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Abstract Constraints work in the simplest way among a variety of methods of modeling the
mechanical behaviors on the interface between bodies. The constraints within a persistent
point contact usually fall into the following three categories: geometry-dependent constraints
due to non-penetration limitation between the two rigid bodies; velocity- or force-dependent
constraints due to the vanishing of tangential velocity or sliding friction engaged in tan-
gential interaction. Though those constraints may be intuitively obtained for some simple
problems, they are essentially associated with the evolution of location parameters denot-
ing the temporal position of the contact point. Focusing on a multibody system subject to
a persistent point contact, we propose a uniform and programmable procedure to formu-
late the constraint equations. Kinematic analysis along the procedure can clearly expose the
dependence of the constraint equations on the location parameters, unveil the reason why
the velocity-dependent constraints may become nonholonomic, and exhibit the fulfillment
of the Appell–Chetaev’s rule naturally. Furthermore, we employ d’Alembert–Lagrangian
principle to yield the dynamical equations of the system via the method of Lagrange’s mul-
tipliers. The dynamical equations so obtained are then compared with those derived from a
quite different method that characterizes the contact interplay as a pair of contact force vec-
tors. Accordingly, the correlations between the Lagrange multipliers and the components
of the real contact force can be clarified. The clarification enables us to correctly embed
the force-dependent constraints into the dynamical equations. A classical example of a thin
disk contacting a horizontal rough surface is provided to demonstrate the validation of the
proposed theory and method.
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1 Introduction

It is a ubiquitous phenomenon that two bodies within a mechanical system suffer from a per-
sistent point contact. To model the dynamics of the system in a simple and convenient way,
one often introduces constraints as the representative of the point contact interaction [1–3].
For simple problems, such as a disk contacting a fixed plane, it is easy to write out the
constraint equations via an intuitive analysis for a well-placed state of the system [4, 5].
However, for general cases where a persistent point contact occurs between two moving
bodies within a complex multibody system, the following issues may not be explained very
clearly in the existing literature [6–9]:

– How does the contact point evolve with respect to time?
– How to establish the independent constraint equations via a programmable procedure

with strictly mathematical formulations instead of acute intuitive insight or perceptive-
ness?

– How to incorporate the contact-induced constraints, especially the nonholonomic ones,
into the dynamics of the system via basic equations of analytical mechanics?

– What is the correlation between real contact forces and Lagrangian multipliers in La-
grangian equations? The correlation is necessary if the contact force is involved in simu-
lation, or if the contact motion admits sliding friction.

Those issues concern lots of aspects of the analytical mechanics ranging from the for-
mulations of constraint equations, the mathematical properties of constraints, applicabil-
ity of basic equations postulated from different principles of analytical mechanics, and
the essence of undetermined multipliers in Lagrangian formalism, etc. To address those
issues, it is important to understand the physical meaning underlying the contact-induced
constraints.

The essence of constraints is that they play a role of characterizing the significant man-
ifestations of physical interactions between bodies instead of the detail [10, 11]. Accord-
ingly, reasonable assumptions originated from the understanding on the physical interac-
tions should be previously introduced so that one can base on them to establish the asso-
ciated constraint equations. For a persistent point contact, one easily finds that the contact
behavior may admit the following assumptions: (i) non-penetration limitations, from which
geometry-dependent constraints (GCs) can be established [12]; (ii) vanishing of the relative
velocity, corresponding to velocity-dependent constraints (VCs); (iii) sliding friction [10],
leading to constraints defined at the level of force, which are referred to as force-dependent
constraints (FCs) in this paper.

The constraint equations established by those conditions are usually further classified
according to their mathematical properties. GCs essentially impose restrictions on the con-
figuration of systems, so that they can be equivalently expressed as first order differential
forms, referred to as holonomic constraints. VCs are essentially the limitation on tangential
velocity. The integrable VCs are holonomic and they can be thought of as variants of GCs,
while the non-integrable VCs are often called nonholonomic [4–6]. FCs are special con-
straints that define the relationship between normal and tangential components of contact
forces at the contact point.

Theoretically, GCs (or holonomic VCs) can be utilized to reduce the number of system’s
generalized coordinates to the least number of independent ones, which is the actual number
of degrees of freedom. Pars [13] stated that a point contact would eliminate one degree of
freedom of a system. Namely, a point contact is only concerned with a single GC. Except for
the situation of a point moving along a spatial curve (two degrees of freedom are annihilated
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in this case), Pars’ claim, if only GCs are concerned, suits all other cases of two bodies
contacting at a single point. However, the explicit expressions of the GCs are usually needed
if the set of contact constraints consists of FCs because they are concerned with the real
contact force at the contact point [14].

For contacting bodies with complex contour shapes, many authors have realized that
the contact constraints will be complicated by the evolution of location parameters. The
location parameters may be time-dependent variables when they are used to describe the
temporal position of the contact point on the contours of the two contacting bodies [15–17].
Montana [15] derived a set of contact equations, within which the contact-induced con-
straints are defined at the level of relative velocity of the contact point, together with equa-
tions governing the evolution of the location parameters. Although the method had found
successful applications covering a wide range of the practice in the robotic community
[18–22], it suffers from several drawbacks. First, the author didn’t express the constraint
equations as explicit functions of generalized coordinates and velocities of a system so that
one may have trouble in adjoining the constraints with dynamics. Second, the evolution
of the location parameters is concerned with tedious quantities of geometry, such as rel-
ative curvatures and a relative contact angle, leading to the expression of the constraints
in a rather complicated way. Third, the theory was not suitable for contacting bodies with
arbitrary contour shapes. Fourth, the contact dynamics was not discussed in Montana’s the-
ory.

The study of this paper focuses on a Lagrangian system subject to a persistent point con-
tact between two bodies. We suppose that the contour shapes of the two contacting bodies
near the contact point can be a point, a segment of planar or spatial curve, or a piece of
surface. The contact under those geometries falls into seven patterns that commonly satisfy
the following two geometric conditions: (i) there is one common point in space for both
contacting bodies; (ii) the tangential vectors of the contour of each contacting body at the
contact point are located on a common plane. Starting from the two geometric conditions,
together with generalized coordinates necessary in describing the configuration of the sys-
tem, we derive a set of contact differential equations governing the evolution of the location
parameters, and formulate GCs with clear relations to the generalized coordinates of the
system. Meanwhile, VCs are established according to the limitation to the relative velocity
of the two contacting bodies at the same point in contact. Note that the presence of the VCs
is inevitably concerned with friction property. In this paper, we suppose that contact friction
obeys Coulomb’s friction law so that VCs just appear in a stick state of the friction, while
FCs hold for a sliding state.

Depending on the contact state, the set of constraints in a point contact may be either the
combination of GCs and VCs or the one of GCs and FCs. Because VCs and FCs are defined
at the level of velocity or force, respectively, it is necessary to make theoretical justifications
for some known results of analytical mechanics when treating a nonholonomic system with
friction. The first matter is related to the Appell–Chetaev’s rule that specifies an appropriate
set of linear auxiliary conditions on the virtual displacement arising from kinematic con-
straints. The linear auxiliary conditions can then be adjoined via Lagrange multipliers to the
d’Alembert–Lagrangian principle (DLP) to yield the dynamical equations of the system. Al-
though this rule has been generally accepted as an axiom into the methodology of analytical
dynamics, it is still an enigma for understanding the virtual displacements in nonholonomic
constraints. In this paper, we will show that the Appell–Chetaev’s rule is fulfilled naturally,
at least for the kinematic constraints involved in a persistent point contact.

