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Abstract The aim of this paper is to compare the accuracy of the absolute nodal coordinate
formulation and the floating frame of reference formulation for the rigid-flexible coupling
dynamics of a three-dimensional Euler–Bernoulli beam by numerical and experimental val-
idation. In the absolute nodal coordinate formulation, based on geometrically exact beam
theory and considering the torsion effect, the material curvature of the beam is derived,
and then variational equations of motion of a three-dimensional beam are obtained, which
consist of three position coordinates, two slope coordinates, and one rotational coordinate.
In the floating frame of reference formulation, the displacement of an arbitrary point on the
beam is described by the rigid-body motion and a small superimposed deformation displace-
ment. Based on linear elastic theory, the quadratic terms of the axial strain are neglected, and
the curvatures are simplified to the first order. Considering both the linear damping and the
quadratic air resistance damping, the equations of motion of the multibody system com-
posed of air-bearing test bed and a cantilevered three-dimensional beam are derived based
on the principle of virtual work. In order to verify the results of the computer simulation, two
experiments are carried out: an experiment of hub–beam system with large deformation and
a dynamic stiffening experiment. The comparison of the simulation and experiment results
shows that in case of large deformation, the frequency result obtained by the floating frame
of reference formulation is lower than that obtained by the experiment. On the contrary, the
result obtained by the absolute nodal coordinate formulation agrees well with that obtained
by the experiment. It is also shown that the floating frame of reference formulation based on
linear elastic theory cannot reveal the dynamic stiffening effect. Finally, the applicability of
the floating frame of reference formulation is clarified.
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1 Introduction

In multibody system simulation, the appearance of light weight structures has increased the
need to account for the flexibility of structural components. Due to practical applications,
such as helicopter rotor blades, turbine machine rotor blades, flexible robot arms, and space-
crafts with flexible appendages, the rigid-flexible coupling effect has been paid attention to
in case of large deformation.

The floating frame of reference formulation has been applied for simulation of flexible
multibody system for a long time. The advantage of such a formulation is that in case of
small deformation, the stiffness matrix of the elastic body is linear and that the modal re-
duction approaches can be used for reducing the degrees of freedom of the system. In the
linear hybrid coordinate formulation of flexible multibody system, with the assumption of
small deformation, the quadratic terms in strain are not taken into account. Based on the
linear model, coupling between rigid-body motion and elastic deformations was taken into
account in [1]. It was found that such a linear approximated formulation fails to explain the
stiffening effect for a high-speed rotating elastic beam [2], and then, considering centrifu-
gal stiffening effect, dynamic performance of a rotating hub–beam system was investigated
using the stress stiffening method in [3, 4]. The stress stiffness matrix was derived from
the internal virtual work that includes nonlinear terms of strain-displacement relationship
and the reference stresses induced by existing loads before deformation. Another nonlinear
formulation for dynamic stiffening analysis was proposed, in which the longitudinal de-
formation was expressed using an axial stretch coordinate along the deformed axis [2, 5].
The advantage of such a method is that by using a stretch variable, a linear expression of
strain energy can be obtained, so that it has been efficiently used for investigating dynamic
stiffening problems. This formulation was extended to investigate a hub–beam system with
a tip mass considering both viscous damping and air drag force [6], and then a criterion
was proposed to clarify the application range of the linear model in which the stiffening
effect can be neglected [7]. However, it was found that in case of large deformation, the
high-order deformation terms cannot be neglect, nor can the modal reduction technique be
used, and therefore the use of the floating frame of reference formulation may significantly
increase the time cost because the generalized mass matrices, the stiffness matrices, and the
generalized force matrices are highly nonlinear [8, 9].

Absolute nodal coordinate formulation is now widely used for simulation of flexible
multibody system with large deformation. The investigation of beam finite elements of ab-
solute nodal coordinate formulation can be divided into two main research directions: the
gradient deficient beam elements and the cross-section deformable elements considering
shear effect. In the direction of the gradient deficient beam elements, the transverse shear
deformation is not taken into account. The position vector of an arbitrary point on the cen-
terline can be described by employing absolute position coordinates and the slope coordi-
nates in the axial direction of the element. The gradient deficient beam elements lack slope
vectors in the transverse direction. In early investigations of ANCF, two-dimensional gra-
dient deficient beam elements were employed under the Euler–Bernoulli beam assumption
by employing a local coordinate system to evaluate the elastic forces based on nonlinear
strain-displacement relationship [10], in which the generalized axial strain and spatial mea-
sure of curvature for bending were used. The description of elastic forces was enhanced
by using the material measure of curvature [11]. It was also demonstrated that the planar
ANCF elements can include the geometrical stiffening effect correctly [12]. The investiga-
tion of ANCF was then extended to three-dimensional beams. Neglecting the torsion de-
formation, a three-dimensional ANCF beam element using the Euler–Bernoulli theory was
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developed [13]. In order to consider the torsion deformation, two slope coordinates and one
rotational coordinate were used to represent the attitude motion of the cross-section [14].
In the investigation, the geometrical curvature was used to describe the bending and torsion
deformation of the beam. It has been shown, with simple planar analysis, that the material
measure of curvature should be used for a description of large bending deformation instead
of the geometrical curvature. Furthermore, it has been observed that the use of rotational pa-
rameters in the ANCF can lead to a numerical singularity problem, which can be solved with
the director update method [15]. In the second direction of investigation based on ANCF,
shear and cross-section deformable elements were developed [16]. By introducing the ad-
ditional slopes in the transverse directions of the element, transverse shear deformation can
be described. In such a formulation, the vector of elastic forces was derived based on the
second Piola–Kirchhoff stress and the Green–Lagrange strain. In addition, the deforma-
tion of the cross-section can be allowed by relaxing some of the assumptions used in the
Euler–Bernoulli and Timoshenko beam theories. Using a continuum mechanics approach,
the elastic forces were defined straightforwardly by the use of the slopes in the element
transverse directions. In the three-dimensional beam, the elastic forces were defined by in-
troducing the Serret–Frenet frame and the Gram–Schmidt orthogonalization [17]. However,
it was found that the use of a continuum mechanics approach may lead to the results that
do not converge to the correct solutions in case the Poisson ratio is not equal to zero [18],
which is called the Poisson locking problem. The approach to prevent Poisson locking was
to remove the Poisson effect [19] or to set the Poisson ratio equal to zero [20]. In addition
to Poisson locking, it was also shown that the ANCF beam elements suffered from shear
locking [21]. It was found that the application of the Hellinge–Reissner principle, together
with an elastic line approach, may lead to an improved convergence of bending dominated
problems. The definition of elastic forces was improved by use of the Hellinger–Reissner
principle [22, 23]. Furthermore, it was shown that the selective reduced integration allevi-
ates the shear locking [24]. A further optimized reduced integration scheme can improve the
convergence, especially for thin elements.

