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Abstract This paper reveals the relationship between the weighted Moore–Penrose gen-
eralized inverse and the force analysis of overconstrained parallel mechanisms (PMs), in-
cluding redundantly actuated PMs and passive overconstrained PMs. The solution for the
optimal distribution of the driving forces/torques of redundantly actuated PMs is derived in
the form of a weighted Moore–Penrose inverse. Therefore, different force distributions can
be achieved simply by changing the value of the weighted factor matrix in terms of different
optimization goals, and this approach greatly improves computational efficiency in solving
such problems. In addition, the explicit expression is deduced between the weighted Moore–
Penrose generalized inverse and the constraint wrenches solution of general passive over-
constrained PMs (in which each supporting limb may supply single or multiple constraint
wrenches). In this expression, the weighted factor matrix is composed of the stiffness matri-
ces of each limb’s constraint wrenches. As numerical examples, the driving forces/torques
or the constraint forces/couples for two kinds of overconstrained PMs are solved directly by
the weighted Moore–Penrose generalized inverse. The verification results show the correct-
ness of the relationship obtained in this paper between the weighted Moore–Penrose gen-
eralized inverse and the force analysis of overconstrained PMs. Using the Moore–Penrose
generalized inverse to solve the driving forces/torques or constraint forces/couples of over-
constrained PMs provides solutions of a unified, simple form and improves computational
efficiency.
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1 Introduction

The overconstrained parallel mechanism (PM) is a special kind of PM that can be divided
into two categories, based on the characteristics of its constraints. One category is the redun-
dantly actuated PM, which has more driving joints than its degrees of freedom (DOFs). This
type of PM has the advantages of avoiding kinematic singularities [1, 2], increasing load
capability [3] and improving dynamic characteristics [4]. The other category is the passive
overconstrained PM, which contains common constraints or redundant constraints [5–7].
This kind of PM has the advantages of simple structure, high rigidity, high accuracy, and
high load-carrying capacity [8]. The overconstrained PMs have recently been investigated
and applied ever more extensively.

With actuation redundancy, the optimal distribution of all driving forces/torques for a
redundantly actuated PM is difficult to identify. Most studies on this problem have obtained
the optimal force distribution by establishing a specific optimization goal and then com-
bining this goal with a force/torque equilibrium equation. For example, Zheng et al. [9]
discussed the optimal load distribution algorithms for two coordinating industrial robots
that were handling a single object, and these researchers selected the least energy consump-
tion and the minimum exerted force on the object as their optimization goals. Gardner et
al. [10] introduced the partitioned actuator set control method, which offers superior trac-
tion performance for the system. They used this method to solve the force distribution of
redundantly actuated robotic systems with closed kinematic chains. Nahon et al. [11] re-
garded mechanical hands as redundantly actuated kinematic chains (when they are grasping
an object). These authors used a quadratic-programming approach to solve the dynamic
forces of the mechanical hands with the minimum internal force as their optimization goal.
Gao et al. [12] proposed a generalized stiffness matrix method that included all of the ma-
jor system compliances to solve the force distribution of walking machines or multi-fingered
grippers, and their results satisfied the material deformation laws. Huang et al. [13] and Zhao
et al. [14] proposed the weighted coefficient method to solve the optimal distribution of the
over-determinate inputs for walking machines. In addition, based on a decomposition of the
task, constraint and posture space, Sapio et al. [15] presented a novel approach to effec-
tively address the motion control of holonomically constrained multibody systems, which
allows for the simultaneous specification of desired constraint forces. To sum up, none of
the above studies have investigated the explicit relationship between the weighted Moore–
Penrose inverse [16] and the driving forces/torques solution of redundantly actuated PMs
obtained on the basis of differing optimization goals. Although the weighted generalized
inverse has been applied in kinematics and statics of robots [17, 18], its direct application in
the dynamics of redundantly actuated PMs has not yet been reported.

In this paper, we derive the explicit relationship between the weighted Moore–Penrose
generalized inverse and the driving forces/torques solution of redundantly actuated PMs on
the basis of the [13, 14]. With this relationship, we can directly apply the weighted Moore–
Penrose generalized inverse to solve the force distribution of redundantly actuated PMs.