To treat a nonholonomic system with friction, it is also necessary to make clear the cor-
relations between the components of the real contact force and the Lagrangian multipliers
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introduced into the dynamical equations. Otherwise, one may be confused by the matter of
how to embed the FCs into the dynamical equations, and of how to distinguish the possible
switches between the FCs and the VCs. Pfeiffer and Glocker [1, 12] presented a uniform
framework as a linear complementarity problem (LCP) to handle the possible variations of
contact-induced constraints. Based on Jourdain’s variational principle, those authors treated
the nonholonomic system with friction by directly specifying the undetermined multipli-
ers equivalent to the components of the real contact force. In this paper, we will show that
the Lagrange multipliers just correspond to the components of the real contact force de-
composed into a dual frame of the coordinate system used for defining the equations of
constraints.

The rest of this paper is organized as follows. In Sect. 2, we first classify the contact pat-
terns involved in a persistent point contact, then present two general geometric conditions
that should be commonly satisfied in the contact motion. In Sect. 3, we base the general
geometric conditions to derive the equation of GCs and the contact equations that give the
clear relations between the generalized coordinates of the system and the location param-
eters. In Sect. 4, we discuss relative motion at the contact point and show how the evolu-
tion of location parameters affects the mathematical properties of VCs. In Sect. 5, we first
establish the general dynamical equations of the system by characterizing the contact inter-
action as a pair of interaction forces, then follow the conventional procedure of analytical
mechanics to formulate the dynamical equations via the method of Lagrange multipliers.
Comparison between the two set of dynamical equations enables us to clarify the corre-
lations between Lagrangian multipliers and real contact forces, and to explain the reason
why Appell–Chetaev’s rule when treating nonholonomic constraints is naturally fulfilled. In
Sect. 6, an example of a thin disk rolling on a horizontal rough plane is given to validate the
presented method. We conclude and summarize the paper in Sect. 7.

2 Contact patterns and geometric conditions of a point contact

Let us designate q = [q1, . . . , qn] as the generalized coordinates describing the configuration
of a multibody system free of contact. A persistent point contact holds between two bodies
within the system. In this section, we will first present the definitions for the parameteriza-
tion of geometric primitives, then classify possible contact patterns in the point contact, and
finally establish their geometric conditions.

2.1 Parameterization of geometric primitives

Based on differential geometry [23], we have the following definitions.

Definition 1 A regular curve is the image of a C2 map f : U �→ R
2 or R

3, where U is
an open subset of R, and a point in U is denoted by p ∈ U. The pair (f,U) is called a
parameterization of the curve in two or three dimensions, respectively.

It is clear that one parameter is needed to parameterize the body’s contour with a planar
or spatial curve. The unit tangential vector of the parameterized curve can be defined as
follows:

Definition 2 Denote fp as the partial derivative of f with respect to p. The unit tangential
vector at a given point in a parameterized curve is �τp = fp

‖fp‖ .
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Similarly, we can adopt two parameters to parameterize a spatial surface according to the
following definition.

Definition 3 A spatial surface in R
3 is a subset S ⊂ R

3 such that for every point P ∈ S,
there exists an open subset SP of S with the property that P ∈ SP, where SP is the image of
a C2 map f : U �→ R

3, where U is an open subset of R2, and a point of U is denoted by
(p1,p2) ∈R

2. The pair (f,U) is called a parameterization of the surface.

The unit normal and tangential vectors of a spatial surface at a given point are defined as
follows:

Definition 4 Denote by fp1 and fp2 the partial derivatives of f with respect to p1 and p2,
respectively, and assume they are linearly independent at a given point. The unit tangen-

tial vectors to span the tangential plane at that particular point are defined as �τp1 = f
p1

‖f
p1 ‖ ,

�τp2 = f
p2

‖f
p2 ‖ .

It is worth noting that the unit vector �τp1 may not be perpendicular to the unit vector �τp2 .
Namely, 〈�τp1 , �τp2〉 is not necessary equal to zero, where 〈·, ·〉 denotes inner product.

No parameter is needed for a body with the contact contour shaped by a geometric
point.

2.2 Contact patterns and contact frame

The contour shapes in the neighboring region near a contact point may be a geometric
point (P), a planar or spatial curve (2C or 3C), or a spatial surface (S). By enumerating
the possible combinations of the basic geometric entities, we classify the point contact into
7 patterns, designated respectively as: P–2C, P–3C, P–S, 2C–2C, 3C–3C, 3C–S, S–S. The
pattern P–P is not considered in this paper because it has no implication to the study of this
paper.

Suppose that the contour shapes of two contacting bodies, B1 and B2, are parameterized
via the parameter sets u1 = [u1,1, . . . , u1,k1 ], u2 = [u2,1, . . . , u2,k2 ], where k1 and k2 denote
the number of independent parameters of the two bodies, respectively, and 0 ≤ k1, k2 ≤ 2.
We specify k2 ≥ k1 for the ease of subsequent expressions.

Once the contours of the two contacting bodies have been parameterized, any point lo-
cated on the surfaces of the two bodies, B1 and B2, can be distinguished by position vectors
�ri(q,ui , t), i = 1,2, relating to a prescribed reference coordinate system. The components
of vectors �ri(q,ui , t) under the prescribed reference frame are the known functions of q
and ui . Accordingly, the tangential unit vectors, �τ j

i (q,ui , t), j = 1, ki , for any point in the
parameterized contours of the bodies B1 and B2 can also be known by the partial derivatives
∂�ri(q,ui , t)/∂ui , respectively.

Suppose that the contact at time t occurs at a space point P whose positions on the
contours of body Bi are identified by the surface parameters with values u∗

i . We denote by
u∗

i as the location parameters to help distinguish the contact point from other points on the
contour of the ith contacting body. Clearly, the value of u∗

i may change with the motion of
the system.

As mentioned in the introductory section, constraints essentially play a role of reflecting
the physical properties involved in a point contact interaction. To formulate the constraint
equations with clear physical meaning, we need to define a specific coordinate frame called
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contact frame Fc . Here, the contact frame is basically defined according to the known tan-
gential unit vectors �τ j

i (q,u∗
i , t).

Definition 5 Contact frame Fc is a local reference frame at the contact point, which consists
of the unit vector triad, (�e1, �e2, �e3), that is defined as follows:

For contact patterns P–S, 3C–S, and S–S, where k2 = 2 for body B2, we choose the
contact frame in such a way that �e1 and �e2 are always equal to �τ j

2 (q,u∗
2, t), j = 1,2, re-

spectively, while �e3 = �τ1
2 (q,u∗

2,t)×�τ2
2 (q,u∗

2,t)

‖�τ1
2 (q,u∗

2,t)×�τ2
2 (q,u∗

2,t)‖ .

