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Abstract In this paper an innovative Hardware In the Loop (HIL) architecture to test brak-
ing onboard subsystems on full-scale roller-rigs is described. The new approach allows re-
producing on the roller-rig a generic wheel–rail adhesion pattern (especially degraded ad-
hesion conditions) without sliding and, consequently, wear between the roller and wheel
surfaces. The presented strategy is also adopted by the innovative full-scale roller-rig of the
Railway Research and Approval Center of Firenze-Osmannoro (Italy); the new roller-rig has
been built by Trenitalia S.p.A. and is owned by SIMPRO S.p.A. At this initial phase of the
research activity, to effectively validate the proposed approach, a complete multibody model
of the HIL system has been developed. The numerical model is based on the real character-
istics of the components provided by Trenitalia and makes use of an innovative wheel–roller
contact model. The results coming from the simulation model have been compared to the
experimental data provided by Trenitalia and relative to on-track tests performed in Velim,
Czech Republic, with a UIC-Z1 coach equipped with a fully-working WSP system. The
preliminary validation performed with the HIL model highlights the good performance of
the HIL strategy in reproducing on the roller-rig the complex interaction between degraded
adhesion conditions and railway vehicle dynamics during the braking manoeuvre.

Keywords Full-scale roller-rig · Wheel–roller contact · Wheel–rail contact · Hardware In
the Loop · Railway vehicles

B E. Meli
enrico.meli@unifi.it

R. Conti
roberto.conti@unifi.it

A. Ridolfi
a.ridolfi@unifi.it

1 Department of Industrial Engineering, University of Florence, Via di S.Marta n. 3, 50139 Firenze,
Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11044-016-9507-x&domain=pdf
mailto:enrico.meli@unifi.it
mailto:roberto.conti@unifi.it
mailto:a.ridolfi@unifi.it


70 R. Conti et al.

1 Introduction

Nowadays the longitudinal train dynamics is almost totally controlled by onboard subsys-
tems, such as Wheel Slide Protection (WSP) braking devices. The study and the develop-
ment of these systems are fundamental for the vehicle safety, especially at high speeds and
under degraded adhesion conditions. On-track tests are currently quite expensive in terms
of infrastructure and vehicle management. Consequently, to reduce these costs, full-scale
roller-rigs are traditionally employed to investigate the performances of braking subsystems
[1–5]. However, in the presence of degraded adhesion, the use of roller-rigs is still limited
to few applications (see, for example, full-scale roller-rigs for the study of the wear [6],
HIL systems for WSP tests [7] and full-scale roller-rigs for locomotive tests [7, 8]) because
the high slidings between rollers and wheelsets produce wear of the rolling surfaces. This
circumstance is very dangerous and not acceptable: the flange wear can lead to the vehicle
derailment while the tread wear can produce hunting instability of the vehicle. Furthermore,
the wheel flats may generate unsafe vibrations of the vehicle on the roller-rig. Finally, the
wear of the rolling surfaces deeply affects the maintenance costs: the rollers have to be
frequently turned or substituted.

On the other hand, few applications making use of scaled roller-rigs can be found in
the literature. In this regard, interesting HIL systems to study railway traction and braking
onboard subsystems have been developed during the last years by the Polytechnic of Turin
and Central Queensland University [9–12].

In this work an innovative Hardware In the Loop (HIL) architecture to test braking on-
board subsystems on full-scale roller-rigs is presented by the authors. The new strategy
allows reproducing on the roller-rig a generic wheel–rail adhesion pattern and, in particu-
lar, degraded adhesion conditions (characterised by adhesion coefficient values equal or less
than 0.10). More in detail, the new control architecture performs a simulation of mechanical
impedance: the roller motors are controlled to recreate, on the wheelsets, the same angu-
lar velocities, applied torques and tangential efforts calculated by the model of a reference
virtual railway vehicle moving on the real track under degraded adhesion conditions. The
new architecture allows the achievement of this goal by only controlling the roller motors
and without having sliding between wheelsets and rollers (and consequently without wear
of the contact surfaces). In fact, since the real adhesion coefficient between the rollers and
wheelsets surfaces is far higher than the simulated one (greater than 0.40), negligible sliding
occurs and almost pure rolling conditions are always present between them.

At this initial phase of the research activity, the described strategy has been completely
simulated in the Matlab-Simulink environment [13] through an accurate multibody model
of the whole HIL architecture. The system model comprises an innovative contact model to
describe the wheel–roller interaction and is developed according to the real characteristics
provided by Trenitalia. The proposed approach has been preliminarily validated through a
comparison with the experimental data provided by Trenitalia and relative to on-track tests
performed on a straight railway track (in Velim, Czech Republic) with a UIC-Z1 coach
equipped with a fully-working WSP system [14–16]. This initial validation carried out
through the HIL model highlights the good performance of the HIL strategy in reproducing
on the roller-rig the complex interaction between degraded adhesion conditions and railway
vehicle dynamics during the braking manoeuvre.
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Fig. 1 General architecture of the HIL system

2 General architecture of the HIL system

In this section the architecture of the Firenze-Osmannoro HIL system is briefly described.
Figure 1 schematically shows the main parts of the architecture (both for the hardware and
the software components). The models used to simulate all these parts will be better ex-
plained in Sect. 3.

