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Abstract The application of musculoskeletal models to estimate muscle and joint reaction
forces usually requires optimization strategies, regardless of using inverse or forward dy-
namics approaches. Most studies combined inverse dynamics and Static Optimization (SO)
to solve the redundant muscle force distribution problem. However, the SO does not allow
the simulation of time-dependent physiological criteria or of the time-dependent physiolog-
ical nature of muscles. The Extended Inverse Dynamics (EID), which solves all instants of
time simultaneously, was proposed to overcome these limitations of the SO, but the feasi-
bility of this procedure is limited by the size of the optimization problem that can be real-
istically considered. This work proposes a new method that overcomes the aforementioned
limitations of the SO and EID, i.e., that is able to handle time-dependent physiological crite-
ria and has no limitations on the size of the problem to be solved. The proposed procedure,
named here Window Moving Inverse Dynamics Optimization (WMIDO), consists in con-
sidering a moving window with the size of k instants of time in which the muscle force
distribution problem is solved. The window moves iteratively across all instants of time un-
til the muscle force distribution problem has been solved. The SO, EID, and WMIDO are
applied to solve an upper limb abduction in the frontal plane, for which results are widely
available in the literature, to demonstrate that similar optimal solutions are obtained for a
time-independent physiological criterion if the redundant problem is not too large. Although
the WMIDO is not as efficient as the SO for the type of problem tested, it is significantly
faster than the EID. Moreover, the WMIDO is able to solve the motion under analysis regard-
less of the discretization level considered, whereas the EID fails due to memory limitations.
Overall, the results show the WMIDO as a viable alternative to the current optimization
procedures based on inverse dynamics.
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1 Introduction

Since the direct measurement of muscle and joint contact forces without invasive proce-
dures is infeasible, complex computational models of the musculoskeletal system are attrac-
tive and powerful alternatives with the potential to assist in many clinical problems within
rehabilitation and orthopedics [1, 8, 12, 16]. Typical musculoskeletal models assume the
skeletal system as a system of rigid bodies, constrained by mechanical joints that represent
the anatomical joints. The skeletal system movement is enabled by the action of the muscles,
which are represented by a set of bundles that may wrap around anatomical elements in a
complicated fashion [5]. Because the number of muscles is usually larger than the number of
degrees-of-freedom of the biomechanical model, optimization techniques are often applied
to solve the redundancy of the muscle force distribution problem [7–9, 19, 21, 29].

Depending on the goals and the availability of experimental data, the redundancy prob-
lem may be addressed through an inverse dynamics approach, usually based on Static Opti-
mization (SO), or through a forward dynamics approach, also known as dynamic optimiza-
tion (DO) [8, 24, 27]. The SO finds, for each instant of time, the set of muscle forces that
minimize a selected physiological criterion and fulfill constraints such as the equations of
motion and the physiological boundaries of the muscle forces, whereas the DO determines
a set of physiological muscle forces that produce a desired movement. From the biome-
chanical point of view, the DO is more powerful than the SO because it may be formulated
regardless of the availability of experimental data, it may comprise the time-dependent phys-
iological nature of the muscles, and it may include time-dependent physiological criteria
[3, 13, 17]. However, unlike the SO, the DO requires multiple integrations of the equations
of motion, which very often renders the procedure impractical due to the high computa-
tional cost [1, 27]. For that reason, the SO is the approach most often applied to estimate the
muscle and joint reaction forces of the human body [4, 8, 17].

Considering the computational efficiency of the SO, two methods based on inverse dy-
namic formulations have been proposed to overcome some of the limitations of the SO while
requiring less computational effort than the DO [1, 25]. The first method, named Extended
Inverse Dynamics (EID), solves the muscle force redundancy problem as a large-scale op-
timization problem, in which all instants of time are solved simultaneously [1, 25]. The
EID allows the use of time-dependent physiological criteria, as well as time-dependent con-
straints, such as those given by the muscle contraction and activation dynamics. However,
the size of the optimization problem is geometrically proportional to the number of time in-
stants in the analysis, which constitutes a limitation to the level of discretization that can be
realistically considered. The second method, named Modified Static Optimization (MSO),
is similar to the SO, but the muscle contraction and activation dynamics may be taken into
account by considering the results of the previous instant of time [1]. Even though the MSO
may include the time-dependent physiological nature of the muscles, it does not allow time-
dependent physiological criteria.