For contact patterns in two dimensions (P–2C, 2C–2C), in which k2 = 1 for B2, we set
�e1 = �τ 1

2 (q,u∗
2, t) and �e2 equal to a constant unit vector �k which is perpendicular to the

two-dimensional plane, and �e3 = �τ 1
2 (q,u∗

2, t) × �k.
Pattern P–3C is concerned with two GCs at the point contact. We define the contact frame

by setting �e1 = �τ 1
2 (q,u∗

2, t), while �e2 and �e3 are on the plane perpendicular to �e1.
For pattern 3C–3C, in which k1 = k2 = 1, we set �e1 = �τ 1

2 (q,u∗
2, t), �e2 = �τ 1

1 (q,u∗
2, t), and

�e3 = �e1×�e2
‖�e1×�e2‖ , respectively.

According to the above definition, unit vectors �e1, �e2, and �e3, in the contact frame may be
not mutually orthogonal, yet there is at least one unit vector (or two unit vectors for pattern
P–3C) perpendicular to the remaining ones relating to the tangential vectors �τ j

i (q,ui , t).

2.3 Geometric conditions in a point contact

There are two geometric conditions involved at a persistent point contact:

C1 The contours of both contacting bodies intersect each other in space.
C2 The tangential vectors of the contours at the contact point should be located on a com-

mon plane.

Condition C1 allows the two bodies to possibly contact each other, while the second
condition C2 guarantees that the contact point is unique in space. Once the contours of
the contacting bodies have been parameterized, we can express the above two geometric
conditions mathematically.

Condition C1 leads to an obvious equality �r2(q,u∗
2, t) − �r1(q,u∗

1, t) = 0. The vector
equality in the reference coordinate system reads

⎧
⎪⎨

⎪⎩

f1(q,p∗, t) = 0,

f2(q,p∗, t) = 0,

f3(q,p∗, t) = 0,

(1)

where p∗(t) = [u∗
1(t),u∗

2(t)], aggregating the location parameters together.
Except for two-dimensional patterns P–2C and 2C–2C that just need two equations from

condition C1, Eq. (1) provides three independent equations.
Condition C2 is closely associated with the local geometric properties of the contours

of the two contacting bodies. Therefore, the equations deduced from condition C2 in one
contact pattern may differ from those in another pattern.

Proposition 1 For patterns P–2C, P–3C, P–S, and 3C–3C, the fulfillment of condition C1

means that condition C2 is automatically satisfied at the same time.
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Table 1 The numbers of the
constraint equations and
parameters in each contact
pattern

Pattern P–2C 2C–2C P–3C P–S 3C–3C 3C–S S–S

m 2 3 3 3 3 4 5

k 1 2 1 2 2 3 4

ν 1 1 2 1 1 1 1

Proof This conclusion is obvious for patterns P–2C, P–3C and P–S. In these patterns, the
focused contour of the first body is a point, so the tangential directions of the second body
starting from the contact point must be located on the tangential plane of the body itself.
For pattern 3C–3C, each body has one tangential direction at the contact point. The two
tangential directions at the same contact point span a unique tangential plane. Therefore,
condition C2 holds automatically once condition C1 is satisfied. �

For the other patterns such as 2C–2C, 3C–S and S–S, condition C1 is insufficient to create
a unique point in space so that condition C2 should be supplemented. Noting from C2 that
the two contacting bodies should have a common tangential plane or a common tangential
line at a contact point in three or two dimensional case, respectively, we can easily establish
the following independent equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(for 2C–2C) f4(q,p∗, t) = �e3 · �τ 1
1 = 0,

(for 3C–S) f4(q,p∗, t) = �e3 · �τ 1
1 = 0,

(for S–S) f4(q,p∗, t) = �e3 · �τ 1
1 = 0,

f5(q,p∗, t) = �e3 · �τ 2
1 = 0,

(2)

where �e3 is a unit vector in the contact frame Fc defined on body B2, while �τ 1
1 and �τ 2

1 are the
tangential unit vectors of body B1 at the contact point.

Equations (1) and (2) are independent because they are derived from different geometric
conditions. Denote by m the total number of equations in (1) and (2), which is always big-
ger than k, the number of entries in the set of location parameters p∗. Table 1 summaries the
values of m and k involved in each contact pattern. The difference between m and k corre-
sponds to the number of the eliminated degree of freedom, ν = m − k, due to the persistent
contact interaction. Namely, a persistent point contact generates ν independent geometric
constraints.

3 Geometric constraints

Available equations of GCs should be explicit functions just depending on configuration
variable q and/or time t , so that the explicit relations between q and p∗ should be given. Let
us select k equations among the m independent equations derived from the two geometric
conditions. In order to simplify the following deduction, we denote that p∗(t) = p∗(q, t),
and rearrange the k equations into the following forms:

⎧
⎪⎨

⎪⎩

f1(q,p∗(q, t), t) = 0,
...

fk(q,p∗(q, t), t) = 0.

(3)
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Differentiating Eq. (3) with respect to t leads to

∂fi

∂q
q̇ + ∂fi

∂p∗ ṗ∗ + ∂fi

∂t
= 0, i = 1, . . . , k. (4)

Rewrite it in a matrix form as

f,qq̇ + Jṗ∗ + f,t = 0, (5)

where

f,q =

⎡

⎢
⎢
⎢
⎣

∂f1
∂q1

· · · ∂f1
∂qn

...
. . .

...

∂fk

∂q1
· · · ∂fk

∂qn

⎤

⎥
⎥
⎥
⎦

k×n

, J =

⎡

⎢
⎢
⎢
⎣

∂f1
∂p∗

1
· · · ∂f1

∂p∗
k

...
. . .

...

∂fk

∂p∗
1

· · · ∂fk

∂p∗
k

⎤

⎥
⎥
⎥
⎦

k×k

,

and f,t = [ ∂f1
∂t

, . . . ,
∂fk

∂t
]T . If J is of full rank, we go on to get

ṗ∗(t) = −J−1(f,qq̇ + f,t ). (6)

As the initial values of p∗(q, t0) are specified in advance, the evolution of the location
parameters p∗(q, t) with respect to q is governed by

p∗(q, t) = p∗(q, t0) −
∫ t

t0

J−1(f,q q̇ + f,t ) dt. (7)

Once p∗(q, t) is obtained from (7), it can be substituted into the remaining ν equations
to formulate the GCs involved at a point contact.

Proposition 2 A point contact results in ν independent geometric constraint equations,

gj
c (q, t) ≡ fk+j

(
q,p∗(q, t), t

) = 0, j = 1, . . . , ν. (8)

Proof Recognizing that the two contact conditions C1 and C2 should be always satisfied
along with the contact motion, the conclusion follows. �

Except for pattern P–3C (a point moving along a spatial curve suffers from two indepen-
dent geometric constraints), all other contact patterns provide one independent geometric
constraint equation, agreeing with the statement given by Pars [13].

Clearly, Eq. (8) can take explicit expressions to the generalized coordinates of the sys-
tem only if the relationship between p∗ and q has a closed form. Otherwise, the equations
are implicit since the values of the location parameters must be numerically obtained in ad-
vance. In the subsequent section, we will show that the GCs can be equivalently replaced by
associated first order differential forms.

4 Kinematical constraints

Depending on the motion state of the contact point, either VCs or FCs should be provided to
limit the tangential motion at the contact point. Usually, VCs originate from the following
physical condition: the relative velocity at the contact point between two bodies vanishes.
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We will demonstrate that this condition also admits the first order differential forms of the
GCs.