The architecture comprises four main elements:
1. The test-rig (hardware) composed of two main parts: the UIC-Z1 railway vehicle
(equipped with the WSP system) [14, 15] and the Firenze-Osmannoro roller-rig (with the
innovative actuation system developed in collaboration with SICME and based on IPM syn-
chronous motor with high performance) [17, 18]. The inputs of the test-rig are the roller
control torques while the outputs are the longitudinal reaction forces measured on the roller
supports and the measured angular velocities of the rollers;
2. The virtual railway vehicle model (software) representing the model used to simulate the
vehicle behaviour on the rails under different adhesion conditions and designed for a real-
time implementation. This 2D multibody model simulates the longitudinal dynamics of the
vehicle while an innovative 2D adhesion model [19] permits an accurate reproduction of the
real behaviour of the adhesion coefficient during braking phases under degraded adhesion
conditions. The inputs are the estimated torques on the wheelsets and the outputs are the
simulated wheelset angular velocities and the tangential contact forces on the wheelsets;
3. The controllers (software) reproduce on the roller-rig the same dynamical behaviour of
the virtual train model (through the roller control torques) in terms of wheelset angular
velocities, applied torques and, consequently, tangential forces. Due to the HIL system non-
linearities, a sliding mode approach has been adopted for the controllers [20, 21];
4. The torque estimators (software) – the data measured by the sensors installed on the
roller-rig are only the roller angular velocities and the longitudinal reaction forces on the
roller supports. No sensors will be placed on the vehicle to speed up the set up process.
Starting from these quantities, this block estimates the torques applied on the wheelsets.
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Fig. 2 Interactions among the models of the various HIL architecture components

Fig. 3 The UIC-Z1 wagon

3 Modelling of the Firenze-Osmannoro HIL system

In this section the models of the HIL system presented in the previous section (both hardware
and software parts) and of all the components of the HIL architecture will be explained in
detail. The flow of the data among the model parts is shown in Fig. 2.

3.1 The test-rig model

The inputs of the whole test-rig model are the 8 roller control torques ul , ur (left and right)
evaluated by the controllers to reproduce on the test-rig the same dynamical behaviour of
the virtual railway model. The outputs are the 8 roller angular velocities ωl

r , ωr
r and the

longitudinal reaction forces T l
mis, T r

mis measured on the roller supports. The test-rig model is
composed of four parts (Fig. 2):

3.1.1 The vehicle model

The considered railway vehicle is the UIC-Z1 wagon (illustrated in Figs. 3 and 4); its geo-
metrical and physical characteristics are provided by Trenitalia S.p.A. [14].
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Fig. 4 Multibody vehicle model

Fig. 5 Primary and secondary
suspensions

Table 1 Main characteristics of
the railway vehicle Parameter Units Value

Total mass [kg] ≈43000

Wheel arrangement – 2–2

Bogie wheelbase [m] 2.56

Bogie distance [m] 19

Wheel diameter [m] 0.89

Primary suspensions frequency [Hz] ≈4.5

Secondary suspensions frequency [Hz] ≈0.8

Table 2 Inertial properties of
the rigid bodies Body Mass [kg] Ixx [kg m2] Iyy [kg m2] Izz [kg m2]

Carbody ≈29000 76400 1494400 1467160

Bogie ≈3000 2400 1900 4000

Wheelset ≈1300 800 160 800

Axlebox ≈200 3 12 12

The wagon is composed of one carbody, two bogie frames, eight axleboxes and four
wheelsets. The primary suspension, including springs, dampers and axlebox bushings, con-
nects the bogie frame to the four axleboxes while the secondary suspension, including
springs, dampers, lateral bump-stops, anti-roll bar and traction rod, connects the carbody
to the bogie frames (see Fig. 5). In Table 1, the main properties of the railway vehicle are
given. The multibody vehicle model takes into account all the degrees of freedom (DOFs)
of the system bodies (one carbody, two bogie frames, eight axleboxes, and four wheelsets).
Considering the kinematic constraints that link the axleboxes and the wheelsets (cylindrical
1DOF joints) and without including the wheel–rail contacts, the whole system has 50 DOFs.
The main inertial properties of the bodies are summarised in Table 2 [14].

Both the primary suspension (springs, dampers and axlebox bushings) and the secondary
suspension (springs, dampers, lateral bump-stops, anti-roll bar and traction rod) have been
modelled through 3D visco-elastic force elements able to describe all the main nonlinearities
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Table 3 Main linear elastic characteristics of the two stage suspensions

Element Transl.
Stiff. x
[N/m]

Transl.
Stiff. y
[N/m]

Transl.
Stiff. z
[N/m]

Rotat.
Stiff. x
[N m/rad]

Rotat.
Stiff. y
[N m/rad]

Rotat.
Stiff. z
[N m/rad]

Springs of the
primary suspension

844000 844000 790000 10700 10700 0

Springs of the
secondary suspension

124000 124000 340000 0 0 0

Axlebox bushing 4 · 107 6.5 · 106 4 · 107 45000 9700 45000

Anti-roll bar 0 0 0 2.5 · 106 0 0

of the system (see Fig. 5). In Table 3, the characteristics of the main linear elastic force ele-
ments of both the suspension stages are reported [14]. The nonlinear elastic force elements
have been modelled through nonlinear functions that correlate the displacements and the
relative velocities of the force elements connection points to the elastic and damping forces
exchanged by the bodies. The inputs of the model are the 4 wheelset torques Cs modulated
by the on board WSP and the contact forces calculated by the contact model, while the
outputs are the kinematic wheelset variables transmitted to the contact model, the 4 original
torques C (without the on board WSP modulation) and the 4 wheelset angular velocities ωw .
These last two outputs are not accessible by the HIL system.

3.1.2 The Wheel Slide Protection system model

The WSP device installed on the UIC-Z1 coach [15, 22] allows the control of the torques ap-
plied to the wheelsets, to prevent macro-sliding during the braking phase. In Fig. 6, the logi-
cal scheme and an image of the WSP device are shown. The inputs are the braking torques C

and the wheelset velocities ωw , while the outputs are the modulated braking torques Cs . The
WSP system working principle can be divided into three different tasks: the evaluation of the
reference vehicle velocity Vref and acceleration aref based on the wheelset angular velocities
ωw and accelerations ω̇w ; the computation of the logical sliding state stateWSP (equal to 1 if
sliding occurs and 0 otherwise) and the consequent torque modulation, through a speed and
an accelerometric criterion and by means of a suitable logical table [22]; the periodic brak-
ing release to bring back the perceived adhesion coefficient to the original value (often used
when degraded adhesion conditions are very persistent and the WSP logic tends to drift).