The purpose of this study is to propose a new method based on an inverse dynamic formu-
lation that allows both the use of time-dependent physiological criteria and constraints with-
out any limitation on the size of the redundant muscle force distribution problem. The new
method, here referred to as Window Moving Inverse Dynamics Optimization (WMIDO),
considers a window of arbitrary size k, which moves iteratively across all instants of time.
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For each window position, the muscle force redundancy problem is solved simultaneously
for the k instants of time that compose the window. Because the window size can be much
smaller than the number of time instants of the motion under analysis, the level of discretiza-
tion does not limit the application of the WMIDO. Note that the WMIDO is not expected,
by itself, to bring any new insight into the muscle distribution problem but, instead, it is
expected to allow more detailed and complex modeling strategies of the redundant problem.
In order to demonstrate the proposed methodology, the solutions to the muscle force distri-
bution problem and the computational efforts of the SO, EID, and WMIDO are compared
for an abduction motion in the frontal plane of a musculoskeletal model of the upper limb
[21, 22]. In this work it is shown that the proposed method leads to results similar to those
obtained with the currently available inverse dynamic based methods when these can be
applied, but it does not have their limitations.

2 Redundant muscle force distribution problem: working example
with a musculoskeletal model of the upper limb

2.1 Upper limb model

The muscle force distribution problem of an abduction motion in the frontal plane of a mus-
culoskeletal model of the upper limb is used here as the working example case to demon-
strate the use of inverse dynamics optimization methods. The musculoskeletal model con-
sidered, described in detail in [21, 22], is briefly outlined here. The skeletal system is com-
posed of 7 rigid bodies, including the thorax, rib cage, clavicle, scapula, humerus, ulna, and
radius, constrained by 6 anatomical joints, as shown in Fig. 1(a). The thorax and rib cage
are assumed to be static, while the relative motion of the remaining bodies is constrained
by the sternoclavicular, acromioclavicular (AC), and glenohumeral (GH) joints, modeled
as 3 degrees-of-freedom spherical joints; the scapulothoracic (ST) joint, described by two
holonomic constraints that impose the movement of the scapula over the rib cage; and the
humeroulnar and radioulnar joints, modeled as 1 degree-of-freedom hinge joints. Overall,
the upper limb comprises 9 degrees-of-freedom. The muscular system includes 22 muscles,
represented by 74 muscle bundles, which are outlined in Fig. 1(b). The muscle paths are de-
fined as a series of straight- and curved-line segments through the obstacle-set method [11].
Simple geometric surfaces are considered to model the shape of constraining anatomical
structures. The muscle behavior is simulated by a Hill-type muscle model, composed of a
contractile element (CE) in parallel with a passive elastic element (PE). On the basis of the
greater computational efficiency, and the negligible loss of accuracy when simulating short
tendons, the elasticity of the tendon is neglected by assuming a rigid tendon [14, 30]. For a
muscle m, its force is expressed as:

⎧
⎪⎨

⎪⎩

Fm = Fm
CE

(
Lm, L̇m, am

) + Fm
PE

(
Lm

)

Fm
CE = FL(Lm)FL̇(L̇m)

Fm
0

am
(1)

where Lm is the length, L̇m is the velocity of contraction, am is the activation, and Fm
0 is

the maximum isometric force of muscle m. The functions FL and FL̇ are the muscle force–
length and force–velocity relationships, respectively [29]. Since the muscle model assumes
a rigid tendon, all kinematic quantities, i.e., muscle length and velocity of contraction, are
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Fig. 1 Description of the skeletal (a) and muscular (b) systems of the multibody model of the upper limb.
The 22 muscles modeled are represented by 74 muscle bundles, which may wrap around biomechanical
obstacles, i.e., bony elements or other muscles

obtained directly from the kinematic data. The only unknown in Eq. (1) is the muscle acti-
vation am. From the mathematical point of view, the muscles are introduced into the mus-
culoskeletal model as kinematic driver constraints, i.e., each muscle is associated with a
constraint equation that describes how its path changes during the motion. The Lagrange
multipliers associated with these constraints may represent muscle force or muscle activa-
tion, if the constraint equations are multiplied by proper scalar factors. Considering that the
muscle lengths are known, the passive components of the muscle forces, which only depend
on muscle length, are treated as externally applied forces, while the active components are
treated as reaction forces, for which the Lagrange multipliers represent muscle activations
[21, 29].