From the common knowledge of kinematics, the absolute velocity of the contact point
labeled by location parameters u∗

i in the ith body can be defined in the prescribed reference
coordinate system as

�vu∗
i

i (q, q̇, t) =
n∑

l=1

∂�ri(q,p∗, t)
∂ql

q̇l + ∂�ri(q,p∗, t)
∂t

, i = 1,2. (9)

It is worth noting that location parameters p∗, when computing �vu∗
i

i (q, q̇, t), are not time-

dependent variables. The relative velocity �vp∗
c (q, q̇, t) at the contact point for body B2 rela-

tive to body B1 is given by

�vp∗
c (q, q̇, t) = �vu∗

2
2 (q, q̇, t) − �vu∗

1
1 (q, q̇, t)

=
n∑

l=1

{
∂�r2(q,p∗, t)

∂ql

− �r1(q,p∗, t)
∂ql

}

q̇l + ∂�r2(q,p∗, t)
∂t

− �r1(q,p∗, t)
∂t

. (10)

To expose the relations between �vp∗
c (q, q̇, t) and the differential forms of the GCs, let us

first recall the contact condition C1, where the equality �r2(q,p∗, t)− �r1(q,p∗, t) = 0 always
holds in a persistent point contact. Its total derivative with respect to time can be written
as

{
∂�r2(q,p∗, t)

∂p∗ − �r1(q,p∗, t)
∂p∗

}

ṗ∗ + �vp∗
c (q, q̇, t) = 0. (11)

The first term on the left-hand side of Eq. (11) is related to ṗ∗ governed by (6), while the
second term is just the relative velocity �vp∗

c (q, q̇, t) needed for defining the VCs possibly
involved in the motion of a persistent contact point.

The GCs concern another geometric condition C2 relating to the unit vectors of the con-
tact frame. In this frame Fc , the velocity vector �vp∗

c (q, q̇, t) can be expressed as

�vp∗
c (q, q̇, t) = vp∗,1

c (q, q̇, t)�e1 + vp∗,2
c (q, q̇, t)�e2 + vp∗,3

c (q, q̇, t)�e3, (12)

where �ei is the unit vector of the contact frame Fc as defined in Sect. 2.
We will show that the components v

p∗,i
c (q, q̇, t), i = 1,2,3, are appropriate quantities

convenient to the definitions of both GCs and VCs.

Proposition 3 Suppose that a contact pattern has ν equations of the GCs as shown in
Eq. (8). Those GCs have equivalent differential forms relating to the specific components
of �vp∗

c (q, q̇, t) under the contact frame Fc , and the kinematic constraints must be holo-
nomic.

Proof The geometric condition C1 enables Eq. (11) to always hold at a persistent contact
point. For the �ej relating to the ν equations of the GCs, we immediately have

{
∂�r2(q,p∗, t)

∂p∗ · �ej − �r1(q,p∗, t)
∂p∗ · �ej

}

ṗ∗ + vp∗,j
c (q, q̇, t) = 0. (13)
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From the geometric condition C2 in GCs, we know that the ν unit vectors in the contact
frame Fc are always perpendicular to the tangential plane spanned by vectors ∂�r2(q,p∗,t)

∂p∗ and
∂�r1(q,p∗,t)

∂p∗ . Namely, for those ν unit vectors �ej we have

∂�r1(q,p∗, t)
∂p∗ · �ej = 0 and

∂�r2(q,p∗, t)
∂p∗ · �ej = 0.

Relating to the ν unit vectors �ej , Eq. (13) becomes

d[(�r2(q,p∗, t) − �r1(q,p∗, t)) · �ej ]
dt

= vp∗,j
c (q, q̇, t) = 0. (14)

Noting that this equality, v
p∗,j
c (q, q̇, t) = 0, is deduced from the geometric conditions C1

and C2 used for defining the GCs, we can say that Eq. (14) is the differential form of the
GCs given by Eq. (8).

Conversely, we need to prove that the integration of the kinematic constraint, v
p∗,j
c (q,

q̇, t) = 0, indeed agrees with the equations of GCs defined by Eq. (8). Suppose that the
motion state of the system at time t0 is given by (q(t0), q̇(t0)), and the location parameters
take values p∗(t0). According to Proposition 2, the relations between p∗(t0) and q(t0) are
governed by the two geometric conditions C1 and C2. Namely, we have

(�r2

(
q(t0),p∗(t0), t0

) − �r1

(
q(t0),p∗(t0), t0

)) · �ej (t0) = 0. (15)

When the motion state of the system changes to (q(t), q̇(t)), the location parameters may
also change to arrive at values p∗(t). We would mention that p∗(t) is generally a function
with respect to q(t). Note that the defined kinematic constraint satisfies a property that the
differential relation shown in Eq. (14) does not change with the evolution of p∗(t). The
integration of the kinematic constraints under the initial condition given by Eq. (15) can be
expressed as follows:

∫ t

t0

vp∗,j
c (q, q̇, t) = (�r2

(
q(t),p∗(t), t

) − �r1

(
q(t),p∗(t), t

)) · �ej (t) = 0. (16)

Fulfillment of Eq. (16) means that the two geometric conditions are satisfied. Therefore,
we can say that the kinematic constraint is holonomic and equivalent to the GCs. �

Proposition 3 can be explained from the viewpoint of physics. Due to the rigid assump-
tion in describing the contact interaction, no penetration occurs between two contacting
bodies along the normal direction defined in the contact frame Fc . Therefore, the relative
displacement and velocity along that direction should be always equal to zero.

Based on the above analysis, we can say that a persistent point contact may concern
at most three independent kinematic constraints uniformly defined by �vp∗

c (q, q̇, t). In order
to clearly expose the physical meaning underlying the defined kinematic constraints, we
usually need to define the equations of the constraint in the contact frame, namely

⎧
⎪⎪⎨

⎪⎪⎩

v
p∗,1
c (q, q̇, t) = 0,

v
p∗,2
c (q, q̇, t) = 0,

v
p∗,3
c (q, q̇, t) = 0.

(17)
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As we have demonstrated above, the GCs, as they manifest themselves into the first order
differential forms, are holonomic in the sense of mathematics. However, the mathematical
properties involved in the VCs depend on the contact pattern, as well as the evolution of the
location parameters. We illustrate this point by the following proposition.

Proposition 4 Suppose that there are l equations of VCs involved in Eq. (17). The VCs are

(i) holonomic in the contact patterns P–2C, P–3C, and P–S;
(ii) either holonomic or nonholonomic in the contact patterns 2C–2C, 3C–S, 3C–3C, and

S–S, depending on the evolution of the location parameters.

Proof Note that Eq. (11) always holds at a persistent contact point. As the l equations of the
VCs hold at the contact point, along with the l unit vectors in the contact frame we have the
following equations:

{
∂�r2(q,p∗, t)

∂p∗ · �ej − �r1(q,p∗, t)
∂p∗ · �ej

}

ṗ∗ = 0. (18)

Since �r1(q,p∗, t) and �r2(q,p∗, t) are separately related to the location parameters u∗
1 and

u∗
2 of each body, respectively, the above equation can be rewritten as

(
∂�r2(q,p∗, t)

∂u∗
2

· �ej

)

u̇∗
2 =

(
∂�r1(q,p∗, t)

∂u∗
1

· �ej

)

u̇∗
1. (19)

Fulfillment of Eq. (19) means that the location parameters u∗
1 and u∗

2 may vary simulta-
neously with time, depending on the contact pattern and the motion state of the system.