A comparison of the floating frame of reference and the absolute nodal coordinate for-
mulation was performed for static and dynamic problems, both in the small and large defor-
mation regimes [25]. It was concluded that for both static and dynamic problems, the ANCF
method is faster with an increasing number of finite elements in case of large deformation.
However, the accuracy of the floating frame of reference and the absolute nodal coordinate
formulation have not been validated through comparison with the experiment results.

In order to verify the effectiveness of the absolute nodal coordinate formulation, large os-
cillations of a thin cantilever beam are studied in this paper to numerically model the beam,
which also accounts for the effects of an attached end-point weight and damping forces
[26]. The experiments were carried out using a high-speed camera and a data acquisition
system. In this investigation, only proportional damping was considered. To consider the
external damping that includes aerodynamic and hydrodynamic drag, two types of damping
models, proportional damping and quadratic damping, were investigated [27]. A new exper-
imental modal testing method was presented using a high-speed camera, and the parameter
identification method of each damping model is explained. Recently, the accuracies of the
geometrically exact beam and absolute nodal coordinate formulations are studied by com-
paring their predictions against an experimental data set referred to as the “Princeton beam
experiment” [28]. The experiment deals with a cantilevered beam experiencing coupled flap,
lag, and twist deformations. This study demonstrates the crucial need for thorough valida-
tion of the beam elements used for the simulation of flexible multibody systems before they
are used to solve practical problems. Moreover, some flexible multibody dynamics beam
formulations are validated using benchmark problems [29].
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In most of the previous experimental investigations, the beams are cantilevered without
large overall motion, and therefore the coupling effect of the rigid-body motion and the
elastic deformation has not been paid attention to. The aim of this paper is to compare the
accuracy of the absolute nodal coordinate formulation and the floating frame of reference
formulation for a three-dimensional Euler–Bernoulli beam by numerical and experimental
validation, in which the coupling effect of the rigid-body motion and the elastic deformation
is taken into account. Firstly, based on the Euler–Bernoulli assumption and geometric exact
beam theory, the material curvature of the beam is derived, and then the variational equa-
tions of motion of a three-dimensional Euler-Bernoulli beam is derived by using absolute
nodal coordinate formulation, in which the torsion deformation is taken into account and the
singularity problem due to the use of the rotation variable can be solved. Secondly, based
on the assumption of small deformation, the variational equations of motion of a three-
dimensional Euler–Bernoulli beam is derived using floating frame of reference formulation.
In such a formulation, the dynamic stiffening terms are not included based on the linear elas-
tic theory, and the curvature is simplified to the first order. The numerical results obtained by
the absolute nodal coordinate formulation and the floating frame of reference formulation
considering both the linear damping and the quadratic air resistance damping are compared
with the results obtained by experiment to verify the accuracy and applicability of differ-
ent formulations. A single-axis air-bearing apparatus is made up of an air-lubricated thrust
bearing, a hub with a gyroscopic instrument, a strain measurement instrument, and a data
acquisition system. The axis of the beam is in the horizontal plane perpendicular to the axis
of rotation of the hub. The beam is slender and very thin (i.e., the height-to-length ratio
and thickness-to-height ratio are small). The beam is cantilevered into the hub that allows
rotation of the beam about its reference axis by an angle. An experiment of a hub–beam
system with large deformation is carried out to compare the results obtained by different
formulations. A gyroscopic instrument is used to measure the angular velocity of the hub,
and a strain measurement instrument is used to measure the axial strain of a special point
on the upper surface of the beam. For further investigation, in case of different thickness of
the beam, the simulation results obtained by the absolute nodal coordinate formulation and
the floating frame of reference formulation are compared in detail to clarify the applicability
of the floating frame of reference formulation. Finally, a dynamic stiffening experiment is
carried out to reveal the dynamic stiffening effect.

2 The absolute nodal coordinate formulation

2.1 Kinematics description

A three-dimensional beam undergoing large overall motion is shown in Fig. 1. The absolute
nodal coordinate formulation is used for modeling the spatial beam with large deforma-
tion. In the large rotation vector formulation, it is assumed that the cross-section remains
plane and maintains its area and shape in case of deformation. Based on the Euler–Bernoulli
assumption, the neutral axis is assumed to be normal to the cross-section of the beam. The
beam has homogeneous and isotropic material properties, and the elastic and centroidal axes
in the cross section of a beam coincide so that the effects due to eccentricity are not taken in
account.