3.1.3 The roller-rig model

The 3D multibody model of the roller-rig (see Fig. 7 and Table 4) consists of 8 indepen-
dent rollers with a particular roller profile able to exactly reproduce the UIC60 rail pattern
with different laying angles αp [17]. The railway vehicle is axially constrained on the rollers
using two axial links (front and rear) modelled by means of 3D force elements with linear
stiffness and damping. The inputs of the test-rig model are the 8 torques ul , ur evaluated
by the controllers and the contact forces calculated by the contact model; the outputs are
the roller angular velocities ωl

r , ωr
r , the longitudinal reaction forces T l

mis, T r
mis measured on

the roller supports and the kinematic wheelset variables transmitted to the contact model.
The roller-rig actuation system consists of 8 synchronous motors, especially designed and
developed in cooperation with SICME [18] for this kind of application. The HIL archi-
tecture includes a direct-drive connection between the roller and the electrical machine. The
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Fig. 6 WSP device and its logical scheme

Fig. 7 The right side of roller-rig
system with the synchronous
motors and the rollers placed in
the semi-anechoic room of the
Research and Approval Center of
Firenze-Osmannoro

synchronous motors have high efficiency associated with high torque density and flux weak-
ening capability. Furthermore, to reach the dynamical and robustness performances required
by the railway full-scale roller-rig, the motors are designed with a multilayer-rotor charac-
terised by a high saliency ratio ξ and Interior Permanent Magnets (IPM). The IPM motors
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Table 4 Main characteristics of
the roller-rig system and of the
wheelsets

Parameter Units Value

Roller radius rr m 0.725

Roller mass mr kg 2980

Roller inertia Jr kg m2 705

Wheelset radius rw m 0.445

Wheelset mass mw kg 1300

Wheelset inertia Jw kg m2 160

are controlled in real-time through vector control techniques; more particularly, the vector
control is a torque-controlled drive system in which the controller follows a desired torque
[18, 23–26]. The main sensors installed on the roller-rig are the absolute encoders and the
3-axial load cells on the roller supports. These sensors are employed both in the torque esti-
mators and in the controllers and measure, respectively, the roller angular velocities ωl

r , ωr
r

and the longitudinal reaction forces T l
mis, T r

mis on the roller supports.

3.1.4 The wheel–roller contact model

The 3D contact model evaluates the contact forces Nl/r
c , Tl/r

c for all the 8 wheel–roller pairs
starting from the kinematic variables of the wheelsets and of the rollers: their positions Gw ,
Gl/r

r , orientations φw , φ
l/r
r , velocities vw , vl/r

r and angular velocities ωw , ω
l/r
r . The wheel–

roller contact model is an improvement of previous models developed for the wheel–rail
pair and detailed in [27–29]. The contact model can be logically divided into two parts: the
contact point detection between two revolute surfaces and the calculation of the normal and
tangential contact forces.

There are different strategies in the literature [30, 31] to find the contact points. The one
adopted in the roller-rig simulator is based on semi-analytical procedures and satisfies the
following requirements:

– The contact detection algorithm between revolute surfaces is fully 3D and does not intro-
duce simplifying assumptions on the problem geometry and kinematics;

– Generic wheel–roller profiles;
– Accurate management of the multiple contact points without limits on the point number;
– High computational efficiency needed for the online implementation within multibody

models.

The research of the contact points is based on the consideration that the contact points
between the wheel surface and the roller surface are located where the distance between
the two surfaces assumes a stationary point. The following conditions allow finding these
points:

1. Parallelism Condition between the normal unitary vector to the roller surface and the
normal unitary vector to the wheel surface;

2. Parallelism Condition between the normal unitary vector to the roller surface and the
vector representing the distance dr between the generic point of the wheel and the rail
surfaces.

Going through the details of the procedure, a fixed reference system Orxryrzr is defined,
with its origin located on the roller rotation axis and the axis yr parallel to the rotation axis
(Fig. 8). The local reference system Owxwywzw is defined on the wheelset, with the axis yw
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Fig. 8 Fixed reference system
and local reference system

coincident with the rotation axis of the wheelset. The origin Ow coincides with the common
point between the nominal rolling plane and the wheelset axis.

The vector Or
w is the position of the local references system with respect to the fixed one

and [R] is the rotation matrix that represents the relative orientations. In the local system,
the axle can be described by a revolution surface. The generative function is indicated with
w(yw).

In the local reference frame, the position of a generic point of the wheel surface is de-
scribed by the following analytic expression:

pw
w(xw, yw) =

[
xw yw −

√
w(yw)2 − x2

w

]T

, (1)

while in the fixed reference system the same position is given by

pr
w(xw, yw) = Or

w + [R]pw
w(xw, yw). (2)

Similarly, the roller can be described by a revolution surface with respect to the fixed refer-
ence system (the generative function is indicated by r(yr), see Fig. 8). The main difference
with respect to the method presented in [27–29] is obviously the geometry of the contact
bodies. Since the semi-analytic methods are based on a preliminary algebraic simplification
of the above introduced geometrical conditions and since the contact geometries have nec-
essarily different mathematical representations, the method presented in [27–29] has to be
properly modified. The position of a generic point of the roller surface has the following
analytic expression:

pr
r (xr , yr ) =

[
xr yr +

√
r(yr)

2 − x2
r

]T

. (3)

The outgoing normal unit vector to the wheel surface in the local system is defined by
nw

w(pw
w) while, in the fixed reference system, it will be

nr
w

(
pr

w

) = [R]nw
w

(
pw

w

)
. (4)
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In the fixed reference system, the outgoing normal unitary vector to the rail surface is defined
as nr

r (p
r
r ). The complete expressions of the normal unit vectors are:

nw
w

(
pw

w

) = −( ∂pw
w

∂xw
× ∂pw

w

∂yw

)
∥∥ ∂pw

w

∂xw
× ∂pw

w

∂yw

∥∥ , nr
r

(
pr

r

) =
( ∂pr

r

∂xr
× ∂pr

r

∂yr

)
∥∥ ∂pr

r

∂xr
× ∂pr

r

∂yr

∥∥ . (5)

The distance vector between two generic points belonging to the wheel surface and the roller
surface is defined as

dr (xw, yw, xr , yr) = pr
w(xw, yw) − pr

r (xr , yr ); (6)

as can be seen, the distance vector is a function of four parameters.
The Parallelism Conditions can be formally written as follows:

nr
r

(
pr

r

) ‖ nr
w

(
pr

w

) → nr
r

(
pr

r

) × [R]nw
w

(
pw

w

) = 0, (7)

nr
r

(
pr

r

) ‖ dr → nr
r

(
pr

r

) × [R]dr = 0. (8)

These conditions could be replaced by the Orthogonality Condition between the tangent
plane to the roller surface in pr

r and dr (xw, yw, xr , yr) and the Orthogonality Condition be-
tween the tangent plane to the wheel surface in pr

w and dr (xw, yw, xr , yr ). In this case, the
formulation turns out to be analytically more complicated than the previous one, and there-
fore it has not been employed.