Some investigations have carried out force analyses of passive overconstrained PMs.
Force analysis of a PM with US- and UPS-type limbs (U, P and S represent the universal,
prismatic and spherical joints, respectively) was carried out by Vertechy et al. [19]. Woj-
tyra [20] used three different techniques of Jacobian matrix analysis to detect constraints
and joints for which reactions can be uniquely determined despite the existence of redun-
dant constraints. Afterwards, Wojtyra et al. [21] discussed which parts of the overconstrained
mechanism should be modeled as flexible bodies to obtain a unique set of all-joint reactions.
Huang et al. [22] analyzed the kinetostatics of the 4-R(CRR) overconstrained PM (with R
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and C representing the revolute joint and the cylindrical joint, respectively) on the basis of
reciprocal screw theory. Bi et al. [23] established a complete and solvable dynamic model
of an overconstrained PM by combining the Newton–Euler formation with the compliance
conditions. Gallardo et al. [24] performed the dynamic analysis of a 2-DOF parallel spheri-
cal mechanism on the basis of screw theory and the principle of virtual work. Yao et al. [25]
solved the force distribution problem of a statically indeterminate 6-axis force sensor. Wang
et al. [26] solved the force analysis of a fully pre-stressed 6-axis force/torque sensor with
dual layers. Kerr et al. [27] solved the problem of grasping a rigid object with a hand that
has redundant grasping contacts by taking into account the compliance at each contact point.
Besides, Neto et al. [28] discussed several different methodologies to handle the constraint
violation correction or their stabilization and the existence of redundant constraints during
the solution of the dynamic and kinematic analysis of multibody systems. Among these
methods, the Moore–Penrose generalized inverse can be used to handle the existence of
redundant constraints. However, the above-mentioned studies did not involve the weighted
Moore–Penrose generalized inverse in the process of force analysis of general passive over-
constrained PMs, except for [26, 27], both of which studied special overconstrained PMs.
In these special PMs, each supporting limb supplies only an axial constraint force to the
moving platform, and the analysis of such PMs is relatively easy.

Therefore, in this paper we investigate the application of the weighted Moore–Penrose
generalized inverse in the force analysis of general passive overconstrained PMs, in which
the supporting limbs may supply multiple constraint forces/couples, and not only an axial
constraint force.

The remainder of this paper is organized as follows. The relationship between the
weighted Moore–Penrose generalized inverse and the optimal force distribution of redun-
dantly actuated PMs is explored in Sect. 2. A numerical example is given to verify the cor-
rectness of using the weighted Moore–Penrose generalized inverse in redundantly actuated
PMs. In Sect. 3, we demonstrate the application of the weighted Moore–Penrose generalized
inverse in the force analysis of general passive overconstrained PMs. In Sect. 4, we discuss
the commonalities and differences between applications of the weighted Moore–Penrose
generalized inverse in the force analysis of redundantly actuated PMs and in the analysis of
passive overconstrained PMs. Finally, some concluding remarks are summarized in Sect. 5.

2 Relationship between the weighted Moore–Penrose generalized inverse
and the force analysis of redundantly actuated PMs

In this section, the explicit relationship between the weighted Moore–Penrose generalized
inverse and the optimal driving force/torque distribution of redundantly actuated PMs is
revealed on the basis of [13, 14].

2.1 Derivation of the solution for the force distribution of redundantly actuated
PMs in the form of the weighted Moore–Penrose generalized inverse

A 6-legged walking machine [13], as shown in Fig. 1, whose main body is supported by
at least three legs while moving, can be regarded as a PM composed of three or more sup-
porting limbs (legs), a moving platform (the main body) and a base (the ground). Each leg
consists of three links connected to each other and to the main body by revolute joints. The
contacting relation between each foot and the ground can be regarded as a spherical joint.
Then, the joints of each leg from the ground to the main body are denoted as joints 1, 2,
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Fig. 1 Schematic diagram of a
6-legged walking machine

3, and 4, respectively. The main body has six DOFs, and each leg contains three actuated
revolute joints (joints 2, 3 and 4). Therefore, the total number of actuated joints is greater
than the DOFs of the machine’s body. For this 6-legged walking machine, the PM (which is
composed of the supporting legs, the main body and the ground) is redundantly actuated.

