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Abstract In order to avoid the global dynamics equations and increase the computational
efficiency for multibody system dynamics (MSD), the transfer matrix method of multibody
system (MSTMM) has been developed and applied very widely in research and engineer-
ing in recent 20 years. It differs from ordinary methods in multibody system dynamics with
respect to the feature that there is no need for a global dynamics equation, and it uses low-
order matrices for high computational efficiency. For linear systems, MSTMM is exact even
if continuous elements like beams are involved. The discrete time MSTMM, however, has
to use local linearization. In order to release the method from such approximations, a new
version of MSTMM is presented in this paper where translational and angular accelerations,
on the one hand, and internal forces and moments, on the other hand, are used as state vari-
ables. Already linear relationships among these quantities are utilized, which results in new
element transfer matrices and algorithms making the study of multibody systems as simple
as the study of single bodies. The proposed approach also allows combining MSTMM with
any general numerical integration procedure. Some numerical examples of MSD are given
to demonstrate the proposed method.
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1 Introduction

Multibody system dynamics methods (MSDM) have developed rapidly in the last 50 years
[1–3] and provide powerful tools for studying dynamics of various mechanical systems. Al-
though the various ordinary MSDMs have different styles, at the same time almost all of
them share the following characteristics: firstly, it is necessary to develop the global dynam-
ics equations of the system, and they have to be deduced again if the system’s topological
structure is changed; secondly, the order of the global dynamics equations is not less than
the number of degrees of freedom of the system, which may become very high for complex
systems resulting in rather long computational time.

The approach proposed in the paper is different from this and has a different origin.
In 1986, Kumar and Sankar developed a discrete time transfer matrix method (DTTMM)
for structural dynamics of time-variant systems by combining the transfer matrix method
with a numerical integration procedure [4]. In 1989, Rui and others extended the transfer
matrix method to multibody systems (MSTMM) for vibration analysis of linear multi-rigid-
flexible-body systems by developing new transfer matrices [5], where eigenvalues of linear
multi-rigid-flexible-body systems can be computed easily and with high precision [6]. For
general nonlinear multi-rigid-body and multi-rigid-flexible-body systems, the discrete time
transfer matrix method of multibody systems (MSDTTMM) was developed by combining
MSTMM with a numerical integration procedure [7–10]. In this case, however, linearization
is mandatory to deduce the transfer equation of elements, which essentially describes the
governing equation of motion represented by a linear relationship between the state vectors
of inboard and outboard ends of an element. In [7], the Newmark-Beta numerical integration
procedure is introduced, leading to only second-order computational precision. Although a
higher order numerical integration procedure could be adopted, the deduction process is
rather tedious.

This can be avoided with a new version of MSTMM presented in this paper. Translational
and angular accelerations, together with internal forces and moments, are taken as new state
variables instead of position coordinates as in the original MSDTTMM. This results in to-
tally different transfer matrices of elements and algorithms compared with the original ones
described in [7–10]. The proposed method expands the advantages of MSTMM by allowing
more sophisticated numerical integration procedures such as any Runge–Kutta method to be
used. Global dynamics equations of the system are still avoided. Instead, involved matrices
have low order and the setup of the global transfer equation is highly programmable. The
proposed method is simple, straightforward, efficient, practical, and provides a powerful tool
for MSD. Numerical examples in Sect. 4 will show good agreement with simulation results
obtained by an ordinary dynamics method.

2 General theorems and steps of the new version of MSTMM

Any complex multibody system may be divided into various elements including bodies
(rigid bodies, elastic bodies, lumped masses, etc.) and hinges (joints, ball-and-socket, pins,
linear and rotary springs, linear and rotary dampers, etc.), which are connected at interme-
diate points. The general idea of MSTMM is to use kinematic and kinetic quantities at these
connection points as state variables which are related by the characteristics of the element in
between. The characteristics are described by linear transfer equations from one connection
point to the other, which are called input and output points I and O of the element, see,
e.g., Fig. 1. For a specific multibody system, the element transfer equations are combined
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Fig. 1 Rigid body moving in
space

by simple matrix operations to an overall transfer equation which may be solved for given
boundary states at the endpoints of the system. These steps will be explained in more detail
in the following.

2.1 Coordinate systems and sign convention

In order to describe the position and orientation of connecting points, we assign a right-
handed Cartesian reference frame K to each of them, see, e.g., input point I in Fig. 1. Its
spatial position in the inertial Cartesian frame {oxyz} is then given by coordinates x, y,
and z, and its orientation by three space-angles θ1, θ2, θ3 [10, 12] which describe successive
rotations about the inertial x-, y-, and z-axes. The latter define the direction cosine matrix A

for coordinate transformations from K to {oxyz}, which can be built from the elementary
rotation matrices Ax,θ1 , Ay,θ2 , Az,θ3 as

A = Az,θ3Ay,θ2Ax,θ1 =
⎡
⎣

c2c3 s1s2c3 − c1s3 c1s2c3 + s1s3

c2s3 s1s2s3 + c1c3 c1s2s3 − s1c3

−s2 s1c2 c1c2

⎤
⎦ (1)

where si = sin θi , ci = cos θi , i = 1,2,3.
By differentiating A with respect to time, we may deduce the skew-symmetric matrix of

the angular velocity vector Ω = [Ωx,Ωy,Ωz]T of frame K about the inertial frame oxyz as
Ω̃ = ȦAT, which can be rearranged as Ω = AHθ̇ . By further differentiation we find [12]

