluating the structural sensitivity of a flexible slider–crank
mechanism, which is parameterized using the SIMP approach. The results show that, in
contrast to the finite difference method, the adjoint variable method is able to provide ex-
act and smooth gradient information in reasonable computing times. It should be therefore
preferred over the finite difference method for the large-scale sensitivity analysis of flexible
multibody systems.
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