The conditions defined in Eqs. (7)–(8) are an algebraic system of 6 equations (of which
only 4 are independent; for example, the first two components of each vectorial equation)
in 4 unknowns. However, as will be shown in the following, the original 4D system can be
analytically reduced to one single scalar equation F(yw) = 0 (that, at this point, can be easily
solved numerically) by expressing the variables xw , xr , yr as a function of yw . The reduction
of the algebraic problem dimension (from 4D to 1D) represents the most innovative feature
of the algorithm; the main benefits of the new approach are:

– High computational efficiency,
– Easy management of the multiple solutions, and also
– Simplified algorithm (like the grid method) can be numerically efficient if applied to the

scalar problem.

The solutions of Eqs. (7)–(8) have to be checked in order to avoid the physically meaningless
solutions. The first condition to check is the indentation condition. The ith solution xC

wi, yC
wi,

xC
ri , yC

ri (pr,C
wi , pr,C

ri in terms of contact points) can be accepted only if the indentation between
the wheel surface and the roller surface is negative (with respect to the adopted convection):

pni = dr,C
i · nr

r

(
pr,C

ri

) ≤ 0 (9)

where nr
r (p

r,C
ri ) is the outgoing normal unitary vector to the roller surface in the candidate

solution and dr,C
i is the distance between pr,C

wi and pr,C
ri . Otherwise the solution must be

rejected.
The ith solution has to satisfy also the convexity condition. This condition constrains the

curvature radii of the roller profile to be smaller than the curvature radii of the wheel profile;
see Fig. 9. This condition can be expressed by the following relations:

kC
1ri + kC

1wi > 0, kC
2ri + kC

2wi > 0 (10)
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Fig. 9 Curvature condition

where kC
1ri, kC

1wi, kC
2ri, kC

2ri are the normal curvatures of the surfaces in the longitudinal and
lateral directions calculated in the candidate solution. The complete expression of surface
curvatures is described in [27].

Finally, the solutions with algebraic multiplicity larger than one have to be reduced to a
unique solution, rejecting the physically meaningless solutions. As said before, the 4D prob-
lem can be reduced to a 1D scalar problem expressing the variables xw , xr , yr as functions
of yw . In order to determine xw as a function of yw , the quantity xr√

r(yr )2−x2
r

can be expressed

as a function of xw , yw both from the second components of Eq. (7) and from the second
components of Eq. (8): xr√

r(yr )2−x2
r

= f1(xw, yw), xr√
r(yr )2−x2

r

= f2(xw, yw). Comparing the

two expressions (f1(xw, yw) = f2(xw, yw)), the following equation can be found:

B

√
A2 − x2

w = Cxw − D, (11)

where

A = w(yw), (12)

B = −Gxr33 − ywr12r33 + w(yw)w′(yw)r13r32

+ Gzr13 + ywr13r32 − w(yw)w′(yw)r12r33, (13)

C = w(yw)w′(yw)r11r32 + Gzr11 + ywr11r32, (14)

D = −Gxw(yw)w′(yw)r32 + Gzw(yw)w′(yw)r12, (15)

rjk is the generic element of the rotation matrix [R], w′ is the wheel profile derivative and
Gx , Gy , Gz are the components of Or

w . The solutions of Eq. (11) define xw as a function of
yw (there are two values of xw for each value of yw):

xw1,2(yw) = CD ± √
C2D2 − (C2 + A2)(D2 − A2B2)

C2 + A2
. (16)

At this point, the quantity xr√
r(yr )2−x2

r

= f1(xw1,2(yw), yw), which is only a function of yw ,

can be related to the quantity in r(yr )√
r(yr )2−x2

r

because:

r(yr )√
r(yr )

2 − x2
r

=
√√√√√1 +

(
xr√

r(yr )
2 − x2

r

)2

; (17)

therefore, also r(yr )√
r(yr )

2−x2
r

= f3(yw) will be a function of yw only. Subsequently, to determine

yr as a function of yw , Eq. (17) can be inserted into the first component of the vectorial
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equation (7):

r ′(yr )1,2 = −f3(yw)−1 ·
xw1,2(yw)r21 − w(yw)w′(yw)r22 − r23

√
w(yw)2 − xw1,2(yw)2

−w(yw)w′(yw)r32 − r33

√
w(yw)2 − xw1,2(yw)2

.

(18)
Usually, the function r ′(yr) has a monotonically descending trend; therefore, it can be nu-
merically inverted in order to obtain yr1,2(yw); if r ′(yr) is not monotonically descending, the
function can still be inverted but a further multiplication of the solution number is needed.

From the second component of Eq. (7) and Eq. (17), xr1,2(yw) can be calculated as a
function of yw :

xr1,2(yw) = r(yr1,2(yw))

f3(yw)
·
Gx + xw1,2(yw)r11 + ywr12 − r13

√
w(yw)2 − xw1,2(yw)2

Gz + ywr32 − r33

√
w(yw)2 − xw1,2(yw)2

.

(19)
Finally, replacing the relations xw1,2(yw), yr1,2(yw), xr1,2(yw) in the first component of
Eq. (8), the following scalar equation can be obtained where the unique unknown is yw:

F1,2(yw) = − r ′(yr 1,2)r(yr 1,2)
(
Gz + ywr32 − r33

√
w(yw)2 − x2

w1,2 −
√

r(yr)
2 − x2

r

)

−
√

r(yr 1,2)
2 − x2

r

(
Gx + xw1,2r11 + ywr12 − r13

√
w(yw)2 − x2

w1,2 − yr

)
= 0.

