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Abstract When performing inverse dynamic analysis (IDA) of musculoskeletal models to
study human motion, inaccuracies in experimental input data and a mismatch between the
model and subject lead to dynamic inconsistency. By predicting the ground reaction forces
and moments (GRF&Ms) this inconsistency can be reduced and force plate measurements
become unnecessary. In this study, a method for predicting GRF&Ms was validated for an
array of sports-related movements. The method was applied to ten healthy subjects perform-
ing, for example, running, a side-cut manoeuvre, and vertical jump. Pearson’s correlation co-
efficient (r) and root-mean-square deviation were used to compare the predicted GRF&Ms
and associated joint kinetics to the traditional IDA approach, where the GRF&Ms were
measured using force plates. The main findings were that the method provided estimates
comparable to traditional IDA across all movements for vertical GRFs (r ranging from 0.97
to 0.99, median 0.99), joint flexion moments (r ranging from 0.79 to 0.98, median 0.93), and
resultant joint reaction forces (r ranging from 0.78 to 0.99, median 0.97). Considering these
results, this method can be used instead of force plate measurements, hereby, facilitating
IDA in sports science research and enabling complete IDA using motion analysis systems
that do not incorporate force plate data.
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Abbreviations
IDA Inverse dynamic analysis
GRF&Ms Ground reaction forces and moments
ASP Acceleration from a standing position
AMS AnyBody Modeling System
DOF Degrees-of-freedom
GRF Ground reaction force
GRM Ground reaction moment
AFM Ankle flexion moment
ASEM Ankle subtalar eversion moment
KFM Knee flexion moment
HFM Hip flexion moment
HAM Hip abduction moment
HERM Hip external rotation moment
JRF Joint reaction force
r Pearson’s correlation coefficient
RMSD Root-mean-square deviation
RL Right leg
LL Left leg

1 Introduction

Musculoskeletal modeling is an important tool for understanding the internal mechanisms
of the body during motion. To this day, it remains very challenging to measure muscle,
ligament, and joint forces in vivo, and the associated procedures are invasive. Therefore,
the use of musculoskeletal models for estimating these forces have become widespread and
contribute important information to a variety of scientific fields, such as clinical gait analysis
[1], ergonomics [2], orthopedics [3], and sports biomechanics [4].

There exist a number of different analytical approaches within musculoskeletal modeling,
such as, for instance, forward dynamics-based tracking methods [5], EMG-driven forward
dynamics [6], dynamic optimization [7], and inverse dynamic analysis (IDA) [8]. In IDA,
measurements of body motion and external forces are input to the equations of motion,
and the joint reaction and muscle forces can be computed in a process known as muscle
recruitment [8, 9]. Typically, marker-based motion analysis and force plate measurements
are used to determine body segment kinematics (i.e., positions, velocities, and accelerations)
[10] and ground reaction forces and moments (GRF&Ms) [11], respectively, whereas the
body segment parameters (i.e., segment mass, center-of-mass, and moment-of-inertia) are
determined through cadaver-based studies [12] and model scaling techniques [13].

It is well known that the results of IDA are sensitive to inaccuracies in these input data
[14, 15]. In addition, when analyzing full-body models, the system becomes overdeterminate
since the GRF&Ms are input to the equations of motion [16–18]. In some cases, it can be
justifiable to solve this overdeterminacy by simply discarding acceleration measurements
for one or more segments in the model. When this is not possible, however, the dynamic
inconsistency arising from these two issues can be solved by introducing residual forces and
moments in the model to obtain dynamic equilibrium [17–19].

In order to improve dynamic consistency, these residual forces and moments have been
used to reduce error effects from the input data through various optimization methods [17,
18, 20]. Alternatively, dynamic consistency can be improved by deriving the GRF&Ms from
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the model kinematics and segment dynamical properties only, which is commonly known
as the top-down approach [17, 20]. This method has traditionally been limited by the fact
that the inverse dynamics problem becomes indeterminate during double-contact phases,
where the system forms a closed kinetic chain [19, 21]. In recent years, however, several
studies have provided solutions to this issue [19, 21–25]. For example, Fluit et al. [19]
demonstrated a universal method for predicting GRF&Ms using kinematic data and a scaled
musculoskeletal model only, in which the indeterminacy issue was solved by computing
the GRF&Ms as part of the muscle recruitment algorithm. Additionally, compliant foot-
ground contact models have also been developed, where the ground reaction forces (GRFs)
are estimated based solely on the relative position and velocity between the segments of the
foot and a ground plane [26]. This is accomplished by introducing springs, dampers, and
friction between the foot and ground. Whereas this approach comes close to the physical
interaction between bodies in contact, it does not model the inherent ability of the human
body to shift the load from one leg to the other during double support.

Besides improving dynamic consistency, predicting the GRF&Ms obviates the need for
force plate measurements, which has some additional advantages: 1) the measurement errors
associated with force plates can be eliminated, 2) force plate targeting can be avoided—
an issue that may affect the segment angles and GRF&Ms [27], and 3) it facilitates IDA
of movements that are continuous and occupy a large space [22]. Furthermore, whereas
motion analysis systems that are able to operate outdoors are currently available, force plates
are difficult and expensive to install in multisettings [22] and are sensitive to temperature
and humidity variations [11]. For sports science research, predicting GRF&Ms would be
particularly advantageous. Ensuring force plate impact during sports-related movements that
are highly dynamic and require large amounts of space can be difficult. This issue could
restrict natural execution of the movement or even require force plate targeting to ensure
impact, hereby, potentially compromising the quality of the measurements. Finally, several
sports-related movements can only be analyzed in their entirety in an outdoor environment,
which is currently infeasible using force plates. However, none of the existing methods for
predicting GRF&Ms have been validated for sports-related movements.