The motion analyzed in this study, which serves as the demonstrative case used here to
present the proposed methodology, was acquired at the Lisbon Biomechanics Laboratory
(LBL) for a 25 year-old male subject with height 170 cm and weight 75 kg. The recom-
mendations from the International Society of Biomechanics were followed to acquire an un-
loaded motion of abduction in the frontal plane with a sampling frequency of 100 Hz [34].
The dynamic tracking of the scapula was accomplished through the methodology of Senk
and Chèze [26]. For the definition of the humerus orientation, the GH joint center was es-
timated using the algorithm of Gamage and Lasenby [10], while, for the clavicle, its axial
orientation was estimated through the minimization of the AC joint rotations [32].

2.2 Inverse dynamics optimization

When defining the biomechanical model and acquiring its motion and external forces, the
only unknowns are the internal forces, i.e., the joint reaction forces and muscle forces. Both
sets of these unknowns are defined here as design variables in the context of an optimization
problem. In particular, for each instant of time t , the design variables of the optimization
problem are the Lagrange multipliers λt associated with the joint reaction forces resulting
from the kinematic constraints, and the muscle activations at . Since the musculoskeletal
model considered in this work includes 33 Lagrange multipliers and 74 muscle segments,



A window moving inverse dynamics optimization for biomechanics 161

Fig. 2 Direction of the GH
dislocation force threshold ratios
thd , presented in parentheses

there are 107 design variables for each instant of time. For k instants of time, the design
variables are given as

x = [
λ1 a1 λ2 a2 λ3 a3 · · · λk ak

]
. (2)

Considering the redundant muscle force distribution problem subjected to the physiological
boundaries of the muscle forces, the fulfillment of the equations of motion, and the stability
of the GH and ST joints [6, 21], the optimization problem is mathematically stated as:

min
x

J (x), (3)

subject to
[
ΦT

q x + (Mq̈ − g) = 0
]

t
, t = 1, . . . , k, (3a)

[
0 ≤ at ≤ 1

]

t
, t = 1, . . . , k, (3b)

[
0 ≤ ut ≤ 1

]

t
, t = 1, . . . , k, (3c)

[(
fTGHτGHd

fTGHnGH

)

≤ thd

]

t

, t = 1, . . . , k, d = 1,2,3,4, (3d)

[
fTSTnST > 0

]

t
, t = 1, . . . , k, (3e)

where Eq. (3) represents the minimization of a physiological criterion J . Equation (3a)
represents the equations of motion of the biomechanical model, for which Φq is the Jacobian
matrix of the kinematic constraint equations, M is the mass matrix, ¨q is the acceleration
vector, and g is the generalized vector of external forces. Equations (3b) and (3c) represent
the physiological boundaries of the muscle activations and muscle excitations, respectively,
while Eq. (3d) represents the stability condition of the GH joint, for which fGH is the GH
reaction force, nGH is the normal to the glenoid plane, and τGHd

is the unitary vector in
the glenoid plane describing the direction d , illustrated in Fig. 2, with stability threshold
thd [6]. Finally, Eq. (3e) describes the stability of the ST joint, for which fST is the ST
joint reaction force, and nST is the directional vector of compression between the scapula
and thorax. The GH and ST joint reaction forces are obtained directly from the Jacobian of
the constraint equations and the Lagrange multipliers associated with these joints. A more
detailed treatment of these forces is provided in [21].

The compatibility of the muscle force predictions with the muscle force–length–velocity
properties and the activation dynamics is ensured by Eqs. (3b) and (3c), respectively. Note
that the activation dynamics describes the delay between the neural excitation arriving at
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a muscle, or ceasing, and the development, or decay, of muscle activation, respectively
[18, 29]. Accordingly, the constraints in Eq. (3b) control the lower and upper bounds of
the muscle forces, while the constraints in Eq. (3c) control the maximum changes in the
muscle forces that are physiologically admissible. The constraints in Eq. (3b) are easily de-
fined since the muscle activations are design variables of the optimization problem described
in Eq. (3). The constraints in Eq. (3c) are defined by assessing the time history of the neural
excitations u through the inversion of the activation dynamics. The activation dynamics of a
muscle m is usually described by a first-order ordinary differential equation that relates the
rate of change in muscle activation and the muscle excitation, i.e.,