For contact patterns P–2C, P–3C, and P–S, we always have u̇∗
1 = 0 so that u̇∗

2 = 0. This
means that the location parameters in those patterns should take constant values when the
VCs appear in the motion of the contact point. In terms of Eq. (11), we can get

d(�r2(q,p∗, t) − �r1(q,p∗, t))
dt

= �vp∗
c (q, q̇, t) = 0. (20)

Because p∗ is just a function with respect to q (see Proposition 2), we easily know that
the VCs in those contact patterns should be holonomic.

When the VCs exist in patterns 2C–2C, 3C–S, 3C–3C, and S–S, it is clear that, if the loca-
tion parameters remain unchanged in the motion of the system, the VCs will be holonomic.
Otherwise, both u∗

1 and u∗
2 should change simultaneously, and follow the relations given by

Eq. (19). Indeed, the VCs become nonholonomic just due to the simultaneous evolution of
the location parameters. Let us explain this point as follows.

Since location parameters p∗ are just the functions of the generalized coordinates q of
the system, the terms on the left hand side of Eq. (18) can be equivalently represented by a
function as N

j

h (q, q̇, t). In terms of Eq. (11), we have

d[(�r2(q,p∗, t) − �r1(q,p∗, t)) · �ej ]
dt

= N
j

h (q, q̇, t) + vp∗,j
c (q, q̇, t) = 0. (21)

It is clear that the defined kinematic constraints VCs are non-integrable due to the pres-
ence of the term N

j

h (q, q̇, t), which is necessary for the complete differential form of a
function defined in the configuration space of the system. �
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When all of the VCs involved in a persistent contact point are holonomic, the two bodies
stick at a point fixed in their contours, even though the contact point may move in space
due to the motion of the two contacting bodies. In this case, the contact point seems to be a
joint adjoining the two contacting bodies together, so only geometric constraints are needed
to limit the motion of the system. The GCs can be equivalently expressed in the differential
forms as Eq. (17) shows. Nonholonomic VCs will appear as the location parameters vary-
ing with time. However, the relations governing the evolution of the location parameters
successfully expose the geometric property underlying the nonholonomic VCs.

Proposition 5 The nonholonomic VCs satisfy geometric properties as follows: the tangent
of the trajectory traced by the contact point on the contour of one body is always aligned
with that on the contour of the other body, and the speeds of the arc lengths of the two
trajectories are equal.

Proof When nonholonomic VCs exist at a persistent contact point, the evolution of the lo-
cation parameters follows the relations shown in Eq. (19). Note that the location parameters
can generally be expressed as functions of the generalized coordinates of the system. There-
fore, Eq. (19) is integrable so that there is geometric meaning underlying the nonholonomic
constraints. �

Proposition 5 can be demonstrated by a simple example of a planar disk with a purely
rolling motion, which is related to contact pattern 2C–2C. It is well known that the VC in
this contact pattern is associated with an arc-length equation when an arc-length parameter
is used to define the contour of the disk.

If �vc(q, q̇,p∗, t) �= 0, VCs should be replaced by FCs in order to characterize the sliding
friction at the contact point. The formulation of the FCs depends on the constitutive law of
sliding friction.

5 Dynamical equations

In this section, we discuss how to model the dynamics of systems subject to a point-contact
interaction by employing d’Alembert–Lagrangian principle (DLP). The general equations of
the dynamics of the system are first established by characterizing the physical interaction at
the contact point as a pair of interaction forces. As kinematic constraints are available in the
system, we employ the method of Lagrange multipliers to establish the dynamical equations
of the system. Comparison between the equations derived from different methods enables
us to explain why the Appell–Chetaev’s rule holds in a natural fashion, and to clarify the
correlations between the Lagrangian multipliers and the real contact force. The Coulomb’s
friction law will be adopted to define the force-dependent constraint equations.

5.1 General dynamical equations established by DLP

Suppose that L = L(q(t), q̇(t), t) is the Lagrangian function of a contact system, and Qi

is the generalized force by mapping the external forces into the curvilinear coordinates re-
lated to the configuration space q. The internal forces involved in the point contact can be
characterized as a pair of interaction forces. Designate by �F the contact force applied at the
contact point labeled by location parameters u∗

2 on the contour of body B2, while − �F is the
reaction force acting on body B1 at the contact point denoted by location parameters u∗

1.
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When DLP is employed to establish the dynamical equations of the system, we need to
compute the virtual work done by the pair of the interaction forces. This requires the virtual
displacements relating to the point of the action of the pair of forces, which are given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δ�r1(q,u∗
1, t) =

n∑

j=1

∂�r1(q,u∗
1, t)

∂qj

δqj ,

δ�r2(q,u∗
2, t) =

n∑

j=1

∂�r2(q,u∗
2, t)

∂qj

δqj .

(22)

The virtual work done by the pair of the internal forces involved in the contact point can
then be written as

δw =
n∑

j=1

�F ·
(

∂�r2(q,u∗
2, t)

∂qj

− �r1(q,u∗
1, t)

∂qj

)

δqj . (23)

In terms of the definition of the relative velocity, as Eq. (10) shows, we know that the
following equalities always hold:

n∑

j=1

(
∂�r2(q,u∗

2, t)

∂qj

− �r1(q,u∗
1, t)

∂qj

)

δqj =
n∑

j=1

∂ �vp∗
c (q, q̇, t)

∂q̇j

δqj . (24)

Substituting Eq. (24) into Eq. (23) leads to

δw =
n∑

j=1

�F · ∂ �vp∗
c (q, q̇, t)

∂q̇j

δqj . (25)

Suppose that vector �vp∗
c (q, q̇, t) is decomposed in the contact frame Fc , whose basis is a

triplet of unit vectors that are not necessary mutually orthogonal. Define a dual coordinate
system Fc : ( �m1

c, �m2
c, �m3

c), in association with the contact frame Fc . Namely,

�mi
c · �ej

c = δij =
{

1, i = j,

0, i �= j.
(26)

Decompose the vector of the contact force in the dual coordinate system as

�F = F1 �m1
c + F2 �m2

c + F3 �m3
c . (27)

By (25), (26) and (27), we immediately have

δw =
n∑

j=1

(

F1
∂v

p∗,1
c (q, q̇, t)

∂q̇j

+ F2
∂v

p∗,2
c (q, q̇, t)

∂q̇j

+ F3
∂v

p∗,3
c (q, q̇, t)

∂q̇j

)

δqj . (28)

By adjoining the virtual work given by (28) into the Lagrangian function of the system,
we get

d

dt

(
∂L

∂q̇i

)

−
(

∂L

∂qi

)

= Qi +
3∑

j=1

∂v
p∗,j
c (q, q̇, t)

∂q̇i

F j , i = 1, . . . , n. (29)
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Equation (29) represents the general equations of a Lagrangian system within which
two bodies are subject to a persistent point contact interaction. Nevertheless, the equations
are not in closed forms because the components F j are not furnished. To make Eq. (29)
solvable, we need to provide either constitutive laws or constraint equations responsible for
the evolution of the interaction force.