Therefore, the aim of this study was to evaluate the accuracy of the method proposed
by Fluit et al. [19] to predict GRF&Ms during sports-related movements. This was accom-
plished by performing IDA on a variety of movements, such as running, vertical jump, and a
side-cut maneuver. For validation, the predicted GRF&Ms and associated joint kinetics were
compared to the corresponding variables obtained from a model, in which the GRF&Ms
were measured using force plates. If comparable accuracy between these two methods could
be established, it would provide new and valuable opportunities for IDA in sports science
research.

2 Materials and methods

2.1 Experimental procedures

Ten healthy subjects (eight males and two females, age 25.70 ± 1.49 years, height 180.80 ±
7.39 cm, weight 76.88 ± 10.37 kg) volunteered for the study and provided written informed
consent. During measurements, male subjects only wore tight fitting underwear or running
tights, whereas female subjects also wore a sports-brassiere. In addition, all subjects wore
a pair of running shoes in their preferred size, specifically the Brooks Ravenna 2 (Brooks
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Sports Inc., Seattle, WA, US), in order to minimize discomfort and, hereby, facilitate natural
execution of the movements.

A 5 min warm-up at 160 W was completed on a cycle ergometer before multiple practice
trials were performed. The practice trials served two overall purposes and were preceded by
a thorough instruction: for each movement, multiple repetitions were performed to ensure
consistent technique throughout the duration of the experiment and establish a starting po-
sition from which the subjects were able to consistently impact the force plates. When the
subjects were able to perform three consecutive repetitions with adequate technique, while
consistently impacting the force plates, their starting position was marked, and they were
given a brief pause before markers were taped to their skin.

The following movements were included in the study: 1) running, 2) backwards run-
ning, 3) a side-cut maneuver, 4) vertical jump, and 5) acceleration from a standing position
(ASP). These movements were chosen because they represent some of the most common
movements associated with sports and recreational exercise, and can be performed with-
out specialized skills. The movements also provided varied characteristics in the resulting
GRF&Ms, considering factors such as force plate impact time, force magnitude and direc-
tion while involving both single and double-contact phases.

All running trials were completed first. The subjects were instructed to run at a comfort-
able self-selected pace, aimed toward facilitating a natural running style and a consistent
pace between trials, and impact the force plate with their right foot. For the side-cut ma-
neuver, the subjects were instructed to perform a slowly paced run-up, impact the center of
the force plate with their right foot, and accelerate to their left-hand side while targeting a
cone. The center of the force plate was marked with white tape, and the cone was placed
2 m from the tape mark, angled at 45 degrees from the initial running direction. Backwards
running was executed at a self-selected pace, and the subjects had to impact the force plate
with their right foot. As the starting position had been established during the practice trials,
the subjects only had to focus on executing the movement with consistent technique during
measurements while keeping their focus straight ahead (i.e., away from the running direc-
tion). Vertical jump was performed as a counter-movement jump, initiated with the subjects
standing with each foot on separate force plates. They were asked to keep their hands fixated
on the hips, focus straight ahead for the entirety of the movement cycle, and refrain from
excessive hip flexion. While complying with these constraints, they were asked to push-off
with their legs at maximal capacity and attempt to achieve their maximal jump height. Fi-
nally, ASP was initiated with the subjects’ feet separated in the sagittal plane and placed on
separate force plates, while their arms were positioned inversely to their feet, closely resem-
bling a natural initiation of running. From this position, they were asked to accelerate to their
self-selected running pace. Five trials were completed for all movements, each consisting of
one full movement cycle.

2.2 Data collection

35 reflective markers were placed on the subjects, including 29 markers placed on the skin
surface and three markers placed on each running shoe at the approximate position of the
first and fifth metatarsal and posteriorly on calcaneus. No markers were placed on the head.
Further details of the marker protocol are provided as supplementary material. Marker tra-
jectories were tracked using a marker-based motion capture system, consisting of eight in-
frared high-speed cameras (Oqus 300 series), sampling at 250 Hz, combined with Qual-
isys Track Manager v. 2.9 (Qualisys, Gothenburg, Sweden). GRF&Ms were obtained at
2000 Hz using two force plates (Advanced Mechanical Technology, Inc., Watertown, MA,
US), which were embedded in the laboratory floor.
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2.3 Data processing

3-D marker trajectories and force plate data were low-pass filtered using second-order, zero-
phase Butterworth filters with a cut-off frequency of 15 Hz. For all movements, three of the
five successful trials were included for further analysis, yielding a total of 150 trials used to
validate the predicted GRF&Ms and the associated joint kinetics. Trials were excluded due
to marker occlusion over 10% or inadequate impact of the force plates, meaning that the
whole foot was not in contact with the force plate surface or the impact occurred too close
to the edges.

2.4 Musculoskeletal model

The musculoskeletal models were developed in the AnyBody Modeling System v. 6.0.4
(AMS) (AnyBody Technology A/S, Aalborg, Denmark) based on the GaitFullBody tem-
plate from the AnyBody Managed Model Repository v. 1.6.3 (Fig. 1). In the GaitFullBody
template, the lower extremity model is based on the cadaver dataset of Klein Horsman et al.
[12], the lumbar spine model based on the work of de Zee et al. [28], and the shoulder and
arm models based on the work of the Delft Shoulder Group [29–31]. The model had a total
of 39 degrees-of-freedom (DOF), including 2 × 2 DOF at the ankle joints, 2 × 1 DOF at the
knee joints, 2 × 3 DOF at the hip joints, 6 DOF at the pelvis, 3 DOF between pelvis and
thorax, 2×2 DOF at the elbow joints, 2×5 DOF at the glenohumeral joints, and 2×2 DOF
at the wrist joints. Since there were no markers placed on the head, the neck joint was fixed
in a neutral position.