The dynamic equilibrium equation of a redundantly actuated 6-legged walking machine
with n (3 ≤ n ≤ 6) legs contacting the ground at any one moment is as follows [13, 14]:

[
Gp

q

]T{F p} +
n∑

r=1

(
[
gφ

q

]T(r){T φ}(r) +
5∑

m=3

[
Gm

q

]T(r){Fm}(r)

)

= {0} (1)

where {T φ}(r) is a 6-dimensional column vector composed of the input torques (i.e., driving
torques) of the r th leg, with the first three components being zero since they denote the input
torques of the inactive spherical joint, and with the last three components representing the
input torques of the actuated joints 2, 3, 4 within the same leg in sequence. [Gm

q ](r) and [Gp
q ]

are the Jacobian matrices of generalized joint coordinates to the coordinate frames which are
fixed with the r th supporting leg’s mth link and are fixed with the body, respectively. [gφ

q ](r)
is defined as the Jacobian matrix for four joints of the r th leg with respect to the six gener-
alized joint coordinates. {F p} and {F m}(r) are the 6-component force vectors composed of
external loads, weight and inertia forces, which act on the main body and on the mth link of
the r th leg, respectively.

It is assumed that there are no mutual effects among the actuated joints, i.e., they are
considered to be independent of each other. Then, to obtain the optimal distribution of input
torques for a redundantly actuated walking machine, the objective function of optimization
(as selected by the authors of [13, 14]) is as follows:

f obj =
6∑

h=1

T 2
QhAQh +

k∑

j=1

T 2
sjAsj (2)

where TQh (h = 1,2, . . . ,6) represents the hth generalized input torque, i.e., the hth non-
redundant driving torque, Tsj (j = 1,2, . . . , k) represents the j th non-generalized input
torque, i.e., the j th redundant driving torque, and AQh and Asj are positive weighted co-
efficients which can be given different values in terms of different objective functions. For
example, if AQh = 1 and Asj = 1, the objective function (2) means the minimization of the
driving torques of the motors, and if AQh = q̇2

h and Asj = q̇2
j , the objective function (2)
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means the minimization of the energy of the motors, in which q̇h and q̇j represent the driv-
ing velocities of the hth non-redundantly actuated joint and the j th redundantly actuated
joint, respectively.

Rearranging Eq. (2) in matrix form yields

f obj = {T Q}T[AQ]{T Q} + {T s}T[As]{T s} (3)

where

{T Q} = (
TQ1 TQ2 · · · TQ6

)T
, {T s} = (

Ts1 Ts2 · · · Tsk

)T
,

[AQ] =

⎛

⎜
⎜⎜
⎝

AQ1 0 0 0
0 AQ2 0 0

0 0
. . . 0

0 0 0 AQ6

⎞

⎟
⎟⎟
⎠

, [As] =

⎛

⎜
⎜⎜
⎝

As1 0 0 0
0 As2 0 0

0 0
. . . 0

0 0 0 Ask

⎞

⎟
⎟⎟
⎠

,

and both [AQ] and [As] are positive definite matrices that are recognized as the weighted
factor matrices.

For this situation, the general expression of the weighted optimization distribution of
{T s} was derived under the constraint condition in Eq. (1) as follows [13, 14]:

{T s} = −([As] + [
gφ

q

][AQ][gφ
q

]T)−1[
gφ

q

][AQ]
(

n∑

r=1

5∑

m=3

[
Gm

q

]T(r){Fm}(r) + [
Gp

q

]T{F p}
)

.

(4)
In addition, the relationship between {T Q} and {T s}, for which the details are explained

in [13, 14], is derived from Eq. (1) as

{T Q} = −
(

n∑

r=1

5∑

m=3

[
Gm

q

]T(r){F m}(r) + [
Gp

q

]T{F p} + [
gφ

q

]T{T s}
)

. (5)

The above equation can be rearranged as

n∑

r=1

5∑

m=3

[
Gm

q

]T(r){Fm}(r) + [
Gp

q

]T{F p} = −({T Q} + [
gφ

q

]T{T s}
)

(6)

which can be further rewritten as

F = − (
I [gφ

q ]T
)({T Q}

{T s}
)

= −GF
f f (7)

where F = ∑n

r=1

∑5
m=3[Gm

q ]T(r){F m}(r) + [Gp
q ]T{F p}, f = ({T Q} {T s})T, and GF

f =
(I [gφ

q ]T) with full row-rank.
Substituting Eq. (4) into Eq. (5) yields

{T Q} = −(
I − [

gφ
q

]T([As] + [
gφ

q

][AQ][gφ
q

]T)−1[
gφ

q

][AQ])F . (8)

Rearranging Eq. (4) and Eq. (8), we can get

f = −
(

I − [gφ
q ]T([As] + [gφ

q ][AQ][gφ
q ]T)−1[gφ

q ][AQ]
([As] + [gφ

q ][AQ][gφ
q ]T)−1[gφ

q ][AQ]

)

F = −W ′F (9)
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where

W ′ =
(

I − [gφ
q ]T([As] + [gφ

q ][AQ][gφ
q ]T)−1[gφ

q ][AQ]
([As] + [gφ

q ][AQ][gφ
q ]T)−1[gφ

q ][AQ]

)

.