5.2 Dynamical equations formulated by introducing constraints

As constraints are introduced to model contact interactions, one needs to deal with two
critical issues in the solution of DLP systems [8, 9]. First, the generalized coordinates are
no longer all independent since they are connected by the equations of a constraint. In the
case of given equations of a constraint with nonintegrable differential forms, it is still a
contentious issue of how to define the limitations to the dependent coordinates. Second, the
physical meaning underlying the Lagrange multipliers is unclear because these multipliers
just play a role, in the mathematical sense, of adjoining the equations of constraints into the
dynamics. To give answers to the issues, let us first establish the dynamical equations of a
constrained system by following the conventional procedure in analytical mechanics.

Suppose that the considered system is subject to the kinematic constraints specified by
Eq. (17). Those equations of the constraint in first order differential forms may be holonomic
or nonholonomic. According to the Appell–Chetaev’s rule, the limitation equations to the
virtual displacements arising from Eq. (17) are as follows:

n∑

l=1

∂v
p∗,j
c (q, q̇, t)

∂q̇l

δql = 0, j = 1, . . . ,3. (30)

This equation can be thought of as a DLP-condition that enables us to yield the dynamic
equation of the system by introducing three Lagrangian multipliers λj . The Lagrangian
formalism of such a system is thus written as

d

dt

(
∂L

∂q̇i

)

−
(

∂L

∂qi

)

= Qi +
3∑

j=1

∂v
p∗,j
c (q, q̇, t)

∂q̇i

λj , i = 1, . . . , n, (31)

where the evolution of Lagrange multiplier λj complies with the equations of constraint
given by Eq. (17).

A comparison between Eqs. (29) and (31) shows an anticipated result: They take the
same form although they are derived from different methods of characterizing the physical
interaction at the contact point. This enables us to answer, by the following proposition, the
second issue, namely, what is the physical meaning underlying the Lagrangian multipliers.

Proposition 6 If the motion of a persistent contact point can be modeled as the kinematic
constraints given by Eq. (17), the introduced Lagrange multipliers just correspond to the
components of the real contact force decomposed in the dual frame of the contact frame Fc

used for defining those equations of the constraints.

The equivalence between Eqs. (29) and (31) also suggests that the Appell–Chetaev’s rule
can be accepted naturally. Nevertheless, it is worth noting that there is a tiny difference
between the derivation of the two equations. Equation (29) is derived by the virtual work
done by the pair of interaction forces multiplying the virtual displacement with relations
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as Eq. (24) shows, while Eq. (31) is deduced via Lagrange multipliers adjoining Eq. (30)
established via the Appell–Chetaev’s rule. The question out of Appell–Chetaev’s rule is why
Eq. (30) cannot be obtained by directly performing variational calculus on the nonholonomic
constraints. To clarify this point, we need to understand how the evolution of the location
parameters affects the mathematical properties of the kinematic constraints.

In terms of Proposition 4, if the constraint, v
p∗,j
c (q, q̇, t) = 0, is irrelevant to the evolu-

tion of the location parameters, p∗, the constraint is holonomic, since its integration can be
achieved in a form (�r2(q,p∗, t) − �r1(q,p∗, t)) · �ej = 0. Therefore, conventional calculus of
variations can be imposed on holonomic constraints to naturally result in Appell–Chetaev’s
rule.

To understand the fulfillment of Appell–Chetaev’s rule in nonholonomic constraints, we
need to expose the displacement limitation involved in the system’s configuration. For the
system subject to a persistent point contact, the configuration of the system is limited by
the geometric condition C1, namely, �r2(q,p∗, t) − �r1(q,p∗, t) = 0. Based on the rule of
conventional calculus of variations, we can get from the geometric limitation the following
identity:

n∑

l=1

∂(�r2(q,p∗, t) − �r1(q,p∗, t))
∂ql

δqi + ∂(�r2(q,p∗, t) − �r1(q,p∗, t))
∂p∗ δp∗ = 0. (32)

It is worth noting that, if constraint equations defined by Eq. (17) are admitted in the
system, the second term on the left hand side of Eq. (32) must automatically disappear due
to Proposition 5. Namely, if Eq. (17) exists in the system, the limitation equations to the
virtual displacements of the system always satisfy

n∑

l=1

∂(�r2(q,p∗, t) − �r1(q,p∗, t))
∂ql

δqi = 0. (33)

Recalling Eq. (10) for the definition of vp∗
c (q, q̇, t), we can easily find that the coeffi-

cients before δqi in Eqs. (30) and (33) are identical. Therefore, the first issue relating to the
constrained systems, namely, how to define the limitation equations arising from kinematic
constraints, can be answered by the following proposition.

Proposition 7 If the contact-induced constraints are defined as first order differential forms,
Appell–Chetaev’s rule is fulfilled in a natural fashion no matter whether the kinematic
constraints are holonomic or nonholonomic. The limitation equations specified by Appell–
Chetaev’s rule correspond to the virtual displacement limitations inherent in the configu-
ration constraints of the system. At the same time, the evolution of the location parameters
must follow the properties exposed in Proposition 5.

5.3 Force-dependent constraints

It is worth noting that the general dynamical equations given by Eq. (29) always hold for
a multibody system subject to a persistent point contact. As sliding friction appears at the
contact point, we only need to provide a constitutive law for scaling the sliding friction
force. Suppose that the point contact is in a pattern involved in ν independent equations
of GCs, and l independent equations of FCs. When the Coulomb’s friction law is used to
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characterize the FCs, we have the following equations defined at the level of force:

�F τ = −μ|λn| �vτ
c

‖�vτ
c ‖

, (34)

where μ is the coefficient of dynamic friction, minus ‘−’ implies that the friction force �F τ

acting on body B2 always takes the reverse direction of the relative tangential velocity �vτ
c of

B2 to B1, and |λn| is the amplitude of the constraint force induced by the GCs. The value of
|λn| can be obtained according to the Lagrangian multipliers λj , j = 1, . . . , ν, in association

with the equations, v
p∗,j
c (q, q̇, t) = 0, for the GCs. The l equations of FCs used to substitute

the VCs are expressed as follows:

�F τ = −μ|λn| �vτ
c

‖�vτ
c ‖

=
l∑

j=1

Fj �ml
c. (35)

In summary, the dynamics of a Lagrangian system subject to a point contact is governed
by Eq. (29), combined with ν equations of GCs, and l equations of either VCs or FCs. The
combination of these equations forms a set of differential–algebraic equations (DAEs) of
index 2, which can be solved via various numerical schemes.

6 Analysis for the kinematics and dynamics of a rolling disk

In this section, we study the constraints and the dynamics of a thin disk contacting a hori-
zontal rough surface. Although this is a classical example that have been comprehensively
analyzed in many textbooks of classical mechanics, we will formulate its constraints and the
dynamical equations following the procedure presented in this paper.