2.4.1 Geometric and inertial parameter scaling

A length-mass scaling law [32] was applied to scale the musculoskeletal models to the dif-
ferent sizes of the subjects. For the geometric scaling of each segment, a diagonal scaling
matrix was applied to each point on the segment. For the longitudinal direction, the entry
of the scaling matrix was computed as the ratio between the unscaled and scaled segment
lengths. In the two other orthogonal directions, the scaling was computed as the square root
of the mass ratios divided by the length ratios between the scaled and unscaled models. The
total body mass was distributed to the individual segments by applying the regression equa-
tions of Winter et al. [33]. Finally, the inertial parameters were estimated by assuming that
the segments were cylindrical with a uniform density and the length and mass equal to the
segment length and mass.

2.4.2 Muscle recruitment problem

The muscle recruitment problem was solved by formulating a quadratic optimization prob-
lem, also known as Quadratic muscle recruitment, which minimizes a scalar objective func-
tion G subject to the dynamic equilibrium equations and nonnegativity constraints, ensuring
that the muscles can only pull and that each unilateral contact element f

(C)
i and pelvis resid-

ual force f
(R)
i , as will be explained later, can only push. In other words, the sum of the
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Fig. 1 From top left to bottom right: musculoskeletal models during running, the side-cut maneuver, back-
ward running, vertical jump (counter-movement and past toe-off), and acceleration from a standing position
(initiation of the movement and near toe-off)

Cf = d,

0 ≤ f
(M)
i , i = 1, . . . , n(M),

0 ≤ f
(C)
i , i = 1, . . . ,5n(C),

0 ≤ f
(R)
i , i = 1, . . . , n(R),

where f
(M)
i is the ith muscle force, n(M) is the number of muscles, N

(M)
i is the strength of

the muscle, f
(C)
i is the ith contact force, n(C) is the number of contact elements, N

(C)
i is the

strength of the contact element, f
(R)
i is the ith residual force, n(R) is the number of residual
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forces, N
(R)
i is the strength of the residual force, C is the coefficient matrix for the dynamic

equilibrium equations, f is a vector of unknown muscle, joint reaction, contact, and residual
forces, and d contains all external loads and inertia forces. Further details can be found in
Damsgaard et al. [8].

The muscle strengths were based on the datasets for the different body parts and assumed
constant, meaning that the maximum muscle forces were kept constant for all muscle states
(e.g., muscle length and contraction velocity), and adjusted using a strength scaling factor
based on fat percentage [30], which was estimated from each subject’s body-mass-index
using the regression equations reported by Frankenfield et al. [34].

The lower extremity model included a total of 110 muscles, divided into 318 individual
muscle paths, whereas ideal joint torque generators were used for the upper extremities.
In addition, residual force actuators were added to the origin of the pelvis segment, which
were able to generate residual forces and moments up to 10 N or Nm. The activation levels
of these actuators were solved as part of the muscle recruitment, aimed towards minimizing
their contribution.

2.4.3 Model scaling and kinematics

Model scaling and kinematic analysis were performed applying the optimization methods
of Andersen et al. [10, 35]. During the experiment, the subjects performed multiple gait tri-
als of which a single trial for each subject was initially used to determine segment lengths
and model marker positions. These parameters were estimated by minimizing the least-
square difference between model and experimental markers using the method of Andersen
et al. [35]. For each subject, the segment lengths and marker positions obtained from the
gait trial were subsequently saved and used for the analysis of all other trials. Specifically,
the optimized parameters were loaded, and the least-square difference between model and
experimental markers was minimized over the whole trial duration to obtain the model kine-
matics [10]. Further details regarding the marker optimization procedure is provided as a
supplementary material.

2.5 Prediction of GRF&Ms

The prediction of the GRF&Ms was enabled by adopting the method of Fluit et al. [19].
However, some alterations were made to adjust for the different conditions in the present
study and to improve the method’s ease of implementation, as specified in what follows.
The GRF&Ms were predicted by creating contact elements at 18 points defined under each
foot of the musculoskeletal model (Fig. 2). In order to compensate for the sole thickness
of the running shoes and the soft tissue under the heel, the contact points on the heel were
offset by 35 mm, and all other points offset by 25 mm from the model bone geometry. Each
contact element consisted of five unilateral force actuators organized to approximate a static
Coulomb friction model; one actuator was aligned with the vertical axis of the force plates
(Z-axis) and generated a normal force, whereas the other four actuators were defined in two
pairs that were aligned with the medio-lateral (X-axis) and antero-posterior axis (Y-axis)
of the force plates, and were able to generate positive and negative static friction forces
(with a friction coefficient of 0.5). The four shear actuators were organized so that they in-
dependently were able to generate a force in the normal direction and in one of the four
shear directions (positive or negative medial-lateral direction or positive or negative antero-
posterior direction). For each of these four, the forces were defined such that if they were
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Fig. 2 Location of the contact points under the foot of the musculoskeletal model (top left), side-view of the
contact points, illustrating the offset distances (bottom left), and the point activation after established ground
contact (right)

actuated to generate a force Fn in the normal direction, they would at the same time gen-
erate a force of μFn in the shear direction, where μ is the friction coefficient. Hereby, the
total normal force at a contact point is equal to the sum of the five normal forces, and the
magnitude of the friction force is bounded by the normal force.

To accommodate the fact that there can only be contact forces at the contact points when
they are close to the ground plane and stationary, a strength factor, similar to the one used for
muscles, was introduced, and the magnitudes of the predicted GRF&Ms were determined by
solving the activation level of muscle, joint, and ground contact forces as part of the muscle
recruitment algorithm simultaneously.