Using the finite element method, the beam is divided into n elements. As shown in Fig. 1,
O0 − i0j 0k0 represents the inertial frame, Oe − iej eke represents the element coordinate
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Fig. 1 An elastic spatial beam
before and after deformation

system, and Os − τmn represents the cross-section coordinate system after deformation.
The absolute position vector of the point k on the cross-section takes the form

r(x, y, z, t) = r0(x, t) + R(x, t)
[
0 y z

]T
, (1)

where (x, y, z) represents the coordinate of point k defined in Oe − iej eke before deforma-
tion, and r0(x, t) represents the absolute position vector of the corresponding point on the
neutral axis of the beam defined in O0 − i0j 0k0, which can be written as

r0(x, t) = [
r1(x, t) r2(x, t) r3(x, t)

]T
. (2)

Defining θ = (
θ1 θ2 θ3

)T
as the rotational coordinate vector, and Ci = cos θi , Si = sin θi ,

the transformation matrix from O0 − i0j 0k0 to the cross-section coordinate system Os −
τmn is given by R = 3R(θ3)

2R(θ2)
1R(θ1), which yields

R = [
τ m n

] =
⎛

⎝
C2C3 −C1S3 + S1S2C3 S1S3 + C1S2C3

C2S3 C1C3 + S1S2S3 −S1C3 + C1S2S3

−S2 S1C2 C1C2

⎞

⎠ . (3)

Defining (·)′ and (·)′′ as the first and second derivatives with respect to x, based on the
geometric nonlinear theory, the section strain component vector defined in O0 − i0j 0k0 is
given by [28]

Γ = r ′
0 − R

[
1 0 0

]T
. (4)

The curvature component vector defined in O0 − i0j 0k0 is given by Λ = axial(R′RT),
and the skew-symmetric matrix corresponding to Λ can be written as

Λ̃ = 1

2

[
R′RT − (

R′RT
)T]

. (5)

Since R is an orthogonal matrix, RRT is equal to the identity matrix; therefore, R′RT +
RR′T = 0, and Eq. (5) can be rewritten as

Λ̃ = R′RT. (6)

Substituting Eq. (3) into (4), the section strain component vector defined in Os − τmn is
given by

Γ ∗ =
⎡

⎣
ε0

γxy

γxz

⎤

⎦ = RTΓ =
⎡

⎣
τTr ′

0 − 1
mTr ′

0
nTr ′

0

⎤

⎦ (7)
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where ε0 represents the axial strain, and γxy and γxz represent the transverse shear strains of
an arbitrary point on the neutral axis of the beam.

Defining Λ∗ = [
κ1 κ2 κ3

]T
as the curvature component vector defined in Os − τmn and

Λ̃
∗

as the corresponding skew-symmetric matrix, by using Eq. (6), Λ̃
∗

can be written as

Λ̃
∗ = RTΛ̃R = RTR′. (8)

Based on the Euler–Bernoulli assumption, τ is in the same direction as r ′
0; therefore,

mTr ′
0 = 0, nTr ′

0 = 0, and Eq. (7) shows that γxy = 0, γxz = 0. In addition, the relation
between τ and r ′

0 is given by

τ = r ′
0

|r ′
0|

. (9)

Substituting Eqs. (9) into Eq. (7), the axial strain of an arbitrary point on the neutral axis
of the beam is given by

ε0 = ∣∣r ′
0

∣∣ − 1 =
√

r ′T
0 r ′

0 − 1. (10)

Substituting Eq. (3) into Eq. (8), the curvature components are given by

κ1 = nTm′ = θ ′
1 − sin θ2θ

′
3,

κ2 = τTn′ = cos θ1θ
′
2 + sin θ1 cos θ2θ

′
3,

κ3 = −τTm′ = − sin θ1θ
′
2 + cos θ1 cos θ2θ

′
3.

(11)

For rotation 3-2-1, substituting Eqs. (2) and (3) into (9) and considering −π/2 < θ2 <

π/2, we obtain that

sin θ2 = − r ′
3√

r ′2
1 + r ′2

2 + r ′2
3

, cos θ2 =
√

r ′2
1 + r ′2

2
√

r ′2
1 + r ′2

2 + r ′2
3

,

sin θ3 = r ′
2√

r ′2
1 + r ′2

2

, cos θ3 = r ′
1√

r ′2
1 + r ′2

2

.

(12)

Substituting Eq. (12) into Eq. (11), the curvature components can be expressed as

κ1 = θ ′
1 + (r ′′

2 r ′
1 − r ′

2r
′′
2 )r ′

3

(r ′2
1 + r ′2

2 )

√
r ′2

1 + r ′2
2 + r ′2

3

,

κ2 = cos θ1(r
′
1r

′′
1 r ′

3 + r ′
2r

′′
2 r ′

3 − r ′2
1 r ′′

3 − r ′2
2 r ′′

3 )
√

r ′2
1 + r ′2

2 (r ′2
1 + r ′2

2 + r ′2
3 )

+ sin θ1(r
′
1r

′′
2 − r ′′

1 r ′
2)√

r ′2
1 + r ′2

2

√
r ′2

1 + r ′2
2 + r ′2

3

, (13)

κ3 = − sin θ1(r
′
1r

′′
1 r ′

3 + r ′
2r

′′
2 r ′

3 − r ′2
1 r ′′

3 − r ′2
2 r ′′

3 )
√

r ′2
1 + r ′2

2 (r ′2
1 + r ′2

2 + r ′2
3 )

+ cos θ1(r
′
1r

′′
2 − r ′′

1 r ′
2)√

r ′2
1 + r ′2

2

√
r ′2

1 + r ′2
2 + r ′2

3

.

Note that for r ′
1 = r ′

2 = 0, the singularity problem may occur. In order to solve such a
problem, rotation 2-3-1 is employed to replace rotation 3-2-1, in which the transformation
matrix is replaced by A = A2A3A1.
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2.2 Equations of motion

Using the finite element method for discretization of the beam, the absolute position vector
of the corresponding point on the neutral axis of the beam r0 and the rotational angle θ1 are
represented by using the shape function matrices as

r0 = S1qe, θ1 = S2qe, (14)

where qe = [rT
01 r ′T

01 θ11 θ ′
11 rT

02 r ′T
02 θ12 θ ′

12]T is the vector of absolute position coordinates
and gradient of the absolute position coordinates of an element. The expressions of S1 and
S2 are given by

S1 = [
s1(ξ)I 3×3 s2(ξ)I 3×3 03×1 03×1 s3(ξ)I 3×3 s4(ξ)I 3×3 03×1 03×1

]
, (15)

S2 = [
01×3 01×3 s1(ξ) s2(ξ) 01×3 01×3 s3(ξ) s4(ξ)

]
, (16)

where ξ = x/l, s1(ξ) = 1 − 3ξ 2 + 2ξ 3, s2(ξ) = l(ξ − 2ξ 2 + ξ 3), s3(ξ) = 3ξ 2 − 2ξ 3, s4(ξ) =
l(−ξ 2 + ξ 3), and l is the length of the beam element.