ȧm = f
(
am,um

)
. (4)

Considering the first-order equation presented by Winter and Starks [33] for the activation
dynamics, and after some algebraic manipulation, the neural excitation at an instant of time
t can be written as [23, 28]

um
t =

⎧
⎨

⎩

am
t T1−T2±

√
(am

t T1+T2)2+4ȧm
t T1

2T1
ȧm

t ≥ 0,

ȧm
t +T2am

t

T2
ȧm

t < 0,
(5)

where ȧm
t is the activation rate of the muscle m at the instant of time t , and T1 and T2 are

given as:

T1 = 1

τact
− T2,

T2 = 1

τdeact
.

(6)

The activation and deactivation time constants τact and τdeact can be defined as 10 and 50 ms,
respectively [19], and the activation rates ȧm

t can be estimated by numerical differentiation
of the muscle activations using finite differences, as proposed by Ackermann [1].

The optimization problem posed by Eq. (3) can be solved by a wide variety of optimiza-
tion methods, including Sequential Quadratic Programming algorithms [15, 17], interior-
point algorithms [31], or genetic algorithms [15], just to name a few. All inverse dynamic
procedures discussed in this study can be considered regardless of the method used to solve
the optimization problem. Therefore, the use of the best optimization method is not ad-
dressed here, and the optimization problem is solved with the interior-point algorithm of the
fmincon function of Matlab®. Due to the form of Eq. (3) and Eqs. (3a) to (3e), the gradients
of the objective function and of the constraint equations are available analytically and are
ready to be used in the optimization method.

2.3 Physiological criteria

Two physiological criteria are alternatively considered in this study. The first is an instanta-
neous measure of the energy-consuming processes in a muscle [20], whereas the second is
an integral form of the muscle effort [2]. For k instants of time, the two criteria are respec-
tively formulated as:

J1 =
k∑

t=1

nm∑

m=1

(

c1
V mFm

CEt

PCSAm + c2V
mam

t + c3V
m
(
am

t

)2
)

, (7a)

J2 =
nm∑

m=1

V m

∫ tk

t1

(
am

)2
dt, (7b)
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where nm is the number of muscles, V m is the volume of muscle m, PCSAm is the physi-
ological cross-sectional area of muscle m, and am is the activation level of muscle m. The
weighting factors c1, c2, and c3 are defined according to Praagman et al. [20]. The opti-
mization problem is formulated by solving Eq. (3), in which the physiological criterion is
either Eq. (7a) or Eq. (7b), subjected to the constraints described by Eqs. (3a) through (3e).
Note that the criterion in Eq. (7a) is stated as a sum over k instants of time only to make its
application suitable for all methods applied here.

3 Solution methods

The muscle force distribution problem is solved using the Static Optimization (SO), Ex-
tended Inverse Dynamics (EID), and Window Moving Inverse Dynamics Optimization
(WMIDO) methods, which are further explained hereafter. Three simulations starting from
randomly-generated initial solutions are performed for each method and for each physiolog-
ical criterion, and the average of the optimal solution cost function and of the computation
time required to reach the solution are compared. The analyses were performed on an Intel®

Core™ i7 2600k CPU with 16 GB of RAM.

3.1 Static Optimization (SO)

The SO considers muscles as instantaneously available actuators whose forces only depend
on the current activation levels so that the muscle force distribution problem can be solved
independently at each instant of time. Considering Eqs. (3a) to (3e) and Eq. (7a), the num-
ber of instants of time k equals 1, and n independent problems are solved for a motion
discretized into n instants of time. Since the SO cannot handle time varying physiological
criteria or constraints, the integral form of the muscle effort, described by Eq. (7b), and the
activation dynamics constraints, described by Eq. (3c), are excluded from the optimization
problem when using this method.

3.2 Extended Inverse Dynamics (EID)

The EID solves all instants of motion at the same time rather than each instant of time in-
dependently. Accordingly, k = n instants of time, and only one problem is solved. The EID
can handle all the physiological criteria and constraints described, but the size of the op-
timization problem is geometrically proportional to the number of instants of time in the
analysis, which limits its applicability. Despite the motion under analysis, in the demonstra-
tive case used here, comprising 701 instants of time, only the first half of these are analyzed
here because the EID cannot solve them all simultaneously due to memory limitations. Note
that, for the sake of comparison, the SO and WMIDO also analyze only the first half of
the motion, even though they have no limitations from this point of view. The activation
dynamics constraints, described by Eq. (3c), are also excluded from the analyses of the EID
because their addition into the muscle force distribution problem makes the problem too
large, decreasing the number of instants of time that the EID can solve to less than 200.