The strength factor ensured that the contact elements would only generate forces if their
associated contact point p was sufficiently close to the floor and almost without motion. Fur-
thermore, in order to be activated, each contact point had to overlap with a user-defined arti-
ficial ground plane in the model environment, as illustrated in Fig. 2. The maximal strength
of each actuator was set to Nmax = 0.4 BW, the activation threshold distance for p was set
to zlimit = 0.04 m, and the activation threshold velocity of p relative to the ground plane
was set to vlimit = 1.3 m/s. The threshold distance zlimit specifies the location of the artificial
ground plane relative to the origin of the global reference frame and not the actual location
of the ground. The maximal strength of the actuators and the threshold velocity were similar
to the values used by Fluit et al. [19], whereas the threshold distance and muscle recruitment
criterion were determined by performing multiple simulations of a single gait trial for each
participant and adjusting these parameters to obtain the most accurate results. The chosen
threshold distance and muscle recruitment criterion were then used for all other trials.

To determine the strength profile of each contact point, a nonlinear strength function was
defined:

cp,i =

⎧
⎪⎨

⎪⎩

Nmax if zratio ≤ 0.8 and vratio ≤ 0.15,

Nsmooth if 0.8 ≤ zratio < 1 and 0.15 ≤ vratio < 1,

0 otherwise,

(2)
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where

zratio = pz

zlimit
and vratio = pvel

vlimit
.

pz and pvel define the height and velocity of each contact point relative to the ground, re-
spectively. Equation (2) specifies that each actuator would assume the strength Nmax if the
associated p reached zlimit and vlimit. However, in order to prevent discontinuities in the pre-
dicted GRF&Ms due to the sudden transition of p from inactive to fully active, a smoothing
function was defined:

Nsmooth = Nmaxzsmoothvsmooth, (3)

where

zsmooth = 0.5

(
cos

(
zratio − 0.8

(1 − 0.8)π

)
+ 1

)
and

vsmooth = 0.5

(
cos

(
vratio − 0.15

(1 − 0.15)π

)
+ 1

)
.

The smoothing function would be assumed when p was near zlimit and vlimit, as specified
in Eq. (2); hence, the strength of the actuators would build up gradually until the threshold
values were reached.

During muscle recruitment, the forces of the skeletal muscles and the contact elements
were weighted equally, but the strength of the contact element forces was high compared
to the skeletal muscles, whereas the strength of the residual forces and moments placed on
the pelvis was relatively low. This means that the actuation of the contact elements, when
in full contact with the ground, were of practically no cost in the objective function, which
enabled the recruitment algorithm to distribute the contact forces such that the muscle loads
were minimized. The solver did not distinguish between single and double-support phases,
hereby, providing a solution to the problem of underdeterminacy.

2.6 Data analysis

For the running, backwards running, and side-cut trials, data were analyzed from the first
foot-force plate contact instant to the last frame of contact. Vertical jump trials were ana-
lyzed in the 800 ms up till toe-off, which included the complete counter-movement cycle.
ASP trials were analyzed in the 600 ms up till toe-off of the rear foot. The following variables
were included in the analysis: antero-posterior GRF, medio-lateral GRF, vertical GRF, sagit-
tal ground reaction moment (GRM), frontal GRM, transverse GRM, ankle flexion moment
(AFM), ankle subtalar eversion moment (ASEM), knee flexion moment (KFM), hip flexion
moment (HFM), hip abduction moment (HAM), hip external rotation moment (HERM), an-
kle resultant joint reaction force (JRF), knee resultant JRF, and hip resultant JRF. In addition,
peak vertical GRFs and peak resultant JRFs for the ankle, knee, and hip were computed and
statistically compared. For the running, backwards running, and side-cut trials, the selected
variables were analyzed for the right leg only, that is, the stance phases of the movement
cycles. For the vertical jump and ASP trials, the variables were analyzed for the right and
left legs separately.

Pearson’s correlation coefficient (r) and root-mean-square deviation (RMSD) were com-
puted to compare the shape and magnitude, respectively, of the selected variables between
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the models. Following the procedures of Taylor [36], the absolute values of r were catego-
rized as weak, moderate, strong, and excellent for r ≤ 0.35, 0.35 < r ≤ 0.67, 0.67 < r ≤
0.90, and 0.90 < r , respectively. To test the differences between the computed peak GRFs
and peak resultant JRFs associated with each method, Wilcoxon paired-sample tests were
applied for which p < 0.05 are reported as a significant difference.

3 Results

The time-histories of the selected variables for running, backwards running, and side-cut
are depicted in Figs. 3–7(a), and vertical jump and ASP trials are depicted in Figs. 3–7(b).
Specifically, the GRFs are depicted in Fig. 3(a, b), GRMs in Fig. 4(a, b), joint moments in
Figs. 5 and 6(a, b), and JRFs in Fig. 7(a, b). Pearson’s correlation coefficients and RMSD
are listed in Tables 1 and 2(a) for running, backwards running, and side-cut, and in Tables 1
and 2(b), for vertical jump and ASP. The results of the Wilcoxon-paired sample tests are
listed in Table 3.

Across all movements, excellent correlations were found for the vertical GRF (r ranging
from 0.96 to 0.99, median 0.99), and strong to excellent correlations were found for the
sagittal GRM (r ranging from 0.69 to 0.95, median 0.87), all joint flexion moments (r rang-
ing from 0.79 to 0.98, median 0.93), and resultant JRFs (r ranging from 0.78 to 0.99, median
0.97). The variables showing the largest discrepancies between datasets were the transverse
GRM (r ranging from −0.19 to 0.86, median 0.09), frontal GRM (r ranging from 0.39 to
0.96, median 0.59), and medio-lateral GRF (r ranging from 0.13 to 0.96, median 0.61).