θ̈ = H−1ATΩ̇ − H−1Ḣ θ̇

where

H =
⎡
⎣

1 0 −s2

0 c1 s1c2

0 −s1 c1c2

⎤
⎦ , Ḣ =

⎡
⎣

0 0 −c2θ̇2

0 −s1θ̇1 c1c2θ̇1 − s1s2θ̇2

0 −c1θ̇1 −s1c2θ̇1 − c1s2θ̇2

⎤
⎦ ,

and θ = [θ1, θ2, θ3]T. It should be pointed out that any kind of Euler/Bryan angle formulation
has its inherent singularity, which is why the angular acceleration Ω̇ rather than θ̈ is used
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in the state vector hereinafter. Once approaching a singular configuration, one can resort
to another kind of Euler/Bryan angle to avoid the singularity problem. Alternatively, many
other methods, such as Rodriguez parameters, Euler parameters, etc., can be also adopted
to describe the orientation and avoid singular orientation. If not mentioned explicitly, all
vectors are described w.r.t. the inertial frame.

In contrast to the sign conventions of the original MSDTTMM [10], the following defini-
tion is used: positive translational and angular accelerations coincide with positive directions
of the coordinate system; positive directions of inboard forces and outboard torques acting
on the element coincide with positive directions, whereas positive outboard forces and in-
board torques coincide with negative directions of the coordinate system.

2.2 New state vectors, transfer equations and transfer matrices of elements

In the original MSDTTMM [10], the position and orientation coordinates of the connection
points have been used as state variables. For example, for spatial motion the state vector was
summarized from coordinates of the connecting point, rotation angles, internal torques and
forces, and an artificial one as

z = [
x y z θx θy θz mx my mz qx qy qz 1

]T
. (2)

However, since kinematics typically is nonlinear, linearization had to be involved in the
derivation of the transfer equations and also an integration scheme had to be part of the final
transfer relations.

In order to avoid all these drawbacks, the proposed approach combines kinematics and
kinetics equations on the acceleration level. Therefore, the new state vectors summarize
acceleration variables of connection points and forces and moments between any two multi-
body system elements moving in space:

z = [
ẍ ÿ z̈ Ω̇x Ω̇y Ω̇z mx my mz qx qy qz 1

]T
, (3)

or

z =
[
r̈T Ω̇

T
mT qT 1

]T
, (4)

where

r̈ =
⎡
⎣

ẍ

ÿ

z̈

⎤
⎦ , Ω̇ =

⎡
⎣

Ω̇x

Ω̇y

Ω̇z

⎤
⎦ , m =

⎡
⎣

mx

my

mz

⎤
⎦ , q =

⎡
⎣

qx

qy

qz

⎤
⎦ . (5)

Here r̈ and Ω̇ are accelerations and angular accelerations being correlated to internal forces
q and torques m, respectively, where all quantities are described in the inertial frame. The
“1” at the end of the state vector (3) is used to account for external forces, as well as cen-
trifugal and Coriolis forces, as will become clear in the following.

For a system moving in the x, y-plane, the state vectors reduce to

z = [
ẍ ÿ Ω̇z mz qx qy 1

]T
, (6)

and for a one-dimensional motion the reduced state vector reads as

z = [
ẍ qx 1

]T
. (7)



A new version of transfer matrix method for multibody systems 141

As mentioned above, relations between translational and angular accelerations, on the one
hand, and resulting forces and torques, on the other hand, are always related linearly by
Newton’s second law and Euler’s theorem. Also relations between accelerations of different
points resulting from rigid body kinematics are linear. Therefore, both types of relations
qualify for expressing interrelations between state vectors zj,I and zj,O of the input end I

and output end O of an element j by linear algebraic equations in matrix form

zj,O = U jzj,I (8)

where the element transfer matrix U j has to summarize all physically relevant characteris-
tics of the considered element. For spatial motion the transfer matrix is typically a 13 × 13
matrix according to the state vectors (3), whereas for planar and one-dimensional problems
the size reduces to 7 × 7 and 3 × 3, respectively, according to (6) and(7).

2.3 Transfer equation and transfer matrix of overall system

A multibody system is built up from elements by connecting output O of an element j

with input I of another element k. According to kinematics and Newton’s third law, and the
specific sign conventions in Sect. 2.1, the state vectors of these coinciding output and input
ends are equal. This allows substituting input states zk,I by output states zj,O and the associ-
ated transfer equation (8), i.e., zk,O = U kzk,I ≡ U kzj,O = U kU jzj,I , which finally leads to
products of element transfer matrices. Thus, element transfer matrices may be considered as
building blocks which are assembled together according to the topology of the considered
system by simple matrix multiplication. The transfer equations (8) exist or may be derived
for rigid bodies, flexible bodies, gas, fluid, and all kind of joints and hinges. Some of them
will be derived in Sect. 3.