Since τ , m, and n are all functions of r ′
1, r

′
2, r

′
3, θ1, define

s =
[
r ′

0
θ1

]
, S̄ =

[
S ′

1
S2

]
. (17)

Then s can be written as

s = S̄qe. (18)

The strain energy of the beam takes the form

U =
n∑

e=1

1

2

∫ l

0

(
EAε2

0 + GJκ2
1 + EIzκ

2
3 + EIyκ

2
2

)
dx, (19)

where J = ∫
A
(y2 + z2) dA, Iz = ∫

A
y2 dA, Iy = ∫

A
z2 dA, and E and G represent the elastic

modulus and shear modulus, respectively, and n is the element number.
The variation of εx and κi (i = 1,2,3) are given by

δε0 = r ′T
0 δr ′

0√
r ′T

0 r ′
0

= r ′T
0 S ′

1

|r ′
0|

δqe, (20)

δκi = ∂κi

∂s
δs + ∂κi

∂s

′
δs ′ = Diδqe (i = 1,2,3), (21)

where

Di = ∂κi

∂s
S̄ + ∂κi

∂s ′ S̄
′ (i = 1,2,3). (22)

Defining as = ∂a/∂s, differentiation of Eq. (1) with respect to time leads to

ṙ = ṙ0 + yṁ + zṅ, (23)

r̈ = r̈0 + ym̈ + zn̈, (24)
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where

ṁ = msṡ, ṅ = ns ṡ, (25)

m̈ = (msṡ)s ṡ + mss̈, (26)

n̈ = (ns ṡ)s ṡ + ns s̈, (27)

and the variation of r is given by

δr = δr0 + yδm + zδn, (28)

where

δm = msδs, δn = nsδs. (29)

The virtual work of the inertial force takes the form

δWi = −
n∑

e=1

∫

V

ρδrTr̈ dV = −
n∑

e=1

∫ l

0

(
ρAδrT

0 r̈ + ρIzδm
Tm̈ + ρIyδn

Tn̈
)
dx. (30)

The virtual work of the gravitational force takes the form

δWg =
n∑

e=1

∫

V

δrTρg dV, (31)

where g is the vector of the gravitational acceleration.
Substituting Eq. (1) into (31) and considering

∫
A

y dA = 0,
∫

A
z dA = 0, we obtain that

δWg =
n∑

e=1

∫

V

δrT
0 ρg dV . (32)

Application of the virtual work principle leads to

δWi + δWd + δWg − δU = 0, (33)

where δWd is the virtual work of the damping force.
Defining q as the generalized coordinate vector of the beam, the relation between qe and

q is given by qe = Beq . Substituting Eqs. (14)–(32) into (33), the variational equations of
motion read

δqT(Qg + Qf + Qv − Mq̈) + δWd = 0, (34)

where M = ∑n

e=1 BT
e MeBe , Qg = ∑n

e=1 BT
e Qge , Qf = ∑n

e=1 BT
e Qf e , Qv = ∑n

e=1

BT
e Qve , and the element matrices are given by

Me =
∫ l

0
ρAST

1 S1 dx +
∫ l

0
ρIz(msS̄)T(msS̄) dx +

∫ l

0
ρIy(nsS̄)T(nsS̄) dx, (35)

Qge =
∫ l

0
ρAST

1 g dx,
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Qf e = −
∫ l

0
EAS ′T

1

r ′
0

|r ′
0|

ε0 dx −
∫ l

0
GJDT

1 κ1 dx −
∫ l

0
EIyD

T
2 κ2 dx −

∫ l

0
EIzD

T
3 κ3 dx,

(36)

Qve = −
(∫ l

0
ρIz(msS̄)T(msṡ)s S̄ dx

)
q̇e −

(∫ l

0
ρIy(nsS̄)T(ns ṡ)s S̄ dx

)
q̇e.

For arbitrary q̇e �= 0, there exists some special points on the beam whose velocities are
nonzero, and the kinetic energy of the beam element Te = 1

2

∫
V

ρṙTṙ dV = 1
2 q̇T

e Meq̇e > 0;
therefore, Me is positive definite. The Gaussian integral is used for integration of the mass
and force matrices.

The damping force includes the proportional damping force and the wind resistance
force. For slender beam, the damping force can be approximated as [27]

f d = −ς1ṙ0 − ς2ṙ0|ṙ0|, (37)

where ς1 and ς2 represent the coefficients of the proportional damping force and the wind
resistance force, which are identified by experiment data. The virtual work of the damping
force is given by

δWd =
n∑

e=1

∫

Aw

δrT
0 f ddAw, (38)

where Aw is the frontal area of the beam element.
Substitute Eq. (37) into (38), we obtain that

δWd = −
n∑

e=1

∫

Aw

δrT
0

(
ς1ṙ0 + ς2ṙ0|ṙ0|

)
dAw. (39)

Substitute Eq. (14) into (39), the virtual work of the damping force is given by δWd =
δqTQd , and the generalized damping force takes the form Qd = ∑n

e=1 BT
e Qde , where the

element damping force is given by

Qde = −
(∫

Aw

ST
1

(
ς1 + ς2|S1q̇e|

)
S1dAw

)
q̇e. (40)

The variational equations of motion take the form

δqT(Mq̈ − Q) = 0, (41)

where Q = Qv + Qg + Qf + Qd .