The RMSD showed that the magnitude differences were generally low, ranging from 1.88
to 16.68 (% BW), median 6.75, for the GRFs, 0.50 to 3.46 (% BW BH), median 1.17, for
the GRMs, 0.41 to 3.73, median 1.26, for the joint moments, and 33.02 to 177.49, median
72.43, for the JRFs. However, the model overestimated the majority of the peak forces, and
the Wilcoxon-paired sample tests showed significant differences for 21 of the 28 computed
variables. No significant differences were found for the peak vertical GRF for both the right
(RL) (p = 0.1156) and left leg (LL) (p = 0.0978) during ASP, ankle peak resultant JRF dur-
ing side-cut (p = 0.6143), knee peak resultant JRF during backwards running (p = 0.8444)
and for the RL (p = 0.5720) and LL (p = 0.2149) during vertical jump, and hip peak resul-
tant JRF (0.0519) for the RL during ASP. The results for each movement are summarized in
what follows.

3.1 Running

For the GRF&Ms during running, strong to excellent correlations (see Table 1(a)) were
observed for all variables of notable magnitude, including the vertical GRF (0.99 ± 0.00),
antero-posterior GRF (0.88 ± 0.12), and sagittal GRM (0.87 ± 0.09), whereas the forces
and moments of relatively small magnitude showed weak to moderate correlations, specifi-
cally the medio-lateral GRF (0.13 ± 0.37), frontal GRM (0.50 ± 0.24), and transverse GRM
(−0.04±0.33). Overall, the model provided comparable estimates of joint kinetics, showing
strong to excellent correlations for all joint moments (r ranging from 0.71 to 0.92, median
0.87) and resultant JRFs (r ranging from 0.93 to 0.98). The RMSD (see Table 2(a)), ranged
from 5.50 to 15.09 for the GRFs, 1.17 to 3.59 for the GRMs, 1.17 to 3.31 for the joint
moments, and 74.92 to 177.49 for the JRFs.
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Fig. 3 (a) Results for running, backwards running, and side-cut, illustrating the antero-posterior GRF,
medio-lateral GRF, and vertical GRF. (b) Results for vertical jump and acceleration from a standing position
(ASP), illustrating the antero-posterior GRF, medio-lateral GRF, and vertical GRF. The predicted variables
are illustrated in blue, and the measured variables in red. The results are presented as the mean ±1 SD (shaded
area)

3.2 Backwards running

Similar to running, the results for backwards running showed strong to excellent correlations
(see Table 1(a)) for the vertical GRF (0.99 ± 0.00), antero-posterior GRF (0.94 ± 0.02),
and sagittal GRM (0.88 ± 0.09), whereas weak to moderate correlations were found for
the medio-lateral GRF (0.53 ± 0.28), frontal GRM (0.39 ± 0.34), and transverse GRM
(0.09 ± 0.34). Furthermore, strong to excellent correlations were found for all joint mo-
ments (r ranging from 0.68 to 0.94, median 0.87) and resultant JRFs (r ranging from
0.84 to 0.98). The RMSD (see Table 2(a)), ranged from 4.64 to 12.82 for the GRFs, 0.89
to 2.94 for the GRMs, 0.88 to 2.57 for the joint moments, and 62.70 to 147.56 for the
JRFs.
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Fig. 4 (a) Results for running, backwards running, and side-cut, illustrating the frontal GRM, sagittal GRM,
and transverse GRM. (b) Results for vertical jump and acceleration from a standing position (ASP), illustrat-
ing the frontal GRM, sagittal GRM, and transverse GRM. The predicted variables are illustrated in blue, and
the measured variables in red. The results are presented as the mean ±1 SD (shaded area)

3.3 Side-cut

Compared to the two running activities, the medio-lateral GRF and transverse GRM were
of considerably higher magnitude during side-cut, resulting in correlation coefficients (see
Table 1(a)), of 0.96 ± 0.02 and 0.86 ± 0.09, respectively. Otherwise, similar results were
found for the vertical GRF (0.97 ± 0.02), antero-posterior GRF (0.89 ± 0.12), frontal GRM
(0.58 ± 0.30), and sagittal GRM (0.79 ± 0.09). Joint flexion moments (r ranging from 0.79
to 0.94) and resultant JRFs (r ranging from 0.83 to 0.95) showed strong to excellent corre-
lations. The RMSD (see Table 2(a)) ranged from 8.70 to 16.68 for the GRFs, 1.65 to 3.46
for the GRMs, 1.68 to 3.73 for the joint moments, and 87.97 to 172.68 for the JRFs.
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Fig. 5 (a) Results for running, backwards running, and side-cut, illustrating the ankle flexion moment
(AFM), subtalar eversion moment (ASEM), and knee flexion moment (KFM). (b) Results for vertical jump
and acceleration from a standing position (ASP), illustrating the ankle flexion moment (AFM), subtalar ev-
ersion moment (ASEM), and knee flexion moment (KFM). The variables associated with the predicted and
measured GRF&Ms are illustrated in blue and red, respectively. The results are presented as the mean ±1 SD
(shaded area)

3.4 Vertical jump

For vertical jump, the majority of the variables showed comparable results between the
models and similar results for the RL and LL, highlighted by the strong to excellent corre-
lations (see Table 1(b)) found for the vertical GRFs (0.98 ± 0.01), medio-lateral GRFs (RL:
0.82 ± 0.13, LL: 0.86 ± 0.08), frontal GRMs (RL: 0.96 ± 0.00, LL: 0.96 ± 0.02), sagittal
GRMs (RL: 0.92 ± 0.08, LL: 0.87 ± 0.12), joint flexion moments (r ranging from 0.95 to
0.98, median 0.96), ankle subtalar eversion moments (RL: 0.93±0.04, LL: 0.87±0.10), and
resultant JRFs (r ranging from 0.97 to 0.99, median 0.99). Weak to strong correlations were
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Fig. 6 (a) Results for running, backwards running, and side-cut, illustrating the hip flexion moment (HFM),
hip abduction moment (HAM), and hip external rotation moment (HERM). (b) Results for vertical jump
and acceleration from a standing position (ASP), illustrating the hip flexion moment (HFM), hip abduction
moment (HAM), and hip external rotation moment (HERM). The variables associated with the predicted and
measured GRF&Ms are illustrated in blue and red, respectively. The results are presented as the mean ±1 SD
(shaded area)

found for the remaining variables (r ranging from −0.13 to 0.78, median 0.59), for which,
however, the forces and moments were of considerably lower magnitude. The RMSD (see
Table 2(b)) ranged from 2.05 to 7.03 for the GRFs, 0.50 to 1.32 for the GRMs, 0.41 to 1.54
for the joint moments, and 33.02 to 72.43 for the JRFs.