For chain systems consisting of n elements, the overall transfer equation can be obtained
until the final substitution of transfer equations relates the output state zn,O of the nth ele-
ment to the input state z1,I of the first element by

zn,O = U 1−nz1,I (9)

where the overall transfer matrix is given by the product

U 1−n = Un · · ·U 2U 1 (10)

of element transfer matrices.
By applying the boundary conditions, to eliminate the known boundary variables of state

vectors from z1,I and zn,O , summarizing the remaining unknown boundary states and con-
stant scalar “1” in a vector z̄, and re-ordering the equations, (9) can be re-written as

Ū z̄ = 0 (11)

in order to compute the unknown boundary states. As a result, the boundary state vectors
are known completely and allow computing the remaining state vectors in between by suc-
cessively applying the element transfer equations (8).

2.4 Simulation of system motion

It is maybe worthwhile mentioning that in general the transfer matrices depend on position
(especially orientation) and/or velocity coordinates. Thus, the procedure in Sect. 2.3 has to
be performed at any time instant ti as follows:
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(i) For a time instant ti , position and velocity coordinates are given (especially from initial
conditions in the beginning).

(ii) With this information, transfer matrices in (8) can be computed for all elements of the
system.

(iii) The overall transfer matrix may be build up from element matrices according to the
system topology; for chain systems by simple multiplication (10).

(iv) Reduction and solution of (11) yields unknown boundary states.
(v) Successive application of (8) yields all accelerations as part of state vectors (3).

(vi) Any integration scheme may proceed to next time instant.

This solution procedure of the new version of MSTMM is somehow similar to the recur-
sive solution schemes of multibody systems. However, the recursive method has two sweeps
through the system, a backward sweep from terminal bodies to the root body to eliminate
the bodies and constraints one by one, and a forward sweep from the root body to the ter-
minal bodies to compute the unknown quantities (including the accelerations of bodies, the
generalized acceleration of joints and the constraint forces) successively; whereas only the
forward sweep is necessary in the proposed method. The backward sweep in the recursive
method herein is replaced by the overall transfer equation (9), in which the overall transfer
matrix (10) could be computed by a parallel algorithm, not necessarily by serial processing.
If using the proposed approach, any chain system of any length with any boundary condi-
tions reduces to small scale equations (9), (10); closed-loop systems can be handled like
chain systems as is done in [11], and the difficulty and computational scale will not increase
distinctly compared with the corresponding chain system; the state vector of any point in a
system may be directly “transferred” from state vector of any boundary point or any point
inside the system.

3 Transfer matrices of some typical elements

In the following, transfer matrices of some body and hinge elements will be developed with
respect to the inertial reference frame respectively for the new version of MSTMM.

3.1 Transfer matrix of a rigid body moving in space

The transfer equation of a rigid body can be deduced directly from its kinematics and dy-
namics equations. It is taken as an example to sketch the idea of the proposed method for
bodies. Transfer equations of flexible bodies can be deduced in a similar way. A rigid body
moving in space with single input end I and single output end O is shown in Fig. 1, where
C denotes the mass center; the subscript I denotes the body-fixed coordinate system with
origin I , while {oxyz} is the inertial coordinate system.

The inertial position coordinates of output point O are given by

rO = rI + rIO = rI + AI lIO (12)

where rI is the position of the input point w.r.t. the inertial frame and lIO describes vector
�rIO in the body-fixed coordinate system. This formula also applies to point C, where AI

is the direction cosine matrix (1) of the body-fixed frame. By differentiation w.r.t. time, we
find

ṙO = ṙI + ȦI lIO = ṙI + ȦIA
T
I AI lIO = ṙI + Ω̃I rIO
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and by further differentiation

r̈O = r̈I − r̃IOΩ̇I + Ω̃I Ω̃I rIO. (13)

Using Newton’s law and Euler’s theorem and considering the sign convention in
Sect. 2.1, the dynamics equations of the rigid body can be gained as

mr̈C = qI − qO + f C, (14)

ĠI = −r̃IOqO + mO − mI + mC − mr̃IC r̈I + r̃ICf C (15)

where m is the body mass, qI and qO are the forces acting on I and O , f C and mC de-
note external force and torque acting on the mass center of the rigid body, mI and mO are
torques acting on the points I and O , rIO and rIC are position vectors from I to O and C,
respectively, and r̈I is the absolute acceleration of point I . All quantities are described in
the inertial frame. The acceleration of the mass center r̈C can be substituted analogously
to (13), where O → C. The moment of momentum is given as GI = AIJ IA

T
I ΩI where the

inertia tensor w.r.t. I is described in the body-fixed frame. Later on, also the angular velocity
ωI = AT

I ΩI in the body-fixed frame will be used, see (20).
Since the angular velocities and thus accelerations of body-fixed reference frames located

at any point of the same rigid body are equal, we find

Ω̇O = Ω̇I . (16)

Equations (13)–(15) can be rewritten as

r̈O = r̈I + E1Ω̇I + E2, (17)

qO = qI + E3r̈I + E4Ω̇I + E5, (18)

mO = mI + E6qO + E7r̈I + E8Ω̇I + E9 (19)

where

E1 = −r̃IO, E2 = Ω̃I Ω̃I rIO, E3 = −mI 3,

E6 = r̃IO, E7 = mr̃IC, E8 = AIJ IA
T
I ,

E4 = mr̃IC, E5 = f C − mΩ̃I Ω̃I rIC,

E9 = −mC − r̃ICf C + AI ω̃IJ IωI .