3 The floating frame of reference formulation

3.1 Kinematics of beam undergoing large spatial motion

In this section, the floating frame of reference formulation of a three-dimensional Euler–
Bernoulli beam undergoing large overall motion is established. Small deformation is as-
sumed for the application of the floating frame of reference formulation.
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Fig. 2 A spatial beam
undergoing large overall motion

A three-dimensional beam is shown in Fig. 2. Two following coordinate systems are
introduced to describe the motion of the beam: The global coordinate system O0 − i0j 0k0

and the body-fixed coordinate system Ob − ibj bkb .
The coordinate matrix of the position vector of point k with respect to the O0 − i0j 0k0

can be written as

r = rC + A0

(
ρb

0 + ub
)
, (42)

where, as shown in Fig. 2, rC is the position vector of the reference point Ob defined in
O0 − i0j 0k0, ρb

0 = [x y z]T is the position vector of k with respect to Ob − ibj bkb in the
undeformed state defined in Ob − ibj bkb , ub = [u v w]T is the deformation displacement
vector defined in Ob − ibj bkb , and A0 is the transformation matrix that defines the orienta-
tion of the body-fixed frame.

Based on the Euler–Bernoulli assumption and small deformation, the deformation dis-
placement vector of the point k defined in Ob − ibj bkb can be expressed as

ub =
⎡

⎣
u

v

w

⎤

⎦ =
⎡

⎣
u0 − y

∂v0
∂x

− z
∂w0
∂x

v0 − zθτ

w0 + yθτ

⎤

⎦ , (43)

where ub
0 = [u0 v0 w0]T represents the deformation displacement vector of the correspond-

ing point on the neutral axis of the beam defined in Ob − ibj bkb , and θτ represents the
torsion angle of the cross-section of the beam.

Defining ωb = [ω1 ω2 ω3]T to be the coordinate vector of the angular velocity of the
body-fixed frame defined in Ob − ibj bkb , by differentiating Eq. (42) the expression for the
inertial velocity of point k can be obtained as

ṙ = ṙC − A0

(
ρ̃b

0 + ũb
)
ωb + A0u̇

b, (44)

where ρ̃b
0 and ũb are the corresponding skew matrices of ρb

0 and ub , respectively.
The inertial acceleration can be obtained by differentiation of Eq. (44) as

r̈ = r̈C − A0

(
ρ̃b

0 + ũb
)
ω̇b + A0ü

b + A0ω̃
bω̃b

(
ρb

0 + ub
) + 2A0ω̃

bu̇b, (45)

where ω̃b is the corresponding skew matrix of ωb .
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3.2 Equations of motion

The strain energy can be expressed as

U =
n∑

e=1

1

2

∫ l

0

(
EAε2

0 + GJθ ′2
τ + EIyw

′′2 + EIzv
′′2

)
dx, (46)

where ε0 is the axial normal strain of an arbitrary point on the neutral axis of the beam. The
virtual power of the elastic force can be written as

δPf = −
n∑

e=1

∫ l

0

(
EAδε̇0ε0 + GJδθ̇ ′

τ θ
′
τ + EIyδẇ

′′w′′ + EIzδv̇
′′v′′)dx. (47)

For the floating frame of reference formulation without considering the dynamic stiffen-
ing effect, the axial strain can be simplified as

ε0 = u′
0. (48)

Based on the virtual power principle, the variational equations of motion of the beam
take the form

n∑

e=1

∫

V

(
δṙTg − ρδṙTr̈

)
dV + δPf + δPd = 0, (49)

where g is the coordinate matrix of the gravitational acceleration defined in O0 − i0j 0k0,
and δPd is the virtual power of the damping force.

Using the finite element method, the longitudinal, lateral and torsion deformations of the
neutral axis can be represented by the shape function matrices as

u0 = N1pe, v0 = N2pe, w0 = N3pe, θτ = N4pe, (50)

where pe = [u01 v1 v′
1 w1 w′

1 θ1 u02 v2 v′
2 w2 w′

2 θ2]T is the vector of deformation displace-
ment coordinates, and the expressions of N i (i = 1, . . . ,4) are given by

N1 = [
g1 0 0 0 0 0 g4 0 0 0 0 0

]
, (51)

N2 = [
0 g2 g3 0 0 0 0 g5 g6 0 0 0

]
, (52)

N3 = [
0 0 0 g2 g3 0 0 0 0 g5 g6 0

]
, (53)

N4 = [
0 0 0 0 0 g1 0 0 0 0 0 g4

]
, (54)

where g1(ξ) = 1 − ξ , g2(ξ) = 1 − 3ξ 2 + 2ξ 3, g3(ξ) = l(ξ − 2ξ 2 + ξ 3), g4(ξ) = ξ , g5(ξ) =
3ξ 2 − 2ξ 3, g6(ξ) = l(−ξ 2 + ξ 3), and ξ = x/l.

Defining p as the generalized coordinate vector of the beam, the relation between pe and
p is given by pe = Bep. Substituting Eq. (50) into Eqs. (44) and (45), the inertial velocity
and acceleration read

ṙ = Sv, r̈ = Sv̇ + s, (55)

where

S = [
I −A0

(
ρ̃b

0 + ũb
)

A0NBe

]
,

s = A0ω̃
bω̃b

(
ρb

0 + NBep
) + 2A0ω̃

bNBeṗ,
(56)
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N =
⎡

⎣
N1 − yN ′

2 − zN ′
3

N2 − zN4

N3 + yN4

⎤

⎦ , (57)

v = [
ṙT

C ωb T ṗT
]T

. (58)

Substituting Eq. (50) into Eqs. (47) and (48), the virtual power of the elastic force reads