3.5 ASP

Compared to vertical jump, ASP involved different movement patterns for each leg, leading
to different characteristics in the kinetic data. However, the statistical results were similar
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Fig. 7 (a) Results for running, backwards running, and side-cut, illustrating the ankle, knee, and hip resultant
JRF. (b) Results for vertical jump and acceleration from a standing position (ASP), illustrating the ankle, knee,
and hip resultant JRFs. The variables associated with the predicted and measured GRF&Ms are illustrated in
blue and red, respectively. The results are presented as the mean ±1 SD (shaded area)

between legs for the majority of the variables with the main findings being the excellent cor-
relations (see Table 1(b)) for the vertical GRFs (0.99±0.01) and antero-posterior GRFs (RL:
0.97±0.02, LL: 0.99±0.01), and the strong to excellent correlations found for all joint mo-
ments (r ranging from 0.77 to 0.98, median 0.90) and resultant JRFs (r ranging from 0.78 to
0.99, median 0.94). The most notable differences between the variables associated with each
leg were the frontal (RL: 0.83 ± 0.12, LL: 0.47 ± 0.37) and sagittal GRM (RL: 0.69 ± 0.14,
LL: 0.95 ± 0.03). The RMSD (see Table 2(b)) ranged from 1.88 to 9.62 for the GRFs, 0.51
to 1.76 for the GRMs, 0.39 to 1.45 for the joint moments, and 49.09 to 92.91 for the JRFs.

4 Discussion

In this study, the method of Fluit et al. [19] to predict GRF&Ms was adopted and validated
for an array of movements associated with sports and recreational exercise2 Alterations were
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Table 1 (a) Pearson’s correlation coefficients for the selected variables during running, backwards running,
and side-cut. (b) Pearson’s correlation coefficients for the selected variables during vertical jump and accel-
eration from a standing position (ASP). The results are presented as the mean ±1 SD

(a)

Variable Running Backwards running Side-cut

Antero-posterior GRF 0.88 ± 0.12 0.94 ± 0.02 0.89 ± 0.12

Medio-lateral GRF 0.13 ± 0.37 0.53 ± 0.28 0.96 ± 0.02

Vertical GRF 0.99 ± 0.00 0.99 ± 0.00 0.97 ± 0.02

Frontal GRM 0.50 ± 0.24 0.39 ± 0.34 0.58 ± 0.30

Sagittal GRM 0.87 ± 0.09 0.88 ± 0.09 0.79 ± 0.09

Transverse GRM −0.04 ± 0.33 0.09 ± 0.34 0.86 ± 0.09

AFM 0.89 ± 0.07 0.89 ± 0.09 0.79 ± 0.10

ASEM 0.71 ± 0.12 0.70 ± 0.15 0.47 ± 0.36

KFM 0.92 ± 0.05 0.94 ± 0.05 0.94 ± 0.09

HFM 0.85 ± 0.05 0.88 ± 0.06 0.92 ± 0.05

HAM 0.90 ± 0.10 0.85 ± 0.14 0.37 ± 0.37

HERM 0.72 ± 0.21 0.68 ± 0.31 0.62 ± 0.22

Ankle resultant JRF 0.93 ± 0.04 0.93 ± 0.05 0.87 ± 0.12

Knee resultant JRF 0.98 ± 0.01 0.98 ± 0.01 0.95 ± 0.04

Hip resultant JRF 0.94 ± 0.05 0.84 ± 0.14 0.83 ± 0.13

(b)

Variable Vertical jump
Right leg

Vertical jump
Left leg

ASP
Right leg

ASP
Left leg

Antero-posterior GRF 0.63 ± 0.28 0.68 ± 0.25 0.97 ± 0.02 0.99 ± 0.01

Medio-lateral GRF 0.82 ± 0.13 0.86 ± 0.08 0.61 ± 0.27 0.59 ± 0.37

Vertical GRF 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Frontal GRM 0.96 ± 0.00 0.96 ± 0.02 0.83 ± 0.12 0.47 ± 0.37

Sagittal GRM 0.92 ± 0.08 0.87 ± 0.12 0.69 ± 0.14 0.95 ± 0.03

Transverse GRM −0.13 ± 0.39 −0.19 ± 0.47 0.77 ± 0.17 0.60 ± 0.27

AFM 0.96 ± 0.02 0.96 ± 0.02 0.88 ± 0.07 0.98 ± 0.01

ASEM 0.93 ± 0.04 0.87 ± 0.10 0.83 ± 0.10 0.86 ± 0.10

KFM 0.95 ± 0.03 0.95 ± 0.03 0.86 ± 0.08 0.92 ± 0.06

HFM 0.98 ± 0.01 0.98 ± 0.01 0.93 ± 0.06 0.97 ± 0.02

HAM 0.78 ± 0.18 0.72 ± 0.26 0.92 ± 0.06 0.87 ± 0.10

HERM 0.51 ± 0.39 0.55 ± 0.34 0.93 ± 0.05 0.77 ± 0.14

Ankle resultant JRF 0.97 ± 0.02 0.97 ± 0.01 0.91 ± 0.06 0.98 ± 0.01

Knee resultant JRF 0.99 ± 0.01 0.99 ± 0.01 0.88 ± 0.07 0.99 ± 0.01

Hip resultant JRF 0.99 ± 0.01 0.99 ± 0.00 0.78 ± 0.14 0.97 ± 0.04

made to the original method, which included the implementation of a new smoothing func-
tion and additional contact points to the dynamic contact model. The predicted GRF&Ms
and associated joint kinetics were compared to the corresponding variables obtained from a
model, where a traditional IDA was applied, in which the GRF&Ms were measured using
force plates.
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Table 2 (a) RMSD for the selected variables during running, backwards running, and side-cut. (b) RMSD
for the selected variables during vertical jump and acceleration from a standing position (ASP). The results
are presented as the mean ±1 SD