(20)

With state vector (4), (16)–(19) can be combined in a transfer equation (8) with the 13 × 13-
transfer matrix of a rigid body

U j =

⎡
⎢⎢⎢⎢⎣

I 3 E1 O3×3 O3×3 E2

O3×3 I 3 O3×3 O3×3 O3×1

E6E3 + E7 E6E4 + E8 I 3 E6 E6E5 + E9

E3 E4 O3×3 I 3 E5

O1×3 O1×3 O1×3 O1×3 1

⎤
⎥⎥⎥⎥⎦

j

. (21)
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3.2 Transfer equation of a smooth ball-and-socket hinge

For a smooth ball-and-socket hinge j , its mass and size are neglected. Therefore, the position
coordinates, as well as the corresponding time derivatives, and internal forces and torques
are equal. This results in the following equations:

r̈j,O = r̈j,I , (22)

qj,O = qj,I , (23)

mj,O = mj,I . (24)

If its outboard body’s outboard hinge is also a smooth ball-and-socket hinge j + 2, the
internal torques of j + 2 vanish since the friction is neglected. This results in

mj+1,O = 0 (25)

where j + 1 is the corresponding outboard body of the smooth ball-and-socket hinge j .
The transfer equation for the outboard rigid body of the acceleration hinge j is

zj+1,O = U j+1zj+1,I (26)

where the transfer matrix (21) may be partitioned as

U j+1 =

⎡
⎢⎢⎢⎢⎣

u1,1 u1,2 u1,3 u1,4 u1,5

u2,1 u2,2 u2,3 u2,4 u2,5

u3,1 u3,2 u3,3 u3,4 u3,5

u4,1 u4,2 u4,3 u4,4 u4,5

O1×3 O1×3 O1×3 O1×3 1

⎤
⎥⎥⎥⎥⎦

j+1

. (27)

Then the third row yields a relation of the input and output state variables of this rigid body
as

mj+1,O = u3,1r̈j+1,I + u3,2Ω̇j+1,I + u3,3mj+1,I + u3,4qj+1,I + u3,5. (28)

Solving the above equation for Ω̇j+1,I with relation (25) yields

Ω̇j+1,I = −u−1
3,2u3,1r̈j+1,I − u−1

3,2u3,3mj+1,I − u−1
3,2u3,4qj+1,I − u−1

3,2u3,5. (29)

With zj+1,I = zj,O and (22)–(24), (29) may be reformulated as

Ω̇j,O = −u−1
3,2u3,1r̈j,I − u−1

3,2u3,3mj,I − u−1
3,2u3,4qj,I − u−1

3,2u3,5. (30)

By combining (22)–(24) and (30), the transfer matrix of smooth ball-and-socket hinge j can
be obtained as

U j =

⎡
⎢⎢⎢⎢⎢⎣

I 3 O3×3 O3×3 O3×3 O3×1

−u−1
3,2u3,1 O3×3 −u−1

3,2u3,3 −u−1
3,2u3,4 −u−1

3,2u3,5

O3×3 O3×3 I 3 O3×3 O3×1

O3×3 O3×3 O3×3 I 3 O3×1

O1×3 O1×3 O1×3 O1×3 1

⎤
⎥⎥⎥⎥⎥⎦

j

. (31)
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Fig. 2 Smooth pin hinge moving
in space

3.3 Transfer equation of smooth pin hinge moving in space

A smooth pin hinge j with inboard rigid body j − 1 and outboard rigid body j + 1 is shown
in Fig. 2. The position coordinates coincide as well as the corresponding time derivatives,
and internal forces and torques are equal:

r̈j,O = r̈j,I , (32)

qj,O = qj,I , (33)

mj,O = mj,I . (34)

In the direction of the rotation axis ζj,O , the torque vanishes. By transforming mj,I to the
outboard frame with AT

j,O and projecting it with H 2 = [0 0 1 ] onto the ζ -axis, this may be
expressed by

H 2A
T
j,Omj,I = 0. (35)

From kinematics we find for the angular velocities Ωj,O = Ωj,I + Aj,Oωr where ωr =
[0 0 Θ̇j ]T. By differentiation we get

Ω̇j,O = Ω̇j,I + Ω̃j,OAj,Oωr + Aj,O ω̇r . (36)

The last term of the above equation can be eliminated by premultiplication with H 1A
T
j,O

which is firstly a coordinate transformation to the outboard reference frame and then a pro-
jection onto directions perpendicular to the rotation axis. By this we finally get

H 1A
T
j,OΩ̇j,O = H 1A

T
j,OΩ̇j,I + H 1A

T
j,OΩ̃j,OAj,Oωr (37)

where

H 1 =
[

1 0 0
0 1 0

]
.