δPf = δvTQf , (59)

where

Qf = [
0T 0T (−Kp)T

]T
, (60)

and K represents the stiffness matrix, which can be written as K = ∑n

e=1 BT
e KeBe , where

the element stiffness matrix takes the form

Ke =
∫ l

0
EAN ′T

1 N ′
1 dx +

∫ l

0
EIzN

′′T
2 N ′′

2 dx +
∫ l

0
EIyN

′′T
3 N ′′

3 dx +
∫ l

0
GJN ′T

4 N ′
4 dx.

(61)
The damping force includes proportional damping force and the wind resistance force,

which has the same expression as Eq. (37). The virtual power of the damping force is given
by

δPd =
n∑

e=1

∫

Aw

δṙT
0 f ddAw = −

n∑

e=1

∫

Aw

δṙT
0

(
ς1ṙ0 + ς2ṙ0|ṙ0|

)
dAw, (62)

where ṙ0 = ṙ(x,0,0), and Aw is the frontal area of the beam element.
Defining S0 = S(x,0,0) and substituting Eq. (55) into (62), we obtain that

δPd = δvTQd , (63)

where the generalized damping force takes the form

Qd = −
n∑

e=1

(∫

Aw

ST
0

(
ς1 + ς2|S0v|)S0dAw

)
v. (64)

Substituting Eqs. (55), (59), and (63) into (49), we obtain that

δvT(Qg + Qf + Qd + Qv − Mv v̇) = 0, (65)

where

Mv =
n∑

e=1

∫

V

ρSTS dV, (66)

Qg =
n∑

e=1

∫

V

STg dV, Qv = −
n∑

e=1

∫

V

ρSTs dV . (67)

Considering the relations [30]

ωb = DΘ̇, ω̇b = DΘ̈ + ḊΘ̇, (68)
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where Θ represents the vector of the Cardan angle of the body-fixed frame, and defining
q = [rT

c ΘT pT]T, we obtain that

v = Hq̇, v̇ = Hq̈ + h, (69)

where

H =
⎡

⎣
I 0 0
0 D 0
0 0 I

⎤

⎦ , h =
⎡

⎣
0

ḊΘ̇

0

⎤

⎦ . (70)

In case that singularity occurs, the Cardan angle can be replaced by the Euler angle.
The variational equations are given by

δq̇T(Q − Mq̈) = 0, (71)

where

M = H TMvH ,

Q = H T(Qg + Qf + Qd + Qv) − H TMvh.
(72)

4 Rigid-flexible coupling equations of the hub–beam system

As can be seen in Fig. 3, the hub can rotate along the j axis, and a thin rectangular beam is
connected to the hub with a fixed joint at point A. Three coordinate systems are introduced:
global frame O − i0j 0k0, body-fixed frame of the hub O − ihjhkh, and the body-fixed
frame of the spatial beam A − ibj bkb . Defining θ as the rotational angle of the hub, β as
the constant angle between jh and j b , and J as the rotary inertia of the hub, the kinematics
constraint equations are given by

ΦK =

⎡

⎢
⎢
⎣

rA − Ah(θ)[R 0 0]T

kT
hib

jT
hib

jT
hj b − cosβ

⎤

⎥
⎥
⎦ = 0, (73)

where R is the distance from point O to point A, Ah(θ) is the transformation matrix of
O − ihjhkh, and jh, kh are given by

Ah(θ) =
⎡

⎣
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤

⎦ ,

jh = [
0 1 0

]T
, kh = Ah(θ)

[
0 0 1

]T
.

(74)

For absolute nodal coordinate formulation, ib and j b are given by

ib = r ′
0(0, t)/

∥
∥r ′

0(0, t)
∥
∥,

j b = m(0, t),
(75)

and the deformation displacement vector ub can be calculated according to Eq. (42), in
which the transformation matrix of O − ibj bkb is given by A0 = [

ib j b kb

]
, where kb =

n(0, t).
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Fig. 3 Hub and spatial beam
system

For the floating frame of reference formulation, q = [
rT

c ΘT pT
]T

, ib and j b are given
by

ib = A0

[
1 0 0

]T
,

j b = A0

[
0 1 0

]T
.

(76)

If the driving constraint equations are given by ΦD = 0, then the system constraint equa-
tions can be written as Φ = [ΦKT ΦDT ]T = 0.

The Lagrange equation of the first kind is given by

[
M̄ ¨̄q + ΦT

q̄ λ − Q̄

Φ

]
= 0, (77)

where the generalized mass matrix, force matrix, and the generalized coordinate vector take
the form

M̄ =
[
J 0T

0 M

]
, Q̄ =

[
T − Td

Q

]
, q̄ =

[
θ

q

]
, (78)

and T and Td represent the external torque and damping torque applied on the hub, respec-
tively, and Φq̄ and λ represent the Jacobian matrix and vector of the Lagrange multiplier,
respectively. A generalized-α method is used for integration of differential-algebraic equa-
tions [31, 32].
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Fig. 4 Air-floating platform

5 Experiment of hub–beam system with large deformation

An air-floating platform is used in the experiment as the hub, as shown in Fig. 4. The air-
floating platform can be adopted to simulate frictionless mechanical environment by sus-
pending the platform in air. The prototype of the air-floating platform experiment equipment
is the hub–beam dynamics system, in which the air-floating platform is used to replace the
hub, whereas the designed aluminum plate is used to replace the flexible beam. The hub–
beam system is a typical rigid-flexible coupling system, which has a strong engineering
background in the fields of spacecrafts, space robot arms, and so on. There are theoretical
and experimental studies of many scholars, especially in the United States National Aero-
nautics and Space Administration (NASA). Japanese NASDA Tsukuba Research Center
also had studied the rigid-flexible coupling problem of the solar wings and a central rigid
attitude control system for the technology experimental satellite (ETS-V1); therefore, the
hub–beam system has not only wide engineering application background, but also impor-
tant theoretical value for the study of rigid-flexible coupling dynamics of multibody systems.
This is why we design and develop the air-floating platform. The experimental platform has
the capacity of multichannel data acquisition and real-time monitoring with high precision,
low damping, and easy to operate.