3.3 Window Moving Inverse Dynamics Optimization (WMIDO)

Instead of solving each instant of time independently, or all instants of time at once, the
procedure proposed here solves the muscle force distribution problem for all k instants of
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Fig. 3 Window Moving Inverse
Dynamics Optimization
(WMIDO) procedure for a
window of size 10 and a
marching step of 5 instants of
time in each problem. At the
beginning of the analysis, in
position 1, the muscle force
distribution problem is solved for
the first 10 instants of time that
compose the window of the
WMIDO. Once the solution is
found, the window moves
forward 5 instants of time to
position 2, and the next 10
instants of time are solved. This
procedure is repeated until the
optimal solution is found for all
instants of time

time bounded within a moving window of size k. At the beginning of the analysis, the
window comprises the first k instants of time, for which the redundancy problem is solved
simultaneously. Once the solution is found for the current window position, the window is
moved forward l instants of time, and the procedure is repeated until all instants of time
are solved. The number of instants of time l that the window can move forward, i.e., the
marching step, can be as large as the window size k. If l is smaller than k, then only the first
l instants of time of the window are saved as the optimal solution, as exemplified in Fig. 3 for
a k of 10 and an l of 5. For each window position, the optimal solution defined for previous
instants of time may be used, if needed, to compute time-dependent criteria or constraints.
At the end of the analysis, the window size is adjusted to the size of the remaining instants
of time.

The WMIDO can handle all the physiological criteria and constraints described. The
number of optimization problems to be solved is dependent on the size and the marching of
the window. Interestingly, for specific choices of k and l, the proposed procedure resembles
the MSO and EID [1, 25]. In particular, if k and l are chosen to be 1, the WMIDO is similar
to the MSO, whereas if k and l are the same as the total number of instants of time of the
motion under analysis, the WMIDO is similar to the EID.

In this study, the WMIDO analyses are performed considering a window of size 10
frames and a marching step of 5 instants of time in each update. For the sake of com-
parison, the WMIDO is applied considering both the inclusion (WMIDOac) and exclusion
(WMIDOc) of the activation dynamics, described by Eq. (3c). In order to evaluate the ro-
bustness of the proposed procedure, additional simulations are performed for the WMIDOac

for different window sizes and marching steps. Assuming a marching step of half the size of
the window, window sizes of 4, 10, and 20 instants of time are evaluated, and for a window
size of 10 instants of time, marching steps of 1, 5, and 10 instants of time are evaluated.

4 Results and discussion

The redundant muscle force distribution problem of an abduction motion of the upper limb
is used here to discuss the proposed methodology. The number of instants of time used and
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Fig. 4 Optimal solution cost function and computation time of the Static Optimization (SO), Extended In-
verse Dynamics (EID), and Window Moving Inverse Dynamics Optimization (WMIDOc and WMIDOac) for
which the physiological criterion is: (a) the instantaneous measure of the energy-consuming processes in a
muscle (J1); and (b) the integral form of the muscle effort (J2). The results are presented as an average of
the three simulations performed, and are normalized by those of the EID. The WMIDOc does not include the
muscle activation dynamics, similarly to the SO and EID, whereas the WMIDOac does

the constraints are sized in order to ensure that the SO, EID, and WMIDO methods are able
to solve the muscle force distribution problem of the motion under analysis. The average
of the optimal solution cost function and of the computation time of the three simulations
performed for each method are presented in Fig. 4. Note that, for the sake of comparison,
the cost functions of the optimal solutions are computed over all instants of time, regardless
of the method applied. Moreover, the results presented in Fig. 4 are normalized by those of
the EID.

The muscle force distribution problem solved by the WMIDOac is different from that of
the SO, EID, and WMIDOc due to the inclusion of the muscle activation dynamics. There-
fore, the results of the WMIDOac are not used to compare the inverse dynamic procedures
discussed here, but are primarily presented to show that the WMIDO is able to include time-
dependent physiological properties of the muscles, and to show the influence of the muscle
activation dynamics on the muscle force predictions.