Similar to Sect. 3.2 we now have to take into account outboard body j + 1. We assume
that its outboard element is also a pin hinge, where we have according to (35)

H 2A
T
j+1,Omj+1,O = 0. (38)

By substituting (28) into (38), we obtain

H 2A
T
j+1,Ou3,1r̈j+1,I + H 2A

T
j+1,Ou3,2Ω̇j+1,I + H 2A

T
j+1,Ou3,3mj+1,I

+ H 2A
T
j+1,Ou3,4qj+1,I + H 2A

T
j+1,Ou3,5 = 0. (39)
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With zj+1,I = zj,O and (32)–(34), this may be reformulated as

−H 2A
T
j+1,Ou3,2Ω̇j,O = H 2A

T
j+1,Ou3,1r̈j,I + H 2A

T
j+1,Ou3,3mj,I

+ H 2A
T
j+1,Ou3,4qj,I + H 2A

T
j+1,Ou3,5. (40)

In combination with (37), we get

E0Ω̇j,O = E1r̈j,I + E2Ω̇j,I + E3mj,I + E4qj,I + E5, (41)

or

Ω̇j,O = E−1
0 E1r̈j,I + E−1

0 E2Ω̇j,I + E−1
0 E3mj,I + E−1

0 E4qj,I + E−1
0 E5, (42)

where

E0 =
[

H 1A
T
j,O

−H 2A
T
j+1,Ou3,2

]
, E1 =

[
O2×3

H 2A
T
j+1,Ou3,1

]
, E2 =

[
H 1A

T
j,O

O1×3

]
,

E3 =
[

O2×3

H 2A
T
j+1,Ou3,3

]
, E4 =

[
O2×3

H 2A
T
j+1,Ou3,4

]
, E5 =

[
H 1A

T
j,OΩ̃j,OAj,Oωr

H 2A
T
j+1,Ou3,5

]
.

Combining (32), (33), (34), and (42) and arranging them according to the configuration
of state vector (4) yields the transfer matrix of a smooth pin hinge j :

U j =

⎡
⎢⎢⎢⎢⎣

I 3 O3×3 O3×3 O3×3 O3×1

E−1
0 E1 E−1

0 E2 E−1
0 E3 E−1

0 E4 E−1
0 E5

O3×3 O3×3 I 3 O3×3 O3×1

O3×3 O3×3 O3×3 I 3 O3×1

O1×3 O1×3 O1×3 O1×3 1

⎤
⎥⎥⎥⎥⎦

j

. (43)

It should be noted the second time derivative of joint coordinate Θ̈j can be obtained if the
state vectors of the pin hinge’s input and output point are already known. This is achieved
by premultiplying (36) with H 2A

T
j,O , resulting in

Θ̈j = H 2A
T
j,OΩ̇j,O − H 2A

T
j,OΩ̇j,I − H 2A

T
j,OΩ̃j,OAj,Oωr . (44)

4 Numerical examples

In order to verify the proposed approach, the dynamics of several spatial pendulum systems
and chain systems are simulated numerically by both the proposed method and the classi-
cal Newton–Euler method, respectively, where the latter sometimes is also called Lagrange
method. For convenience only chain systems are considered in the following. However, the
method is also applicable to closed-loop systems, tree systems, network systems, etc., anal-
ogously to the original MSDTTMM [10].
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4.1 Dynamics of a spatial multibody system with ball-and-socket hinges

Let us firstly consider a pendulum system with three rigid bodies moving in space and con-
nected by three smooth ball-and-socket hinges under the effect of gravity as shown in Fig. 3.
The body and hinge elements are numbered successively, where 1, 3, 5 denote joints, 2, 4, 6
denote bodies, and 0 denotes the boundary ends of the system. The parameters of the three
rigid bodies are identical, where the coordinates of the mass center and the output point and
the moment of inertia relative to the input-end in the body-fixed frame are as follows:

rIC = [0.5 0 0 ]T m, rIO = [1 0 0 ]T m, J I = diag

(
1

6
,

5

12
,

5

12

)
kg m2.

The space-angles given in Sect. 2.1 of bodies 2, 4, 6 are collected as the generalized coordi-
nates of this system and the initial conditions of the system are

θ2,4,6 = 0, θ̇2,4 = 0, θ̇6 = [0 0.1 0]T rad/s.

The overall transfer equation of the system is

z6,0 = U 2–6z2,1 where U 2–6 = U 6U 5U 4U 3U 2. (45)

The transfer matrices U 2,U 4,U 6 referring to bodies correspond to (21), whereas U 3,U 5

result from (31). The ball-socket-hinge left to body 2 determines the boundary state

z2,1 = [
0 0 0 Ω̇x Ω̇y Ω̇z 0 0 0 qx qy qz 1

]T

2,1

whereas the output state of body 6 is free with zero forces and zero torques, but unknown
accelerations:

z6,0 = [
ẍ ÿ z̈ Ω̇x Ω̇y Ω̇z 0 0 0 0 0 0 1

]T

6,0
.

Thus, the reduced vector of unknown boundaries in (11) reads as

z̄ = [
Ω̇x,2,1 Ω̇y,2,1 Ω̇z,2,1 qx,2,1 qy,2,1 qz,2,1

ẍ6,0 ÿ6,0 z̈6,0 Ω̇x,6,0 Ω̇y,6,0 Ω̇z,6,0 1
]T

.