The platform can rotate along the vertical axis, and the frictional torque of the platform
can be neglected. Since the damping torque applied on the hub is very small, it is assumed
that Td = 0. The external torque applied on the hub is T = 0. The rotary inertia of the hub
is J = 9.557 kg·m2, and the distance from point O to point A is R = 0.35 m. The constant
angle between jh and j b is β = π/4.

Initially, the axis ib of the beam is in horizontal position without elastic deformation, and
˙̄q(0) = 0. For absolute nodal coordinate formulation, the initial generalized coordinates of
the system are given by

q̄(0) = [
θ(0) q(0)T

]T
, q(0) = [

q1(0)T · · · q i (0)T · · · qn+1(0)T
]T

,

θ(0) = 0, q i (0) = [
r0i (0)T r ′

0i (0)T θ1i (0)T θ ′
1i (0)T

]T
,

r0i (0) = [
R + (i − 1)l 0 0

]T
, r ′

0i (0) = [
1 0 0

]T
,

θ1i (0) = −π/4, θ ′
1i (0) = 0,

(79)
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Table 1 Material and geometric
properties of the beam Length (m) 1.465

Height (m) 0.1

Thickness (m) 0.0025

Density (kg/m3) 2766

Elastic modulus (Pa) 6.9 × 1010

where i represents the node number.
For floating frame of reference formulation, the initial generalized coordinates of the

system are given by

q̄(0) = [
θ(0) Θ(0)T p(0)T

]T
,

θ(0) = 0, Θ(0) = [−π/4 0 0
]T

, p(0) = 0.

(80)

Applied with gravitational force, the beam has bending and torsion deformation, which
leads to the rotational motion of the hub. A gyroscopic instrument is used to measure the
angular velocity of the hub. Two strain gauges are attached on the upper surface of points
P1 and P2, and the distances from point A to P1 and P2 are 0.3 m and 1.2 m, respectively.
The material and geometric properties of the beam are given in Table 1.

The linear and quadratic proportional damping coefficients ς1 and ς2 are obtained by
measurement and are given by ς1 = 1.73, ς2 = 1.4.

Figure 5(a) and 5(b) show the comparison of the simulation and experiment results of the
axial strain on the upper surface of P1 and P2, respectively. Figure 6 shows the comparison
of the simulation and experiment results of the angular velocity of the hub. As can be seen in
the figure, the frequency result of the axial strain obtained by the absolute nodal coordinate
formulation agrees well with the experiment result. However, the frequency of the axial
strain obtained by the floating frame of reference formulation based on small deformation is
lower than the experiment result. In order to show the convergence property, FFT analysis
is carried out to obtain the vibration frequencies. Table 2 shows comparison of the first
vibration frequencies of different formulations. It is indicated that with the increase of the
DOF of the beam, the relative error of the first vibration frequency obtained by the absolute
nodal coordinate formulation decreases significantly. However, the relative error of the first
vibration frequency obtained by the floating frame of reference formulation does not change.

Figure 7 and Fig. 8 show the comparison of the simulation results of the axial strain on
the upper surface of P1 and the angular velocity of the hub, respectively, in case the thickness
of the plate is increased to 0.004 m. As can be seen in the figures, with the increase of the
thickness and the decrease of the deflection, the frequency result obtained by the absolute
nodal coordinate formulation agrees well with the results obtained by the floating frame of
the reference formulation.

Figure 9 and Fig. 10 show the comparison of the simulation results of the axial strain on
the upper surface of P1 and the angular velocity of the hub, respectively, in case the thick-
ness of the plate is reduced to 0.001 m. It is shown that with the decrease of the thickness,
the elastic deformation significantly increases. The frequency obtained by the floating frame
of the reference formulation based on the assumption of small deformation is much lower
than that obtained by the absolute nodal coordinate formulation, and the vibration amplitude
is much larger. Table 3 shows the comparison of the first vibration frequency obtained by
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Fig. 5 (a) Axial strain of the
upper surface of point P1.
(b) Axial strain of the upper
surface of point P2

Fig. 6 Angular velocity of the
hub
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Table 2 Convergence of the first vibration frequency obtained by different formulations

Experiment DOF ANCF Relative error
of ANCF

DOF FRF Relative
error of FRF

1.0052 Hz 40 1.0938 Hz 8.814 % 30 0.9720 Hz 3.303 %

48 1.0448 Hz 3.940 % 36 0.9722 Hz 3.283 %

56 1.0145 Hz 0.925 % 42 0.9722 Hz 3.283 %

Fig. 7 Axial strain of the upper
surface of point P1 for
h = 0.004 m

Fig. 8 Angular velocity of the
hub for h = 0.004 m

different formulations. Defining wm as the peak deformation displacement in the kb direc-
tion, it is indicated that when wm is larger than 0.55 m (38 % of the beam length), the error
of the vibration frequency obtained by the floating frame of reference formulation based on
small deformation increases significantly, which should be paid attention to.
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Fig. 9 Axial strain of the upper
surface of point P1 for
h = 0.001 m

Fig. 10 Angular velocity of the
hub for h = 0.001 m

Table 3 Comparison of the first
vibration frequency for different
thickness

h wm ANCF FRF

0.004 m 0.23 m 1.5790 Hz 1.5686 Hz

0.0025 m 0.55 m 1.0256 Hz 0.9655 Hz

0.001 m 1.16 m 0.6757 Hz 0.3846 Hz

6 Experiment of hub–beam system with prescribed angular velocity

The second experiment investigates the centrifugal stiffening effect of a hub–beam system
undergoing prescribed rotational motion as shown in Fig. 11. The rotary inertia of the hub
is J = 11.8 kg·m2, and the distance from point O to point A is R = 0.55 m. The constant
angle between jh and j b is β = 0. The material and geometric properties of the beam are
given in Table 4.