(20)

Replacing the solutions yC
wi of the scalar equations F1(yw) = 0 and F2(yw) = 0 in Eqs. (16),

(18) and (19), the values of the other variables can be obtained:
(
xC

wi, y
C
wi, x

C
ri , y

C
ri

)
, i = 1,2, . . . , n, (21)

and consequently, the positions of the corresponding contact points on the wheel and on the
roller:

pr,C
wi = pr

w

(
xC

wi, y
C
wi

)
,pr,C

ri = pr
r

(
xC

ri , y
C
ri

)
, i = 1,2, . . . , n. (22)

Since Eq. (11) has irrational terms, the following analytical conditions have to be satisfied:

– The solutions xC
wi, yC

wi, xC
ri , yC

ri must be real numbers;
– The solutions must not generate complex terms by means of the radicals;
– The solutions of Eq. (20) have to be effective solutions of Eqs. (7) and (8) (they might not

be valid due to removal of the radicals by squaring).

The second part of the contact model is the adhesion model. For each contact point calcu-
lated by the previous method, it is necessary to compute the forces and the torque applied
on the wheelset. The procedure used in this work consists of two different steps: the normal
problem and the tangential problem. The normal contact problem has been solved accord-
ing to the Hertz theory while the tangential contact forces and the spin moment have been
calculated by means of the Kalker linear theory [32, 33].

In particular, the Hertz theory allows evaluating the normal contact force in the contact
point as follows:

N = kh|pn|γ − kvVn, (23)

where
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– Vsl,n is the normal component of the penetration velocity Vn = Vr
w ·nr

r (P
r,C
r ) and Vr

w is the
velocity of the contact point rigidly connected to the wheel (referred to the roller system);

– pn is the penetration between roller and wheel (see Eq. (9));
– kh is the Hertz constant (depending on the materials, the contact area dimensions and the

surface curvatures);
– kv is the damping contact constant.

Hertz theory allows also evaluating the ellipse semi-axes a and b that are functions of the
curvatures and of the material properties. According to the linear Kalker theory, the longi-
tudinal component of the tangential force T ∗

x , the lateral component of the tangential force
T ∗

y and the spin moment Msp can be evaluated as follows:

T ∗
x = −f11εx, T ∗

y = −f22εy − f23εsp, Msp = f23 − f33εsp, (24)

with

f11 = abGC11, f22 = abGC22, f23 = ab3/2GC23, f33 = ab2GC33, (25)

where

– G is the shear modulus;
– Cij are the Kalker coefficient tabulated with respect to the Poisson’s coefficient and to the

ratio a/b;
– a, b are the ellipse semi-axes;
– εx , εy , εsp represent the virtual creepages εx = (Vr

w · ir )/vow, εy = (Vr
w · tr )/vow and εsp =

(ωr
w · nr )/vow where vow is the magnitude of the wheelset centre of mass velocity, and ωsl

is the wheelset angular velocity;
– ir , tr and nr are the three fundamental unitary vectors (longitudinal, transversal and nor-

mal) of the wheel surface.

The above description is referred to as the linear theory of Kalker that is applicable only

in case of limited sliding; therefore, the total creep force T ∗ =
√

(T ∗
x )2 + (T ∗

y )2 has to be

saturated so that the resultant force does not exceed the pure slip value depending on the ad-
hesion coefficient, TS = μN . If the creep force saturation coefficient ξ is defined as follows:

ξ = TS

T ∗

[(
T ∗

TS

)
− 1

3

(
T ∗

TS

)2

+ 1

27

(
T ∗

TS

)3]
if T ∗ ≤ 3TS, (26a)

ξ = TS

T ∗ if T ∗ > 3TS, (26b)

the saturated creep forces in longitudinal and lateral directions are given by:

Tx = ξT ∗
x , (27a)

Ty = ξT ∗
y . (27b)

3.2 The virtual railway vehicle model

The virtual railway vehicle model simulates the dynamical behaviour of the railway vehicle
during a braking phase under degraded adhesion conditions. The model, designed for a real-
time implementation, is composed of two parts: the 2D vehicle model and the 2D adhesion
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Fig. 10 The virtual railway
vehicle model

model. The inputs are the 4 estimated torques Ĉs to be applied to the wheelsets while the
outputs are the 4 simulated tangential contact forces Tsim and the 4 simulated wheel angular
velocities ωws.

3.2.1 The virtual vehicle model

The 2D vehicle model of the considered railway vehicle (UIC-Z1 coach) is a simplified
2D multibody model of the longitudinal train dynamics (only 3 DOFs for each body are
taken into account) [14]. The model (see Fig. 10) consists of a carbody, two bogies and
four wheelsets, held by the primary and secondary suspensions. Starting from the estimated
torques Ĉs , the model evaluates the kinematic variables of the 4 wheelsets vws, ωws and the
4 normal contact forces Ncs to be passed to the adhesion model and receives the 4 tangential
contact forces Tsim.

3.2.2 The adhesion model

The adhesion model has been especially developed to describe degraded adhesion conditions
[19, 34–37] and calculates, for all the 4 wheelset–rail pairs, the tangential contact forces Tsim

starting from the wheelset kinematic variables vws, ωws and the normal contact forces Ncs

(see Fig. 11).
The main phenomena characterising the degraded adhesion are the large sliding occur-

ring at the contact interface and, consequently, the high energy dissipation. Such a dissipa-
tion causes a cleaning effect on the contact surfaces, and finally an adhesion recovery due
to the removal of the external contaminants. When the specific dissipated energy Wsp is low,
the cleaning effect is almost absent, the contaminant level h does not change, and the adhe-
sion coefficient f is equal to its original value fd in degraded adhesion conditions fd . As
the energy Wsp increases, the cleaning effect increases too, the contaminant level h becomes
thinner, and the adhesion coefficient f rises. In the end, for large values of Wsp, all the con-
taminant is removed (h is null) and the adhesion coefficient f reaches its maximum value
fr ; the adhesion recovery due to the removal of external contaminants is now completed.
At the same time, if the energy dissipation begins to decrease, due to a, for example, lower
sliding, the reverse process occurs (see Fig. 11).