The time histories of the rotation angles of rigid body 2 obtained by the proposed method
and by Newton–Euler method are shown in Fig. 4 represented by ‘line’ and ‘×’, respectively.
It can be seen clearly that the computational results of the two methods have good agree-
ment, validating the correctness of the new formulation of the transfer matrix method for
multibody systems.

4.2 Dynamics of a spatial multibody system with pin hinges

In the second example, the ball-and-socked hinges in Fig. 3 are substituted by three smooth
pin hinges, leading to the spatial arm system in Fig. 5. The overall transfer equation is
identical to (45), except that U 3,U 5 now have to be taken from (43) and the boundary
conditions of the system are

z2,1 = [
0 0 0 0 0 Ω̇z mx my 0 qx qy qz 1

]T

2,1
,
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Fig. 3 Spatial pendulum system

Fig. 4 Time history of the
rotation angles of body element 2

Fig. 5 Spatial 3-DOF arm

z6,0 = [
ẍ ÿ z̈ Ω̇x Ω̇y Ω̇z 0 0 0 0 0 0 1

]T

6,0
.

The joint coordinates (44) of pin hinges 1, 3, 5 are collected as the generalized coordi-
nates of this system. Time histories of the relative rotation angles of these pin hinges with
initial conditions

Θ1 = Θ3 = Θ5 = 0 rad, Θ̇1 = Θ̇5 = 0 rad/s, Θ̇3 = 1 rad/s

again coincide for the proposed and Newton–Euler method as shown in Fig. 6.

4.3 Dynamics of a planer pendulum system

The dynamics of a single pendulum moving in plane is considered to illustrate the increased
computational precision of the proposed approach compared to the original MSDTTMM.
In Fig. 7, the θ̇ reference trajectory is computed by solving the dynamics equation J θ̈ +
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Fig. 6 Time history of the
relative rotation angles of the
three pin hinges

Fig. 7 Comparison on
computational precision of the
new version of MSTMM and
MSDTTMM

mgl cos θ/2 = 0 with a 4th order Runge–Kutta (R–K) method with a constant step size of
h = 1.0E-3 s for initial conditions θ(0) = −π/2 rad and θ̇ (0) = −5.4 rad/s. Dynamics
parameters are given as J = ml2/3, m = 1 kg, l = 1 m.

In comparison, the simulation results of the proposed approach combined with 4th order
R–K integration method and the original MSDTTMM with constant step size h = 1.0E-1 s
are drawn. Obviously, the error of the proposed method is smaller than that of the MS-
DTTMM even in the first three integration time steps, where computational errors at each
time instant t are shown in Table 1. This demonstrates the higher precision of the proposed
approach using exact acceleration computation over the original approach using local lin-
earization.

For computational speed assessment, we consider a planar pendulum system formed by
homogeneous rods with length 1 m and mass 1 kg, which are connected by smooth hinges.
The CPU used is an i7-3610QM processor with max frequency of 3.3 GHz. Firstly, both
the proposed approach and Lagrange equations are computed by using a single thread. The
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Table 1 Computational error e(t) at each time instant

h(s) e(0.1) rad/s e(0.2) rad/s e(0.3) rad/s

Reference trajectory 1.0E-3 – – –

Proposed approach 1.0E-1 −1.21E-4 −1.84E-4 −1.95E-4

MSDTTMM 1.0E-1 −1.05E-2 −2.44E-2 −3.59E-2

global dynamics equation established by Lagrange method can be obtained as

A

⎡
⎢⎢⎢⎢⎣

θ̈1

θ̈2
...

θ̈n

⎤
⎥⎥⎥⎥⎦

= −B

⎡
⎢⎢⎢⎢⎣

θ̇2
1

θ̇2
2
...

θ̇2
n

⎤
⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎣

gl1(m1/2 + m2 + · · · + mn) cos θ1

gl2(m2/2 + m3 + · · · + mn) cos θ2
...

gln(mn/2) cos θn

⎤
⎥⎥⎥⎦ (46)

where A = [aij ], B = [bij ] with

aij =
{

(
mj

4 + mj+1 + · · · + mn)l
2
j + JCj

for i = j,

li lj (
mj

2 + mj+1 + · · · + mn) cos(θi − θj ) for i �= j,

bij =
⎧⎨
⎩

0 for i = j,

li lj (
mj

2 + mj+1 + · · · + mn) sin(θi − θj ) for i < j,

−bji for i > j,

and lj , mj , θj , JCj
are the length, mass, rotation angle and moment of inertial w.r.t. its mass

center of rod j , respectively.
As shown in Fig. 8(a), the time consumption of the proposed approach is much less than

that of a classical Lagrange method, which demonstrates the high computational speed of
the new version of MSTMM. Under the same computational condition, Fig. 8(b) shows a
comparison with the order (n) recursive method [13] which has a similar speed.

4.4 Dynamics of a planar multibody system with spring and damping hinges
modeled by acceleration hinges

Figure 9 shows a chain multibody system composed of masses moving along the x-axis. The
interactions among the body elements are due to spring and damper elements. The system
parameters are

mi = 0.1 kg (i = 2,4,6,8,10), kj = 1000 N/m,

cj = 0 N/
(
ms−1

)
(j = 1,3,5,7,9).