To reveal the relationship between the weighted Moore–Penrose generalized inverse and
the force analysis of the redundantly actuated PMs, we introduce the following definition
and theorem.

Definition [16, 29, 30] Let A ∈ Cm×n be of rank r , M and N be positive definite Hermite
matrices of orders m and n, respectively. Then, the unique matrix X ∈ C

n×m that satisfies
the following four conditions

(a) AXA = A, (b) XAX = X, (c) (MAX)∗ = MAX,

(d) (NXA)∗ = NXA
(10)

is called the weighted Moore–Penrose generalized inverse of the matrix A, and is denoted
by X = A+

MN .

The A+
MN is unique and can be calculated by [29, 31]

A+
MN = N− 1

2
(
M

1
2 AN− 1

2
)+

M
1
2 (11)

where the superscripts “ 1
2 ” and “− 1

2 ” denote the square root and the inverse square root of
a given matrix, respectively. A simple method to calculate the square root and the inverse
square root of a positive definite matrix is provided in the Appendix.

Besides, the A+
MN can also be obtained by [18, 30]

A+
MN = N−1C∗(CN−1C∗)−1(

B∗MB
)−1

B∗M (12)

where A = BC is a full-rank factorization of A, in which B ∈ C
m×r has full column-rank,

C ∈C
m×r has full row-rank.

Theorem [16] Let A ∈ C
m×(r+p), A = [U V ], where U ∈ C

m×r and V ∈ C
m×p consist of

the first r columns and the last p columns of A, respectively. Assume that N is an (r +
p) × (r + p) positive definite matrix. If N is partitioned as N = ( N r L

L∗ Np

)
, then the weighted

Moore–Penrose generalized inverse of the partitioned matrix A is

A+
M,N =

(
U+

M,Nr (I − V H ) − (I − U+
M,NrU)N−1

r LH

H

)
(13)

where

H = C+
M,K1 + (

I − C+
M,NrC

)
K−1

1

(
D∗N r − L∗)U+

M,Nr ,

C = (
I − UU+

M,Nr

)
V ,

D = U+
M,NrV ,

K1 = Np + D∗N rD − (
D∗L + L∗D

) − L∗(I − U+
M,NrU

)
N−1

r L,

and M is a m × m positive definite matrix.
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In view of the expression of GF
f as shown in Eq. (7), let U = I , V = [gφ

q ]T and se-

lect N = W = ( [AQ] 0
0 [As ]

)
. Thus, N r = [AQ], Np = [As] and L = 0. In addition, for the

redundantly actuated walking machine, Eq. (7) is a compatible equation, so we let M = I .

Then, substituting these matrices into the above theorem, it can be found that the matrix W ′

is just the W -weighted Moore–Penrose generalized inverse of the partitioned force Jacobian
matrix GF

f .
Therefore, the optimal distribution of all driving torques of a 6-legged walking machine

can be solved directly using the W -weighted Moore–Penrose generalized inverse of the
partitioned force Jacobian matrix GF

f , with W = ( [AQ] 0
0 [As ]

)
as the weighted factor matrix.

Considering that GF
f is a full row-rank matrix, its W -weighted Moore–Penrose general-

ized inverse has the following general expression, regardless of whether GF
f is partitioned:

(
GF

f

)+
W

= W− 1
2
(
GF

f W− 1
2
)+ = W− 1

2
(
GF

f W− 1
2
)T(

GF
f W− 1

2
(
GF

f W− 1
2
)T)−

= W−(
GF

f

)T(
GF

f W−(
GF

f

)T)−
. (14)

Therefore, the general expression of the optimal distribution for all input torques of a walk-
ing machine, as shown in Eq. (9), can be rewritten in the following form:

f = −W ′F = −(
GF

f

)+
W

F = −W−(
GF

f

)T(
GF

f W−(
GF

f

)T)−
F . (15)

When taking the elastic deformations of input joints into consideration, we should se-
lect the total elastic potential energy of the walking machine as the objective function of
optimization [26, 27] as follows:

f obj =
1

2

(
6∑

h=1

kQhδ
2
Qh +

k∑

j=1

ksj δ
2
sj

)