Since the contaminant level h and its characteristics are usually totally unknown, it is
useful to try to experimentally correlate the adhesion coefficient f directly with the specific
dissipated energy Wsp:

Wsp = Tsime = f Ncsef = Tsim

Ncs
(28)
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Fig. 11 The adhesion model

where the creepage e is defined as

e = s

vws
= vws − rwωws

vws
, (29)

s is the sliding and rw is the wheel radius. This way the specific dissipated energy Wsp can
also be interpreted as the energy dissipated at the contact for unit of distance travelled by
the railway vehicle.

To reproduce the qualitative trend previously described and to allow the adhesion co-
efficient to vary between the extreme values fd and fr , the following expression for f is
proposed:

f = [
1 − λ(Wsp)

]
fd + λ(Wsp)fr (30)

where λ(Wsp) is an unknown transition function between degraded adhesion and adhesion
recovery while the adhesion levels fd , fr can be evaluated according to [31–33, 38–40] as
functions of e, Ncs and the track friction coefficients μd , μr (corresponding to degraded
adhesion and full adhesion recovery, respectively). The function λ(Wsp) has to be positive
and monotonously increasing; moreover, the following boundary conditions are supposed to
be verified: λ(0) = 0 and λ(+∞) = 1.

This way, the authors suppose that the transition between degraded adhesion and adhe-
sion recovery only depends on Wsp. This hypothesis is obviously only an approximation but,
as it will be clearer in the next sections, it describes the adhesion behaviour well. Initially, to
catch the physical essence of the problem without introducing a large number of unmanage-
able and unmeasurable parameters, the authors have chosen the following simple expression
for λ(Wsp):

λ(Wsp) = 1 − e−τWsp (31)

where τ is now the only unknown parameter to be tuned on the basis of the experimental
data (in this case τ = 1.9 · 10−4 m/J) [16, 19, 41, 42].
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In this research activity, the two main adhesion coefficients fd and fr (degraded adhesion
and adhesion recovery) have been calculated according to Polach [30–33, 38–40]:

fd = 2μd

π

[
kadεd

1 + (kadεd)2
+ arctan(ksdεd)

]
,

fr = 2μr

π

[
karεr

1 + (karεr)2
+ arctan(ksrεr)

] (32)

where

εd = 2

3

Cπa2b

μdNc

e, εr = 2

3

Cπa2b

μrNc

e. (33)

The quantities kad, ksd and kar, ksr are the Polach reduction factors (for degraded adhesion and
adhesion recovery, respectively) and μd , μr are the friction coefficients defined as follows:

μd =
(

μcd

Ad

− μcd

)
e−γd s + μcd, μr =

(
μcr

Ar

− μcr

)
e−γr s + μcr (34)

in which μcd, μcr are the kinetic friction coefficients, Ad , Ar are the ratios between the
kinetic friction coefficients and the static ones, and γd , γd are the friction decrease rates. The
Polach approach (see Eq. (32)) has been followed since it permits describing the decrease
of the adhesion coefficient with increasing creepage and better fitting the experimental data
(see Fig. 11).

Finally, it has to be noticed that the semi-axes a and b of the contact patch (see Eq. (33))
depend only on the material properties, the contact point position Pc on wheel and rail
(through the curvatures of the contact surfaces in the contact point) and the normal force
Nc , while the contact shear stiffness C (N/m3) is a function only of material properties, the
contact patch semi-axes a and b and the creepages. More particularly, the following relation
holds [30]:

C = 3G

8a

√(
c11

ex

e

)2

+
(

c22
ey

e

)2

(35)

where c11 = c11(σ, a/b) and c22 = c22(σ, a/b) are the Kalker coefficients.
In the end, the desired values of the adhesion coefficient f and of the tangential contact

force Tsim = f Ncs can be evaluated by solving the nonlinear algebraic Eq. (30) in which the
explicit expression of Wsp has been inserted (see Eq. (28)):

f = 
(f, t) (36)

where 
 indicates the generic functional dependence. Due to the simplicity of the transition
function λ(Wsp), the solution can be easily obtained through standard nonlinear solvers [43].

3.3 The controllers

The controllers have to reproduce on the roller-rig the dynamical behaviour of the virtual
railway vehicle under degraded adhesion conditions in terms of angular velocities ωw , ap-
plied torques Cs and, consequently, tangential contact forces T

l/r
c . The inputs of the con-

troller are the simulated tangential forces Tsim, the simulated wheelset angular velocities
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ωws, the estimated wheel angular velocities ω̂w , the estimated motor torques ĈS and the
roller angular velocities ω

l/r
r . The outputs are the 8 roller control torques ul/r .

The controller layout consists of 8 independent controllers (one for each roller) and
makes use of a sliding mode strategy based on the dynamical equations of the roller rig;
this way, it is possible to reduce the disturbance effects due to the system nonlinearities and
the parameter uncertainties [20, 21]. The total control torques ul/r are defined as

ul/r = u
l/r
cont + u

l/r

disc + u
l/r

diff (37)

where the continuous control part u
l/r
cont is built starting from the approximated 1D models of

wheelset and rollers and by supposing the slidings between the contact surfaces negligible
(on the roller-rig the adhesion conditions are good, with a friction coefficient μroll equal
to 0.3):

Cs = Jwω̇w − T l
c rw − T r

c rw,

ul = Jr ω̇
l
r − T l

c rw, ur = Jr ω̇
r
r − T r

c rw,

ωl
r = − rw

rr

ωw, ω̇l
r = − rw

rr

ω̇w,

ωr
r = − rw

rr

ωw, ω̇r
r = − rw

rr

ω̇w

(38)

in which rr , rw are the roller and wheelset radii and Jr , Jw are their inertias. By removing
T l

c and T r
c in Eq. (38), the following relation is obtained:

Cs − rw

rr

(
ul + ur

) = Jtotω̇wJtot = Jw + 2

(
rw

rr

)2

Jr (39)

where Jtot is the total inertia of the rollers and the wheelset reduced to the wheelset rotation
axis. Subsequently, the desired wheelset dynamics is considered as

Ĉs = Jwω̇ws + Tsimrw, (40)

together with the sliding surface S = ωws − ωw = 0 and its time derivative Ṡ = ω̇ws − ω̇w .
If the torque estimation Ĉs � Cs is accurate enough, the sliding condition Ṡ = 0 can be
obtained, starting from Eqs. (39) and (40), by taking

u = rr

rw

[(
1 − Jtot

Js

)
Ĉs + Jtot

Js

Tsimrw

]
,

ul = u

2
, ur = u

2
.