The displacements xi,I (i = 2,4, . . . ,10) of all the bodies are collected as generalized coor-
dinates of the system and the initial conditions are

xi,I (0) = i

2
· 0.1 m, ẋi,I (0) = 0 (i = 2,4, . . . ,10).

The external forces are

f2 = 100 N, fk = 0 N (k = 4,6,8,10).
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Fig. 8 Time cost of the new
version of MSTMM compared to
(a) Lagrange method and (b)
recursive scheme

Fig. 9 Chain system with
springs and dampers

The overall transfer equation reads as

z10,0 = U 2−10z2,1 where U 2−10 = U 10U 9U 8U 7U 6U 5U 4U 3U 2

with U i (i = 2,4,6,8,10) denoting the transfer matrix of body elements and U j (j =
3,5,7,9) denoting the transfer matrix of hinge elements. The state vector z in this example
may be reduced according to (7). The transfer matrix of body elements U i (i = 2,4,6,8,10)

can be obtained by reducing transfer matrix (21) of a spatial rigid body to a one dimensional
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Fig. 10 Times histories of
bodies 2 and 10 in chain system

problem, namely

U i =
⎡
⎣

1 0 0
−mi 1 Fi

0 0 1

⎤
⎦ (i = 2,4, . . . ,10) (47)

where Fi is the summation of the external force and all the elastic and damping forces acting
on body i, i.e.,

Fi = fi + ki−1(xi−2 − xi) + ci−1(ẋi−2 − ẋi )

+ ki+1(xi+2 − xi) + ci+1(ẋi+2 − ẋi ) (i = 2,4, . . . ,8), (48)

F10 = f10 + k9(x8 − x10) + c9(ẋ8 − ẋ10). (49)

The two adjacent rigid bodies of a hinge j (j = 3,5,7,9) in this example are relatively free,
and such joints are called accelerations hinges in this paper. For such a hinge j , we get

(ẍ)j,O ≡ (ẍ)j+1,I = Fj+1/mj+1, (50)

(qx)j,O = (qx)j,I . (51)

Collecting these two equations according to the state vector (7) yields the transfer matrix

U j =
⎡
⎣

0 0 Fj+1/mj+1

0 1 0
0 0 1

⎤
⎦ (j = 3,5,7,9) (52)

of this hinge element. The formulas of a generalized spatial elastic hinge and acceleration
hinge are provided in the Appendix.

The boundary conditions of the system are

z2,1 = [ẍ,0,1]T
2,1, z10,0 = [ẍ,0,1]T

10,0.

The time histories in Fig. 10 of the position coordinates of body element 2 and body el-
ement 10 again show good agreement between the proposed method and Newton–Euler
method.
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5 Conclusions

The new version of MSTMM presented in the paper improves the computational precision
of the transfer matrix method to the same level as ordinary multibody system approaches
based on global dynamics equations. This is achieved by formulating transfer equations
between accelerations and forces instead of position coordinates and forces as in the orig-
inal MSDTTMM. The new formulation avoids linearization and allows using any integra-
tion algorithm. Simultaneously it simplifies the transfer matrices compared to the original
MSDTTMM, while keeping the features of transfer matrix method of avoiding global dy-
namics equations of the multibody system. For long chains the computational speed is com-
parable to that of recursive schemes.
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Appendix: Elastic hinge and acceleration hinge

A.1 Elastic hinge

An elastic hinge [14] is sometimes also referred to as bushing element in ADAMS software,
coupling element in [15], or force element in [16], whose mass and size are neglected. It
models springs and dampers acting between two bodies so that force and torque magnitudes
can be expressed by six Cartesian components, which are linear functions of translational
and rotational displacements between two adjacent bodies. For an elastic hinge j shown in
Fig. 11, the inboard and outboard body elements are connected with this hinge. The action
and reaction between the two connected body elements j − 1 and j + 1 are represented by
the elastic forces due to relative deformations of the hinge. Generally speaking, these elastic
forces can be treated as part of the external forces acting on the connected body elements.
Thus, the first step is to find the elastic forces.

In Fig. 11, Iξ1η1ζ1 is the inboard coordinate system of hinge j , Oξ2η2ζ2 is the outboard
frame, and Iξ3η3ζ3 is an intermediate coordinate system used to formulate large relative
rotation. The origin point and ζ -axis of Iξ3η3ζ3 coincide with those of Iξ1η1ζ1, respectively.
Iξ3η3ζ3 can be obtained by rotating Iξ1η1ζ1 about the ζ -axis by angle θr , where the value
of θr is achieved such that the relative rotation between Oξ2η2ζ2 and Iξ3η3ζ3 is minimized.
ζ1 is the axis of large relative rotation of hinge j .