(a)

Variable Running Backwards running Side-cut

Antero-posterior GRF (% BW) 7.77 ± 3.58 6.75 ± 1.37 12.86 ± 3.88

Medio-lateral GRF (% BW) 5.50 ± 1.49 4.64 ± 1.28 8.70 ± 1.58

Vertical GRF (% BW) 15.09 ± 3.45 12.82 ± 3.71 16.68 ± 3.97

Frontal GRM (% BW BH) 1.74 ± 0.43 1.61 ± 0.43 1.65 ± 0.50

Sagittal GRM (% BW BH) 3.59 ± 1.50 2.94 ± 1.00 3.46 ± 0.94

Transverse GRM (% BW BH) 1.17 ± 0.32 0.89 ± 0.32 2.75 ± 0.52

AFM (% BW BH) 3.31 ± 1.15 2.57 ± 1.01 3.73 ± 0.94

ASEM (% BW BH) 1.41 ± 0.38 1.21 ± 0.22 1.68 ± 0.45

KFM (% BW BH) 2.15 ± 0.56 1.58 ± 0.56 2.33 ± 1.36

HFM (% BW BH) 2.72 ± 0.88 2.22 ± 0.48 3.48 ± 1.89

HAM (% BW BH) 1.49 ± 0.44 1.37 ± 0.43 2.74 ± 0.78

HERM (% BW BH) 1.17 ± 0.32 0.88 ± 0.32 2.72 ± 0.69

Ankle resultant JRF (% BW) 177.49 ± 63.00 147.56 ± 55.69 172.68 ± 54.29

Knee resultant JRF (% BW) 74.92 ± 22.47 62.70 ± 14.74 87.97 ± 28.61

Hip resultant JRF (% BW) 100.31 ± 23.37 99.07 ± 20.71 134.93 ± 69.68

(b)

Variable Vertical jump
Right leg

Vertical jump
Left leg

ASP
Right leg

ASP
Left leg

Antero-posterior GRF (% BW) 4.57 ± 1.61 4.45 ± 1.52 3.45 ± 1.24 3.91 ± 1.17

Medio-lateral GRF (% BW) 2.18 ± 0.60 2.05 ± 0.54 1.88 ± 0.74 2.97 ± 1.12

Vertical GRF (% BW) 6.99 ± 1.38 7.03 ± 2.06 6.99 ± 2.17 9.62 ± 1.92

Frontal GRM (% BW BH) 1.32 ± 0.28 1.27 ± 0.35 0.51 ± 0.19 0.93 ± 0.13

Sagittal GRM (% BW BH) 0.50 ± 0.19 0.61 ± 0.22 1.76 ± 0.38 1.15 ± 0.24

Transverse GRM (% BW BH) 0.93 ± 0.35 1.07 ± 0.39 0.57 ± 0.17 0.94 ± 0.19

AFM (% BW BH) 1.07 ± 0.24 1.03 ± 0.27 1.35 ± 0.29 1.11 ± 0.31

ASEM (% BW BH) 0.41 ± 0.15 0.41 ± 0.11 0.39 ± 0.10 0.63 ± 0.12

KFM (% BW BH) 1.23 ± 0.29 1.23 ± 0.24 0.91 ± 0.32 1.00 ± 0.30

HFM (% BW BH) 1.29 ± 0.42 1.30 ± 0.36 0.96 ± 0.45 1.45 ± 0.54

HAM (% BW BH) 0.73 ± 0.18 0.70 ± 0.17 0.72 ± 0.33 0.87 ± 0.30

HERM (% BW BH) 1.54 ± 0.71 1.44 ± 0.65 0.40 ± 0.18 0.95 ± 0.53

Ankle resultant JRF (% BW) 70.80 ± 17.75 72.43 ± 18.75 92.91 ± 21.83 74.26 ± 24.16

Knee resultant JRF (% BW) 33.02 ± 5.66 34.63 ± 11.79 67.32 ± 24.16 49.09 ± 13.91

Hip resultant JRF (% BW) 35.70 ± 10.32 38.05 ± 14.47 57.02 ± 18.42 57.97 ± 22.64

The main findings were that the model was able to provide estimates comparable to the
traditional IDA approach for the vertical GRFs, joint flexion moments, and resultant JRFs
based on the strong to excellent correlations found for all these variables and the generally
low magnitude differences. These results were, furthermore, overall similar between move-
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Table 3 Results of the Wilcoxon paired-sample tests, listing the mean difference ±1 SD between peak
forces. Significant differences are indicated with a ∗

Movement Peak vertical GRF
(% BW)

Ankle peak resultant
JRF (% BW)

Knee peak
resultant JRF
(% BW)

Hip peak resultant
JRF (% BW)

Running −14.15 ± 6.89∗ −270.03 ± 204.17∗ −111.38 ± 66.34∗ −144.53 ± 68.60∗
Backwards
running