(41)

On the other hand, u
l/r

disc is the discontinuous control part related to the rejection of the
disturbancies:

ul
disc = ur

disc = k�(ωws − ω̂w). (42)

The discontinuous controls u
l/r

disc are characterised by the gain k and the function � shown
in Fig. 12 (the dead zone amplitude δ and the slope σ are control parameters to be tuned).

Finally, u
l/r

diff is an auxiliary control part aimed at synchronising the roller angular veloci-
ties ωl

r , ωr
r :

ul
diff = −kdℵ

(
ωl

r − ωr
r

)
, ur

diff = kdℵ
(
ωl

r − ωr
r

)
. (43)
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Fig. 12 Discontinuous and auxiliary control characteristics

The function � is reported in Fig. 12, while the parameters kd , δd and σd have to be tuned.
The controller performances will be evaluated by means of the angular velocity error eω =
ωws −ωw and the torque estimation error ec = Ĉs −Cs . Limited values of the previous errors
eω , ec assure a good estimation of the tangential contact forces T

l/r
c .

3.4 The torque estimators

The estimators aim at evaluating the wheelset angular velocities ω̂w and the torques applied
to the wheelset Ĉs starting from the roller angular velocities ω

l/r
r and the longitudinal reac-

tion forces T
l/r

mis on the roller supports. Since the slidings between wheelset and rollers can
be neglected, the following estimations approximately hold:

ω̂w = − rr

rw

ωl
r + ωr

r

2
, ˆ̇ωw = − rr

rw

ω̇l
r + ω̇r

r

2
, T̂ l/r

c = T
l/r

mis . (44)

Of course, the derivative operation d
dt

has to be robust, taking into account the numerical

noise affecting ω
l/r
r . At this point, to estimate the motor torque applied to the wheelset, the

estimator employs the simplified dynamical model of the wheelset:

Ĉs = Jw
ˆ̇ωw − T̂ l

c rw − T̂ r
c rw. (45)

It is worth noting that, in this kind of applications, the estimators have to be necessarily
simple because they are thought for a real-time implementation and, at the same time, the
physical characteristics of the railway vehicle on the roller-rig are generally unknown.

3.5 The numerical implementation of the model

Concerning computational load and memory consumption, the only parts of the HIL archi-
tecture (see Fig. 1) that have to run in real-time are the virtual railway vehicle model, the
controllers and the torque estimators. The numerical models related to these parts are quite
simple and fast, and allow a good compromise between accuracy and efficiency. During
the preliminary tests of the proposed HIL system, the efficiency of the previous models en-
abled the use of fixed step numerical integrators (in particular, the Dormand–Prince ODE5
integrator [44]). The main features of the chosen integrator are summarised in Table 5.



A full-scale roller-rig for railway vehicles 87

Table 5 Characteristics of the
numerical integrator Integrator Implemented algorithm Order Step [s]

ODE5 Dormand–Prince fixed, 5th order fixed, 10−4

The choice of the integration step is mainly due to the stiffness of the contact and adhe-
sion models inside the virtual railway vehicle model and to the delays characterising con-
trollers and actuators. Such an integrator, up to now, turned out to be quite effective and
robust in facing the problems caused by the stiffness, delays and the noise typical of these
systems.

4 Experimental data

The HIL model performance have been validated by means of the comparison with the
experimental data, provided by Trenitalia S.p.A. [16] and coming from on-track braking
tests carried out in Velim (Czech Republic) with the coach UIC-Z1 [14]. The considered
vehicle is equipped with a fully-working WSP system [15]. These experimental tests have
been carried out on a straight railway track. The wheel profile is the ORE S1002 (with a
wheelset width dw equal to 1.5 m) while the rail profile is the UIC60 (with a gauge dr equal
to 1.435 m and a laying angle αp equal to 1/20 rad).

The main characteristics of the braking test, considered as benchmark in this paper,
are summarised in Table 6 (comprising the main wheel, rail and contact parameters; see
Sect. 3.2.2) [31–33, 38–40, 45]. The value of the kinetic friction coefficient under degraded
adhesion conditions μcd depends on the test performed on the track; the degraded adhesion
conditions are usually reproduced using a watery solution containing surface-active agents,
e.g. a solution sprinkled by a specially provided nozzle directly on the wheel–rail interface
on the first wheelset in the running direction. The surface-active agent concentration in the
solution varies according to the type of test and the desired friction level. The value of the ki-
netic friction coefficient under full adhesion recovery μcr corresponds to the classical kinetic
friction coefficient under dry conditions.

During the preliminary tests of the proposed HIL system, the physical parameters of the
adhesion model were identified through suitable tests performed on railway lines (see [14–
16, 41]) and on test-rigs (see [17]). In some cases, the first attempt values of the physical
parameters were initially taken from the literature (see [31, 38]).

First, the vehicle and wheelset velocities vsp, v
sp
wi = rwω

sp
wi (i = 1, . . . ,4) are taken into

account (see Fig. 13). Both the WSP intervention and the adhesion recovery in the second
part of the braking maneuver are clearly visible. Second, the slidings among the wheelsets
and the rails have been considered: s

sp
i = vsp − rwω

sp
wi = vsp − v

sp
wi (see Figs. 16, 17, 18, and

19). However, these physical quantities cannot be locally compared to each other because
of the complexity and the chaoticity of the system due to, for instance, the presence of
discontinuous and threshold elements like the WSP. To better evaluate the behaviour of s

sp
i

from a global point of view, it is useful to introduce the statistical means s̄
sp
i and the standard

deviations Δ
sp
i of the considered variables:

s̄
sp
i = 1

TF − TI

∫ TF

TI

s
sp
i dt,

Δ
sp
i =

√
1

TF − TI

∫ TF

TI

(
s

sp
i − s̄

sp
i

)2
dt

(46)
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Table 6 Main wheel, rail and contact parameters