6.1 Basic description

Figure 1 shows a sketch of the example. Its kinematics is described by two coordinate system
frames: an inertial coordinate frame R = (O, i, j,k), fixed on the rough horizontal plane,
and a frame RB = (B, e1, e2, e3) fixed at the disk’s geometric center B , positioned with
coordinates (q1, q2, q3) in R. Frame RB is obtained by subsequently rotating the frame R
over an Euler’s precession angle q4 and then over an Euler’s nutation angle q5. Unit vector
e3 is the axis of revolution of disk. Denote by q6 the revolution angle of the disk around
axis e3. The configuration of the disk can be fully described by six independent variables,

Fig. 1 A uniformly thin disk
rolling on a rough plane
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(q1, q2, q3, q4, q5, q6). The transform matrix Q between frames R and RB is expressed as

Q =

⎡

⎢
⎢
⎣

cq4 −sq4 0

sq4 cq4 0

0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎣

cq5 0 sq5

0 1 0

−sq5 0 cq5

⎤

⎥
⎦

⎡

⎢
⎣

cq6 −sq6 0

sq6 cq6 0

0 0 1

⎤

⎥
⎦

=
⎡

⎢
⎣

cq4 cq5 cq6 − sq4 sq6 −cq4 cq5 sq6 − sq4 cq6 cq4 sq5

sq4 cq5 cq6 + cq4 sq6 −sq4 cq5 sq6 + cq4 cq6 sq4 sq5

−sq5 cq6 sq5 sq6 cq5

⎤

⎥
⎦ , (36)

where c(·) = cos(·) and s(·) = sin(·), to simplify the expression.
We denote the disk as body B1 and the plane as B2 in order to comply with the description

that we always define the number of surface parameters in B2 to be not less than those of B1.
Any point P on the circular contour of the disk can be distinguished using one parameter
scaled by an angle ξ between the position vector �rBP and vector e1. Therefore, the position
vector �rBP in the frame RB is expressed as

�rBP = [e1, e2, e3][Rcξ ,Rsξ ,0]T . (37)

The position vector �r1 of the point P in inertial frame R is

�r1 = �rOB + �rBP = [
q1 + R(cq4 cq5 cβ − sq4 sβ)

]
i

+ [
q2 + R(sq4 cq5 cβ + cq4 sβ)

]
j + [q3 − Rsq5 cβ ]k, (38)

where β = q6 + ξ .
From (38), we can express the unit tangential vector at a point on the contour of the disk,

in the inertial frame R, as

�τ ξ

1 = ∂�r1/∂ξ

‖ ∂�r1/∂ξ ‖ = −(cq4 cq5 sβ + sq4 cβ)i + (−sq4 cq5 sβ + cq4 cβ)j − sq5 sβk. (39)

Any point on the horizontal contact plane can be distinguished by a position vector �r2

with parameters η1 and η2 scaled in the frame R:

�r2 = η1i + η2j. (40)

Based on the description in Sect. 2, the local contact frame Fc defined at a possible
contact point can be written as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�e1
c = �τ η1

2 = ∂�r2

∂η1
= i,

�e2
c = �τ η2

2 = ∂�r2

∂η2
= j,

�e3
c = �τ η1

2 × �τ η2
2 = k.

(41)

The contact frame Fc under the above definition is an orthogonal coordinate frame with
constant unit vectors along the motion of the contact point. As we will demonstrate in the
subsequent analysis, this frame with constant unit vectors extremely simplifies the formula-
tions of the constraint equations.
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6.2 Geometric conditions and contact equations

The contact pattern in this example is 3C–3S, whose contact conditions create four equations
for limiting the contact geometry. Denote by p∗(t) = [ξ ∗(t), η∗

1(t), η
∗
2(t)]T the location pa-

rameters at a contact point. From geometric condition C1, namely �r1 = �r2, we can establish
three equations at any time t as follows:

⎧
⎪⎨

⎪⎩

f1(t) = q1(t) + R(cq4 cq5 cβ∗ − sq4 sβ∗) − η∗
1(t) = 0,

f2(t) = q2(t) + R(sq4 cq5 cβ∗ + cq4 sβ∗) − η∗
2(t) = 0,

f3(t) = q3(t) − Rsq5 cβ∗ = 0,

(42)

where β∗ = q6(t) + ξ ∗(t).
In terms of the geometric condition C2, namely �τ ξ

1 · �e3
c = 0, the fourth equation is given

by

f4(t) = sq5sβ∗ = 0. (43)

Note that one always has sq5 �= 0, except for the disk in a singular configuration. There-
fore, the geometric conditions of this example can be further simplified as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(t) = q1(t) + Rcq4cq5 cβ∗ − η∗
1(t) = 0,

f2(t) = q2(t) + Rsq4 cq5 cβ∗ − η∗
2(t) = 0,

f3(t) = q3(t) − Rsq5 cβ∗ = 0,

f4(t) = sβ∗ = 0.

(44)

Though (44) presents explicit relationships between parameter set p∗(t) and q(t), the
relationships are not unique due to the multivalues in association with the triangle functions.
For instance, we get cβ∗ = ±1 as sβ∗ = 0. To uniquely determine the relationship, we need
to analyze the temporal evolution of p∗(t) with respect to time.

Among the four equations shown in (44), let us select the equations f1(t) = 0, f2(t) = 0
and f4(t) = 0 to establish the relationship between p∗(t) and q(t). The Jacobian matrix is

J =

⎡

⎢
⎢
⎢
⎣

∂f1
∂ξ∗

∂f1
∂η∗

1

∂f1
∂η∗

2

∂f2
∂ξ∗

∂f2
∂η∗

1

∂f2
∂η∗

2

∂f4
∂ξ∗

∂f4
∂η∗

1

∂f4
∂η∗

2

⎤

⎥
⎥
⎥
⎦

=
⎡

⎢
⎣

−Rcq4 cq5 sβ∗ −1 0

−Rsq4 cq5 sβ∗ 0 −1

cβ∗ 0 0

⎤

⎥
⎦ . (45)

The matrix f,q is written as

f,q = [I W], (46)

where I is a unit matrix and

W =
⎡

⎢
⎣

−Rsq4 cq5 cβ∗ −Rcq4 sq5 cβ∗ −Rcq4 cq5 sβ∗

Rcq4 cq5 cβ∗ −Rsq4 sq5 cβ∗ −Rsq4 cq5 sβ∗

0 0 cβ∗

⎤

⎥
⎦ . (47)
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In terms of (6), together with f,t = 0 and sβ∗ = 0, the contact equations governing the
evolution of parameters p∗(t) can be expressed as follows:

⎧
⎪⎨

⎪⎩

η̇∗
1(t) = q̇1(t) − Rsq4 cq5 cβ∗ q̇4(t) − Rcq4 sq5 cβ∗ q̇5(t),

η̇∗
2(t) = q̇2(t) + Rcq4 cq5 cβ∗ q̇4(t) − Rsq4 sq5 cβ∗ q̇5(t),

ξ̇
∗
(t) = −q̇6(t).

(48)

Before integrating (48), we need to know the initial values of p∗(t0) and the initial con-
figuration q(t0). We choose cβ∗ = 1 at the initial time t0, then there are the following rela-
tionships between p∗(t0) and q(t0):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

η∗
1(t0) = q1(t0) + Rcq4 cq5 ,

η∗
2(t0) = q2(t0) + Rsq4 cq5 ,

q3(t0) = Rsq5 ,

β∗(t0) = q6(t0) + ξ ∗(t0) = 0.

(49)

In terms of the initial condition in (49), the integration of (48) leads to

⎧
⎪⎨

⎪⎩

η∗
1(q) = q1(t) + Rcq4 cq5 ,

η∗
2(q) = q2(t) + Rsq4 cq5 ,

β∗(q) = q6(t) + ξ ∗(t) = 0,

(50)

which present the explicit relations between location parameters p∗ and generalized coordi-
nates q under the initial conditions given by (49). As cβ∗ = 1 is chosen at the initial time t0,
it is clear that we always have cβ∗ = 1 and sβ∗ = 0 at any moment.