For all three starting solutions, the optimal solutions estimated by the SO, EID, and
WMIDOc present the same physiological cost. Accordingly, similar muscle and joint reac-
tion forces are predicted by all, as illustrated in Fig. 5 for the GH joint reaction force. Al-
though the simulation of the muscle activation dynamics did not produce a noticeable change
in the physiological costs of the WMIDOac, a smoothing effect to avoid fast variations in the
muscle forces is observed, as depicted in Fig. 6 for the predictions of the objective func-
tion J1 regarding the clavicular part of the trapezius muscle and the most superior bundle
of the infraspinatus muscle. As expected, the first-order model of the activation dynamics
behaves as a low-pass filter that controls the rate of force change [18]. The small impact
of the muscle activation dynamics on the muscle forces is likely due to the characteristics
of the motion under analysis, which is a standard motion of the upper limb, performed at a
slow speed. For more complex and fast-paced motions, a more pronounced influence of the
muscle activation dynamics is expected.

Regarding the computation time, the EID is significantly more time-consuming than the
SO and WMIDOc, regardless of the objective function considered. In particular, the EID re-
quires 37 times more time than the SO for the J1 and 21 times more time than the WMIDOc
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Fig. 5 Glenohumeral joint reaction force for (a) the instantaneous measure of the energy-consuming pro-
cesses in a muscle (J1), and (b) the integral form of the muscle effort (J2). The results are presented as an
average of the three simulations performed for the Static Optimization (SO), the Extended Inverse Dynamics
(EID), and the Window Moving Inverse Dynamics Optimization (WMIDOc and WMIDOac). The WMIDOc
does not include the muscle activation dynamics, similarly to the SO and EID, whereas the WMIDOac does.
The humeral elevation is described with respect to the thorax

for the J2. Even though the EID solves only a single optimization problem, as opposed to
the SO and WMIDOc that solve several, the computational effort of the EID is greater due to
the dimension of the optimization problem. Note that the optimization problem of the EID
includes 351 times more design variables and constraint equations than the low-dimension
optimization problems of the SO. In other words, solving several low-dimension problems is
more attractive from the computational point of view than solving a single high-dimension
problem, as also observed by Ackermann [1]. The computational effort of the WMIDOc

decreased significantly compared to the EID, but it is still larger than that required by the
SO. Considering only time-independent physiological criteria, and disregarding the time-
dependent behavior of the muscles, these results clearly highlight why the SO is the method
most often applied to estimate the muscle and joint reaction forces [4, 8, 17]. Yet, if a global,
time-dependent physiological criterion or the time-dependent physiological nature of the
muscles are to be considered in the framework of an inverse dynamic formulation, only the
EID and WMIDO overcome the limitations of the SO, and only these can be used [1]. Under
these conditions, the superiority of the method proposed becomes clear. Both the EID and
WMIDOc reach similar optimal solutions, but the WMIDOc is significantly less computa-
tionally expensive. For the objective functions J1 and J2, the EID is 15 and 21 times more
time-consuming than the WMIDOc. Compared to the SO, the WMIDOc is only 3 times more
time-consuming. Additionally, it must be noted that the EID cannot solve all 701 instants
of time of the motion under analysis while disregarding the muscle activation dynamics, or
the 351 instants of time analyzed if the activation dynamics is considered. For such cases,
the limited memory capacity of the computer used precluded the EID from solving the opti-
mization problem. The WMIDO, on the other hand, is able to solve all 701 instants of time
while taking into account all the optimization constraints described in Eqs. (3a) to (3e).
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Fig. 6 Muscle forces of the clavicular part of the trapezius muscle and of the most superior bundle of the
infraspinatus muscle for the instantaneous measure of the energy-consuming processes in a muscle (J1):
(a) force for all instants of time evaluated; (b) zoom of force in selected areas to highlight the influence
of the muscle activation dynamics simulation (WMIDOac). The results are presented as an average of the
three simulations performed for the Static Optimization (SO), the Extended Inverse Dynamics (EID), and
the Window Moving Inverse Dynamics Optimization (WMIDOc and WMIDOac). The WMIDOc does not
include the muscle activation dynamics, similarly to the SO and EID, whereas the WMIDOac does. The
humeral elevation is described with respect to the thorax