Parameter Units Value

Initial train velocity V km/h 120

Nominal braking torque C N m 9500

Measurement sample time Δts s 0.01

Young modulus [Pa] 2.1 · 1011

Shear modulus [Pa] 8.0 · 1010

Poisson coefficient [N s/m] 0.3

Contact damping constant – 1.0 · 105

Polach reduction factor kad – 0.3

Polach reduction factor ksd – 0.1

Polach reduction factor kar – 1.0

Polach reduction factor ksr – 0.4

Kinetic friction coefficient (degraded adhesion) μcd – 0.06

Kinetic friction coefficient (adhesion recovery) μcr – 0.28

Friction ratio Ad – 0.40

Friction ratio Ar – 0.40

Friction decrease rate γd [s/m] 0.20

Friction decrease rate γr [s/m] 0.60

Fig. 13 Experimental vehicle
and wheelset velocities vsp,
v

sp
wi = rwω

sp
wi

where TI and TF are respectively the initial and final times of the simulation (see Ta-
ble 8).

5 The model validation

In this section, the whole HIL architecture model is simulated and validated. More precisely,
both the dynamical and the control performances of the system will be analysed. The main
control parameters are summarised in Table 7 (see Sect. 3.3) [44]. The simulated vehicle
and wheelset velocities vs , vwsi = rwωwsi are reported in Fig. 14. Figures 13 and 14 highlight
a good qualitative match between experimental and simulated data, both concerning the
WSP intervention and the adhesion recovery in the second part of the braking maneuver.
The direct comparison between the experimental and simulated train velocities vsp, vs is
illustrated in Fig. 15 and shows also a good quantitative agreement between the considered
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Table 7 Main control
parameters Parameter Units Value

Control gain k N m 2 · 104

Dead zone amplitude δ rad/s 0.05

Control slope σ N m s/rad 10

Control gain kd N m 2 · 104

Dead zone amplitude δd rad/s 0.05

Control slope σd N m s/rad 10

Fig. 14 Simulated vehicle and
wheelset velocities vs ,
vwsi = rwωwsi

Fig. 15 Experimental and
simulated train velocities vsp, vs

quantities. Subsequently, according to Sect. 4, the simulated slidings among wheelsets and
rails ssi = vs − rwωwsi = vs − vwsi are taken into account and compared to the experimental
ones s

sp
i (see Figs. 16, 17, 18, and 19).

The match between experimental and simulated slidings is qualitatively good. However,
since these physical quantities cannot be locally compared to each other because of the com-
plexity and the chaoticity of the system, the statistical means s̄si and the standard deviations
Δsi of the simulated slidings ssi are introduced (according to Eq. (46)) to better evaluate the
global behaviour of analysed variables. The comparison between experimental s̄

sp
i , Δ

sp
i and

simulated s̄si, Δsi statistical indices is reported in Table 8 and highlights also a good quan-
titative match between the studied quantities. The controller performances are evaluated in
terms of angular velocity error eω = ωws −ωw and the torque estimation error ec = Ĉs −Cs .
Small values of the errors eω , ec assure a good estimation of the tangential contact forces
T

l/r
c . The time history of the angular velocity error eω is plotted in Fig. 20 and shows the
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Fig. 16 Experimental and
simulated train slidings s

sp
1 , ss1

for the first wheelset

Fig. 17 Experimental and
simulated train slidings s

sp
2 , ss2

for the second wheelset

Fig. 18 Experimental and
simulated train slidings s

sp
3 , ss3

for the third wheelset

Fig. 19 Experimental and
simulated train slidings s

sp
4 , ss4

for the fourth wheelset

control capability of stabilising the system and rejecting the disturbancies produced by the
initial transient and the adhesion recovery in the second phase of the braking manoeuvre.
The torque estimation error ec = Ĉs −Cs and the real torques applied to the wheelset Cs are
respectively reported in Figs. 21 and 22. Also in this case, the controllers turn out to be effec-
tive in reproducing the real torques applied to the wheelsets of the vehicle. Finally, the result
analysis highlights the control capability of reproducing on the roller-rig a generic wheel–
rail degraded adhesion pattern calculated by the reference virtual railway vehicle model (in
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Table 8 Experimental s̄
sp
i

, Δ
sp
i

and simulated s̄si, Δsi statistical
indices

Wheelset s̄
sp
i[km/h]

s̄si
[km/h]

Δ
sp
i[km/h]

Δsi
[km/h]

Wheelset 1 13.08 12.82 6.45 6.56

Wheelset 2 13.36 12.88 7.25 6.95

Wheelset 3 13.09 13.32 5.92 5.70

Wheelset 4 13.52 13.59 6.22 5.82

Fig. 20 Angular velocity error
eω = ωws − ωw

Fig. 21 Torque estimation error
ec = Ĉs − Cs

terms of angular velocities ωw , applied torques on the wheelsets Cs and, consequently, in
terms of tangential efforts T

l/r
c exchanged between the wheelsets and the rails).

6 Conclusions and further developments

In this work, the authors described an innovative Hardware In the Loop (HIL) architecture
to test braking onboard subsystems on full-scale roller-rigs under good and degraded adhe-
sion conditions. The new strategy allows reproducing on the roller-rig a generic wheel–rail
adhesion pattern and, in particular, degraded adhesion conditions. An accurate multibody
model of the whole system has been developed, including an innovative contact model to de-
scribe the wheel–roller interaction. The proposed approach has been preliminarily validated
through the experimental data provided by Trenitalia and highlighted good performance in
reproducing on the roller-rig the complex interaction between degraded adhesion conditions
and railway vehicle dynamics during the braking manoeuvre.
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Fig. 22 Torque applied to the
wheelset Cs

Many further developments of this research activity are scheduled for the future and
will regard the implementation of the control strategy and the virtual vehicle model on the
Firenze-Osmannoro roller-rig. This way, firstly a further validation of the proposed HIL
approach will be possible through experimental tests performed directly on the roller-rig.
The new tests, currently on-going, will allow a deeper investigation of the degraded adhesion
model and an improvement of the model parameters identification. Subsequently, the whole
HIL system will be employed to design and test new on board subsystems such as WSP,
antiskid, etc.
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