In this experiment, the external torque applied on the hub is T = 0, and the damping
torque Td is not taken into account. The linear and quadratic proportional damping coeffi-
cients ς1 and ς2 are the same as in the previous experiment.
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Fig. 11 Air floating platform
undergoing rotational motion

Table 4 Material and geometric
properties of the beam Length (m) 0.9

Height (m) 0.0318

Thickness (m) 0.001

Density (kg/m3) 7866

Elastic modulus (Pa) 2.01 × 1011

Fig. 12 The prescribed angular
velocity of the hub

Actuated by an electric motor, the hub undergoes rotational motion. The driving angular
velocity obtained using PID control law is given as follows:

ω(t) =
{

ωs(1 − e−5t/T ) 0 ≤ t < t1

ωs t ≥ t1
(81)

where ωs = 3.05 rad/s, T = 100 s, t1 = 80 s. The angular velocity of the hub is measured
by a gyroscopic instrument. The fitted curve of the angular velocity of the hub is given in
Fig. 12. The driving constraint equation is given by

ΦD = θ − θ(t) = 0, (82)
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Fig. 13 The tip deflection of the
beam

where

θ(t) =
{

ωs(t + 1
5 T e−5t/T − 1

5T ) 0 ≤ t < t1

ωs(t1 + 1
5 T e−5t1/T − 1

5T ) + ωs(t − t1) t ≥ t1.
(83)

Initially, the axis ib of the beam is in horizontal position without elastic deformation, and
˙̄q(0) = 0. For absolute nodal coordinate formulation, the initial generalized coordinates of
the system are given by

q̄(0) = [
θ(0) q(0)T

]T
, q(0) = [

q1(0)T · · · q i (0)T · · · qn+1(0)T
]T

,

θ(0) = 0, q i (0) = [
r0i (0)T r ′

0i (0)T θ1i (0)T θ ′
1i (0)T

]T
,

r0i (0) = [
R + (i − 1)l 0 0

]T
, r ′

0i (0) = [
1 0 0

]T
,

θ1i (0) = 0, θ ′
1i (0) = 0,

(84)

where i represents the node number.
For the floating frame of reference formulation, the initial generalized coordinates of the

system are given by

q̄(0) = [
θ(0) Θ(0)T p(0)T

]T
,

θ(0) = 0, Θ(0) = [
0 0 0

]T
, p(0) = 0.

(85)

The calculated time history of the tip deflection of the beam is shown in Fig. 13. As can
be seen in the figure, the result obtained by the absolute nodal coordinate formulation agrees
well with the experiment. However, the error of the result obtained by the floating frame of
reference formulation is significant due to the neglect of the dynamic stiffening effect.

Table 5 shows the comparison of the tip deflection of the beam for t = 80 s obtained
by different formulations. It is indicated that with the increase of the DOF of the beam,
the relative error of the tip deflection obtained by the absolute nodal coordinate formulation
can be reduced significantly, whereas the relative error of the tip deflection obtained by the
floating frame of reference formulation still increases. Defining ωm as the angular velocity
of the hub for t = 80 s, Table 6 shows the comparison of the tip deflection (t = 80 s) for
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Table 5 Convergence of the tip deflection (t = 80 s) obtained by different formulations

Experiment DOF of
beam

ANCF Relative error
of ANCF

DOF of
beam

FRF Relative
error of FRF

−0.076 m 24 −0.0720 m 5.263 % 18 −0.13580 m 78.684 %

40 −0.0735 m 3.290 % 30 −0.13585 m 78.750 %

56 −0.0750 m 1.316 % 42 −0.13590 m 78.816 %

72 −0.0750 m 1.316 % 54 −0.13590 m 78.816 %

Table 6 Comparison of the tip
deflection (t = 80 s) for different
angular velocities

ωm ANCF FRF

0.50 rad/s (0.0796 Hz) −0.00250 m −0.00255 m

1.00 rad/s (0.1592 Hz) −0.00970 m −0.01050 m

2.00 rad/s (0.3183 Hz) −0.03561 m −0.04676 m

3.05 rad/s (0.4854 Hz) −0.07500 m −0.13587 m

different angular velocities. It can be seen that with the increase of ωm, the simulation error
of the floating frame of reference formulation increases significantly, although the deflection
is small. According to the measurement, the first natural frequency of the beam is 0.9766 Hz.
It can be seen that for ωm ≥ 2 rad/s (33 % of the first natural frequency of the beam), the
difference of the result obtained by two formulations should be paid attention to.

7 Conclusions

Considering the proportional damping and quadratic air resistance damping force, equa-
tions of motion of flexible multibody system composed of a rotational hub and a three-
dimensional beam are derived. The comparison of the simulation results obtained by the
floating frame of reference formulation, the absolute nodal coordinate formulation, and the
experiment results shows that in case of large deformation, the frequency of the axial strain
and the angular velocity of the hub obtained by the floating frame of reference formulation
based on the linear elastic theory is lower than the experiment result. On the contrary, the re-
sults obtained by the absolute nodal coordinate formulation agree well with the experiment.
In addition, it is shown that with the increase of the rotating speed of the hub, the tip de-
flection of the beam obtained by the floating frame of reference formulation is much larger
than the experiment result, whereas the results obtained by the absolute nodal coordinate
formulation still agree well with the experiment due to the inclusion of the consideration of
geometric nonlinear effect.

It is concluded that with the increase of the thickness and the decrease of the deflec-
tion, the frequency result obtained by the absolute nodal coordinate formulation agrees well
with the results obtained by the floating frame of the reference formulation. It is also con-
cluded that with the decrease of the thickness and the increase of the deflection, the use of
the floating frame of reference formulation based on the linear elastic theory may lead to
a low vibration frequency and large vibration amplitude. In case the peak deflection wm is
larger than 38 % of the beam length, the error of the vibration frequency obtained by the
floating frame of reference formulation based on the linear elastic theory increases signifi-
cantly, which should be paid attention to. Furthermore, it is concluded that when the rotating
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speed of the hub is larger than 33 % of the first natural frequency of the beam, the dynamic
stiffening effect should be taken into account.
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