Substitution of the third equation in (50) into f3(t) = 0, given by (44), allows the contact-
induced geometric constraint equation to be expressed as

gc(q, t) = q3(t) − Rsq5 = 0, (51)

which takes a form that can be intuitively obtained by analyzing a placed configuration of
the system.

6.3 Relative velocity and velocity constraints

Since �̇r2 = 0, the relative velocity at the contact point in the contact frame is directly ex-
pressed as

�vc = −�̇r1 = v1
c i + v2

c j + v3
c k, (52)

where

⎧
⎪⎨

⎪⎩

v1
c = −q̇1 + R(sq4 cq5 cβ∗ q̇4 + cq4sq5 cβ∗ q̇5 + cq4 cq5 sβ∗ q̇6 + cq4 sβ q̇4 + sq4 cβ∗ q̇6),

v2
c = −q̇2 − R(cq4 cq5 cβ∗ q̇4 − sq4 sq5 cβ∗ q̇5 − sq4 cq5 sβ∗ q̇6 − sq4 sβ∗ q̇4 + cq4 cβ∗ q̇6),

v3
c = −q̇3 + Rcq5 cβ∗ q̇5 + Rsq5 sβ∗ q̇6.

(53)
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During the motion of the contact point, parameter ξ ∗ satisfies sβ∗ = 0 and cβ∗ = 1. Sub-
stituting the above relationship into (53) leads to

⎧
⎪⎨

⎪⎩

v1
c = −q̇1 + R(sq4 cq5 q̇4 + cq4 sq5 q̇5 + sq4 q̇6),

v2
c = −q̇2 − R(cq4 cq5 q̇4 − sq4 sq5 q̇5 + cq4 q̇6),

v3
c = −q̇3 + Rcq5 q̇5.

(54)

In terms of Eq. (11), namely, d(�r2(t)−�r1(t))

dt
= 0, this identity has the following equivalent

form:

v1
c i + v2

c j + v3
c k + [

η̇1
∗(t) + Rsq4 ξ̇

∗]i + [
η̇∗

2(t) − Rcq4 ξ̇
∗]j = 0, (55)

where the contact conditions sβ∗ = 0 and cβ∗ = 1 are employed in obtaining (55).
It is clear from (55) that we have v3

c = 0. Based on the last equation in Eq. (54), the
expression v3

c = 0 is exactly the derivative of the geometric constraint equation given by
(51). This point agrees with the statement in Proposition 3, where the GCs in a point contact
can be equivalently expressed in first order differential forms.

As v1
c = v2

c = 0, we can get, from (55), the equations that should be satisfied by the
location parameters:

{
η̇1

∗(t) = −Rsq4 ξ̇
∗,

η̇∗
2(t) = Rcq4 ξ̇

∗.
(56)

Note that Rξ̇ ∗ = ṡ1 is related to the time rate of the circular arc length of the disk. Denote

by ṡ2 =
√

η̇1
∗2(t) + η̇∗2

2 (t) the speed of the moving contact point along its trajectory on
the horizontal plane. We easily find ṡ1 = ṡ2. This agrees with the conclusions given by
Proposition 5, and is a well-known geometric condition for a rolling disk [4].

6.4 Dynamical equations

Suppose that the disk about its geometric center B has an inertial tensor ΘC expressed in
frame RB as ΘC = diag{J1, J2, J3}, where J1 = J2 = 1

4mr2, and J3 = 1
2mr2. The disk under

gravity moves with an absolute angular velocity Ω with components (ω1,ω2,ω3) in the
frame RB . They are related with the three Euler’s parameters as follows:

⎧
⎪⎨

⎪⎩

ω1 = q̇5,

ω2 = q̇4sq5 ,

ω3 = q̇4cq5 + q̇6.

(57)

Designate the horizontal plane of the table as the zero-value surface of gravitational po-
tential energy. The Lagrangian function of the disk is written as:

L = 1

2
m

(
q̇2

1 + q̇2
2 + q̇2

3

) + 1

2

(
J1ω

2
1 + J2ω

2
2 + J3ω

2
3

) − mgq3, (58)

where g is the acceleration of gravity.
Since Fc in this case is an orthogonal coordinate system with three constant unit vectors

i, j and k, the bases of the dual coordinate system Fc agree with, respectively, those unit
vectors. Therefore, the contact force �F can be decomposed as follows:

�F = F1i + F2j + F3k. (59)
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In terms of Eq. (31) or Eq. (29), the dynamics of such a system is governed by equations

Mq̈ = H + v,q̇Λ, (60)

where Λ = [F1,F2,F3]T ,

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 J3c2
q5

+ J1s2
q5

0 J3cq5

0 0 0 0 J1 0

0 0 0 J3cq5 0 J3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

−mg

J3q̇4q̇5s2q5 − J1q̇4q̇5s2q5 + J3q̇6q̇5sq5

1
2J1q̇4

2s2q5 − 1
2 J3q̇4

2s2q5 − J3q̇6q̇4sq5

J3q̇4q̇5sq5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

v,q̇ =
[

∂v
j
c

∂q̇i

]

(i,j)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

Rsq4 cq5 −Rcq4 cq5 0

Rcq4 sq5 Rsq4 sq5 Rcq5

Rsq4 −Rcq4 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The constraints induced by the contact interactions are as follows:

(i) GC in a first order differential form is given by

v3
c = q̇3 − Rcq5 q̇5 = 0, (61)

which always holds in a persistent contact point.
(ii) Two nonholonomic VCs appear in a stick state of friction:

{
v1

c = q̇1 − R(sq4 cq5 q̇4 + cq4 sq5 q̇5 + sq4 q̇6) = 0,

v2
c = q̇2 + R(cq4 cq5 q̇4 − sq4 sq5 q̇5 + cq4 q̇6) = 0.

(62)

(iii) The above VCs are destroyed when the contact is in a sliding state of friction, and they
should be replaced by the FCs defined as follows:

Fτ
r = F1i + F2j = −μ|F3| vτ

r

‖vτ
r ‖

. (63)
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Clearly, the obtained equations of the constraints and the dynamical equations agree with
the existing results in many textbooks of classical mechanics [5, 6].

7 Conclusions

This paper has presented a general method for formulating the constraints involved in the
point contact interaction between two bodies within a multibody system, as well as the dy-
namical equations of the system. To formulate the contact-induced constraints, one needs
to take into account the evolution of location parameters. To treat the dynamics of a non-
holonomic system with friction, the correlations between the Lagrangian multipliers and the
components of the real contact force should be clarified.

Compared with existing theory in analyzing the contact kinematics and dynamics, our
method has achieved developments in the following aspects: (i) both location parameters
and generalized coordinates are involved in the analysis of the contact motion; (ii) both GCs
and VCs are defined uniformly in the first order differential forms relating to the relative
velocity decomposed in a well-defined contact frame. The expressions make clear the phys-
ical meanings underlying the contact-induced constraints; (iii) the evolution of the location
parameters affects the mathematical properties of the VCs, (iv) the Appell–Chetaev’s rule
is fulfilled naturally, at least in the kinematic constraints of a persistent point contact; (v)
the Lagrange multipliers just correspond to the components of the real contact force decom-
posed in the dual frame of the contact frame.

The present theory can be programmed in a uniform way to handle the contact kinematics
and dynamics of a multibody system subject to a persistent point contact, and thereby they
may find various applications in the field of mechanical systems.
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