−13.89 ± 9.17∗ −155.22 ± 138.80∗ −54.28 ± 54.00 −79.90 ± 59.62∗

Side-cut −16.19 ± 7.88∗ 11.44 ± 142.18 −40.97 ± 80.71∗ 7.14 ± 265.39∗
Vertical jump
(Right leg)

−6.26 ± 5.21∗ −127.79 ± 67.18∗ −35.24 ± 39.19 −23.56 ± 46.69∗

Vertical jump
(Left leg)

−7.37 ± 8.21∗ −124.24 ± 81.95∗ −47.82 ± 39.67 −40.30 ± 51.36∗

ASP
(Right leg)

1.34 ± 4.26 68.82 ± 63.46∗ 89.96 ± 64.69∗ 24.64 ± 51.59

ASP
(Left leg)

−3.07 ± 9.26 −145.30 ± 110.34∗ −42.02 ± 50.70∗ −53.21 ± 76.38∗

ments involving only single contact phases (e.g., running), entirely double contact (vertical
jump), and a transition from double to single contact (ASP). The results for the GRMs,
antero-posterior GRFs, and medio-lateral GRFs varied between movements, and discrepan-
cies were identified, particularly for the transverse and frontal GRMs. Finally, despite the
overall shape and magnitude similarities in the datasets, the computed peak vertical GRFs
and resultant JRFs showed discrepancies, and significant differences were found for the ma-
jority of these variables.

The discrepancies found for the medio-lateral GRFs, frontal GRMs, and transverse
GRMs can likely be explained by the low magnitude of these variables, which increased the
influence of noise. When these variables increased in magnitude, the correlations between
datasets likewise increased, such as the frontal GRM during vertical jump (r = 0.96 ± 0.02)
and transverse GRM during side-cut (r = 0.86 ± 0.09). This tendency indicates that the low
signal-to-noise ratio was the predominant issue for these inaccuracies. It also shows that the
correlation coefficient might not be an appropriate tool to compare variables of such low
magnitudes since the results can be misleading.

The transverse GRMs showed the lowest correlations between datasets, which was con-
sistent with the findings of Fluit et al. [19]. This result could be partly caused by the con-
straint imposed by the simplified model of the knee as a hinge-joint, which did not allow for
transversal rotation. This issue could, furthermore, have caused the relatively poor agree-
ment of the HERM for the majority of the movements. Therefore, future studies could ad-
vantageously implement a knee model with a more detailed geometry or an advanced knee
model, as, for instance, the model proposed by Marra et al. [37].

In order to improve the model’s prediction of GRF&Ms, a number of parameters could
be adjusted in the dynamic contact model. First, the contact point offsets were approxi-
mated, considering the sole thickness of the running shoes and the soft tissue under the heel,
and measurements of these parameters could possibly improve the ground contact deter-
mination. However, the points are required to overlap with the artificial ground plane in the
model environment and have to be adjusted accordingly. Second, the number and position of
the contact points could be adjusted to provide a more detailed modeling of the foot-ground
contact, accounting for the underside characteristics of the foot or specific footwear used.
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Third, a sensitivity analysis could have been performed on the contact parameters Nmax,
zlimit, and vlimit and on the threshold values for zratio and vratio, hereby, determining a set of
optimal values. This could potentially reduce the overestimations of peak forces that were
identified for the majority of the analyzed variables and represented the clearest discrepancy
between datasets. Future studies could advantageously deploy a sensitivity analysis involv-
ing all or several of the contact parameters to find an optimal combination, aimed toward
achieving the highest possible accuracy in the model estimates.

A number of limitations should be noted. First, it is well known that marker trajecto-
ries are associated with noise, especially due to soft-tissue artefacts [38], and methods to
sufficiently compensate for these inaccuracies currently do not exist [39]. Second, the foot
was modeled as a single segment, and the dynamic contact model could be improved by
applying a multisegment foot model. In particular, a model that enables bending of the
toes would likely increase the accuracy of the predictions around toe-off. Third, the muscle
models did not incorporate contraction dynamics, for example, as modeled with a Hill-
type muscle model, which might have altered the model kinetics, including the predicted
GRF&Ms. However, this would require the determination of additional individual parame-
ters, such as passive stiffness, tendon slack length, optimal fiber length, and so on, which
are typically estimated through calibration procedures and are also sources of uncertainty
in the model. Furthermore, incorporating muscle contraction dynamics would most likely
only have any influence on the variables of interest during ASP since it is an asymmetrical
double-supported movement.

The presented method provides a number of valuable opportunities for future studies,
particularly within sports science research. By obviating the need for force plate measure-
ments, this method facilitates the analysis of sports-related movements that occupy a large
space or can only be analyzed in their entirety in outdoor environments, and excludes the po-
tential influence of force plate targeting. Another potential benefit is that the method enables
the determination of GRF&Ms in situations where force plates are difficult and expensive to
instrument, such as motion analysis during treadmill walking or running. Finally, an exciting
perspective is the combination of the method with motion analysis systems that do not com-
monly incorporate an interface between kinematic and force plate data, such as miniature
inertial sensors [40] or marker-less motion capture [41]. Recently, Skals et al. [42] intro-
duced an interface between marker-less motion capture data and a musculoskeletal model,
thus providing the first step toward complete IDA using such systems.

Prediction of GRF&Ms can reduce dynamic inconsistency and obviate the need for force
plate measurements when performing IDA of musculoskeletal models. This study provided
validation of a method to predict GRF&Ms from full-body motion only for an array of
sports-related movements. The method provided estimates comparable to traditional IDA
for the majority of the analyzed variables, including vertical GRFs, joint flexion moments,
and resultant JRFs. Based on these results, the method can be used instead of force plate
data, hereby, facilitating the analysis of sports-related movements and providing new oppor-
tunities for complete IDA using systems that do not provide an interface between kinematic
and force plate data.
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