The WMIDOac simulations for different window sizes and marching steps show no rele-
vant effect of these features on the optimal solution of the muscle force distribution problem,
which provides further confidence in the proposed method. However, significant differences
are observed in the computation time, as shown in Fig. 7. The increase in window size in-
creases the computational effort due to the increase in the optimization problem size. An
increase from a window size of 4 to a window size of 20 instants of time resulted in a nine-
fold and threefold increase in the computation time for J1 and J2, respectively. On the other
hand, the increase in the marching step decreases the computational effort because the num-
ber of optimization problems that must be solved also decreases. For a marching step of 10
instants of time, i.e., the size of the window considered, the optimal solutions for J1 and J2
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Fig. 7 Optimal solution cost function and computation time of the Window Moving Inverse Dynamics Op-
timization (WMIDOac) for different window sizes and marching steps for (a) the instantaneous measure of
the energy-consuming processes in a muscle (J1); and (b) the integral form of the muscle effort (J2). For
the analysis of different marching steps, a window of size 10 instants of time is considered, while for the
analysis of different window sizes, a marching step of half the size of the window is considered. The results
are presented as an average of the three simulations performed for each case, and are normalized by those of
the EID. The WMIDOac includes the muscle activation dynamics, whereas the EID does not

were computed ten and seven times faster, respectively, than for a marching step of 1 instant
of time.

The EID and WMIDO overcome the limitations of the SO in using time-dependent phys-
iological criteria or constraints, but the WMIDO is significantly more efficient than the EID,
and it also overcomes the limitation of the EID in the level of the discretization that can be
realistically considered. It must be noted that, even though the elastic properties of tendons
were not considered in this study, their contribution can be accounted for in the same way
as the activation dynamics. A detailed description of the implementation of tendon elas-
ticity is provided by Ackermann [1]. One limitation of the proposed procedure, and also
of the EID, is the need to estimate time derivatives by finite differences, as described for
the determination of the neural excitations, which can lead to inaccuracies if the time steps
are not sufficiently small. Additionally, it must be pointed that Ackermann [1] reported in-
feasibilities when applying the Modified Static Optimization (MSO) method, a particular
case of the WMIDO for a window size of 1 frame and a marching step of 1 instant of
time, due to restrictive constraints that could not be satisfied as a result of the fixed values
at previous instants of time. Accordingly, despite the simulations performed in this study
for different window sizes and marching steps not showing any infeasibilities, the authors
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recommend the use of a marching step always smaller than the window size. Under this
condition, the procedure saves only the solution for part of the instants of time of the current
window, as illustrated in Fig. 3, which means that the solution to these is estimated while
taking into account future instants of time. The influence of the size and marching step of
the window on the performance of the proposed procedure should be further investigated in
future studies, especially for more complex and fast-paced motions and other biomechanical
models.

Considering that the selection of the best optimization method to solve the redundant
muscle force distribution problem is transversal to the SO, EID, and WMIDO, the research
for the best optimization method, or the most suitable, was not focused in this work. Nev-
ertheless, to avoid or at least limit the possibility of the method identifying local minima,
three cases, starting from randomly-generated initial solutions, were always analyzed. The
solution reached was always similar for all, which suggests that the local minimum found is
in fact global.

5 Concluding remarks

A new method based on an inverse dynamic formulation was proposed here. The Window
Moving Inverse Dynamic Optimization (WMIDO) consists in considering a moving win-
dow of k instants of time for which the optimization problem is solved. The window moves
iteratively across all instants of time until all of them are analyzed. In order to evaluate the
potential of the proposed procedure, the Static Optimization (SO), Extended Inverse Dy-
namics (EID), and WMIDO methods were applied to solve the muscle force distribution
problem of an abduction motion in the frontal plane of a musculoskeletal model of the up-
per limb. A time-dependent and a time-independent physiological criteria were considered.
Despite the SO limitations, the results show that it is the most effective method, from the
computational cost point of view, to estimate the muscle and joint reaction forces when
an instantaneous physiological criterion is considered and the time-dependent nature of the
muscles is disregarded. For a more realistic estimation of the muscle forces, including a
global, time-dependent physiological criteria or the time-dependent physiological nature of
the muscles, only the EID and WMIDO can be applied. Under these conditions, the results
clearly show the superiority of the WMIDO over the EID. In particular, the WMIDO is not
limited by the level of discretization of the motion under analysis, and it is more computa-
tionally efficient.
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