There are various ways to choose an appropriate value of θr , and the following is just a
suggestion. Firstly, one obtains the direction cosine matrices A0,1 and A0,2 of Iξ1η1ζ1 and
Oξ2η2ζ2 with respect to oxyz. The relative direction cosine matrix of Oξ2η2ζ2 with respect
to Iξ1η1ζ1 is then given as

A1,2 = AT
0,1A0,2. (53)

Assuming that A1,2 is obtained by three continuous rotations according to Sect. 2.1,
one can deduce three corresponding rotation angles θ1, θ2, θ3. Then one can treat the third
rotation angle θ3 as the unknown variable θr . In a similar way, θ̇r , the time derivative of θr ,
can be obtained. Then the orientation and angular velocity of Iξ3η3ζ3 are totally obtained.
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Fig. 11 Spatial elastic hinge

In a similar way, the relative orientation cosine matrix of Oξ2η2ζ2 with respect to Iξ3η3ζ3

and its time derivative with respect to time can be obtained, denoted as A3,2 and Ȧ3,2, re-
spectively. Then one can obtain the three corresponding infinitesimal rotation angles and
their time derivatives with respect to time, which are denoted as θ3,2 = [θx θy θz ]T and
θ̇3,2 = [ θ̇x θ̇y θ̇z ]T, respectively.

The elastic torques and forces of hinge j decomposed in Iξ3η3ζ3 can be obtained as
follows:

m = [
k′

xθx + c′
x θ̇x k′

yθy + c′
y θ̇y k′

zθr + c′
zθ̇r

]T
,

f = [
kx	x + cx	ẋ ky	y + cy	ẏ ky	z + cy	ż

]T
(54)

where 	r = [
	x 	y 	z

]T
is the position vector from the origin of Oξ2η2ζ2 to that of

Iξ3η3ζ3 decomposed in Iξ3η3ζ3. kx , ky , kz, cx , cy and cz are the stiffness and damping
coefficients. k′

x , k′
y , k′

z, c′
x , c′

y , and c′
z are the rotational stiffness and damping coefficients,

respectively.
The elastic forces (54) will be treated as part of the external forces in (14) and (15) acting

on the connected body elements and the elastic hinge may be treated as an acceleration hinge
whose transfer equation is deduced in the following section.

A.2 Transfer equations of acceleration hinges moving in space

The acceleration hinge may be considered as a dummy hinge, but without interaction be-
tween the two adjacent bodies. The translational and angular acceleration of the output end
of an acceleration hinge can be obtained from the transfer matrix of its outboard body.
The processes to deduce this transfer matrix are similar to those for smooth ball-and-socket
hinges and pin hinges in Sects. 3.2 and 3.3. The internal forces and torques of the elastic
hinge will be treated as external forces and torques acting on its inboard and outboard body,
respectively.

For a massless hinge j moving in space, the following force and moment equilibria can
be obtained:

qj,O = qj,I , (55)

mj,O = mj,I . (56)



A new version of transfer matrix method for multibody systems 155

If its outboard body’s outboard hinge is also an acceleration hinge j + 2, the internal forces
and torques of j + 2 vanish since they are treated as part of the external forces acting on its
two adjacent bodies. This results in

qj+1,O = 0, (57)

mj+1,O = 0 (58)

where j + 1 is the corresponding outboard body of the acceleration hinge j .
The transfer equation for the outboard rigid body of the acceleration hinge j is

zj+1,O = U j+1zj+1,I (59)

where the transfer matrix (21) may be partitioned as

U j+1 =

⎡
⎢⎢⎢⎢⎣

u1,1 u1,2 u1,3 u1,4 u1,5

u2,1 u2,2 u2,3 u2,4 u2,5

u3,1 u3,2 u3,3 u3,4 u3,5

u4,1 u4,2 u4,3 u4,4 u4,5

O1×3 O1×3 O1×3 O1×3 1

⎤
⎥⎥⎥⎥⎦

j+1

. (60)

Then the third and fourth rows yield a relation of internal moments and forces between
input and output of this rigid body as

mj+1,O = u3,1r̈j+1,I + u3,2Ω̇j+1,I + u3,3mj+1,I + u3,4qj+1,I + u3,5, (61)

qj+1,O = u4,1r̈j+1,I + u4,2Ω̇j+1,I + u4,3mj+1,I + u4,4qj+1,I + u4,5. (62)

Substituting (57) and (58) into (61) and (62) yields

[
u3,1 u3,2

u4,1 u4,2

][
r̈j+1,I

Ω̇j+1,I

]
+

[
u3,3 u3,4

u4,3 u4,4

][
mj+1,I

qj+1,I

]
+

[
u3,5

u4,5

]
= 0. (63)

With zj+1,I = zj,O and (55)–(56), (63) may be reformulated as

[
r̈j,O

Ω̇j,O

]
= −û

−1
1 û2

[
mj,I

qj,I

]
− û

−1
1 û3 (64)

where

û1 =
[

u3,1 u3,2

u4,1 u4,2

]
, û2 =

[
u3,3 u3,4

u4,3 u4,4

]
, û3 =

[
u3,5

u4,5

]
. (65)

By combining (55), (56) and (65), the transfer matrix of acceleration hinge j can be
obtained as

U j =
⎡
⎣

O6×6 −û
−1
1 û2 −û

−1
1 û3

O6×6 I 6 O6×1

O1×6 O1×6 1

⎤
⎦

j

. (66)
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