(16)

where kQh (h = 1,2, . . . ,6) and ksj (j = 1,2, . . . , k) represent the actuated stiffness of the
generalized joints and the non-generalized joints, respectively; δQh and δsj represent the
elastic deformation of the generalized joints and the non-generalized joints, respectively.
Therefore, kQh and δQh, ksj and δsj satisfy the following equations:

δQh = TQh/kQh and δsj = Tsj /ksj . (17)

Substituting Eq. (17) into Eq. (16), we obtain

f obj =
1

2

(
6∑

h=1

T 2
Qhk

−1
Qh +

k∑

j=1

T 2
sj k

−1
sj

)

. (18)

Comparing Eq. (18) and Eq. (2), we find that the only difference between these two
equations is that AQh and Asj in Eq. (2) are replaced by k−1

Qh and k−1
sj in Eq. (18), and thus

the optimal distribution of all actuated torques can be obtained with the minimum elastic
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potential energy of the whole machine by Eq. (15), where

W =
([AQ] 0

0 [As]
)

, [AQ] =

⎛

⎜⎜
⎜
⎝

k−1
Q1 0 0 0
0 k−1

Q2 0 0

0 0
. . . 0

0 0 0 k−1
Q6

⎞

⎟⎟
⎟
⎠

and

[As] =

⎛

⎜⎜
⎜
⎝

k−1
s 0 0 0
0 k−1

s2 0 0

0 0
. . . 0

0 0 0 k−1
sk

⎞

⎟⎟
⎟
⎠

.

(19)

In general, for a redundantly actuated PM with an actuation redundancy r satisfying
r = m− n, in which m denotes the number of actuations and n represents the number of the
DOFs of the PM, its dynamic equilibrium equation can always be arranged in the following
form [11, 32]:

(
GF

f

)
n×m

f m×1 = (/SF )n×1 (20)

where f is a column vector composed of m driving forces/torques, GF
f is the n × m force

Jacobian matrix, and /SF is the n-dimensional generalized external force vector, which is
composed of the supporting links’ and the moving platform’s inertial forces/torques, gravity
and external forces/torques.

To find an optimal solution to the force analysis of the redundantly actuated PMs given
by Eq. (20), the objective function shown as Eq. (2) can still be selected. Thus, the opti-
mal distribution of driving forces/torques of a general redundantly actuated PM can also be
solved directly using the W -weighted Moore–Penrose generalized inverse, that is,

f = (
GF

f

)+
W
/SF . (21)

Then, the following conclusions can be drawn:

1. If W = diag(q̇2
1 q̇2

2 · · · q̇2
n), where q̇i denotes the angular/linear velocity of the ith ac-

tuated joint, the objective function of optimization transforms into f obj = ∑n

i=1 f 2
i q̇2

i .
Then, using Eq. (21), f can be obtained with the minimum input energy of the motors.

2. If W = I , then Eq. (21) can be further simplified as follows:

f = (
GF

f

)T(
GF

f

(
GF

f

)T)−1
/SF = (

GF
f

)+
/SF (22)

where (GF
f )+ is just the pseudo-inverse of the force Jacobian matrix GF

f . Then, the ob-
jective function of optimization transforms into f obj = ∑n

i=1 f 2
i , and f can be obtained

in terms of the minimum driving forces/torques [9, 13, 33].
3. If W = diag(k−1

1 k−1
2 · · · k−1

n ), where ki denotes stiffness of the ith actuated joint,
then based on the above analyses, the objective function of optimization is f obj =
1
2

∑n

i=1 kiδ
2
i = 1

2

∑n

i=1 f 2
i k−1

i . Then, using Eq. (21), f can be obtained with minimum
elastic potential energy of the whole mechanism [34].

By using Eq. (21) to solve the driving forces/torques for a general redundantly actuated
PM, we can choose different values of the positive definite weighted factor matrix W , so
that different optimization goals can be achieved. More importantly, this method has the
advantages of unified and simple expression and high computational efficiency.
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2.2 Solving the optimal input distribution of the redundantly actuated PM using
the weighted Moore–Penrose generalized inverse

Based on the above analyses, the detailed steps for solving the optimal input distribution of
redundantly actuated PMs can be summarized as follows:

1. Establish the force/torque equilibrium equation for the generalized external forces and
all driving forces/torques to get the force Jacobian matrix GF

f , as in Eq. (7).
2. Determine the value of the positive definite weighted factor matrix W by selecting an

optimization goal.
3. Solve the optimal distribution of all driving forces/torques by resorting to the W -

weighted Moore–Penrose inverse of the matrix GF
f , using Eq. (21).

In what follows, the 6-legged walking machine is taken as a numerical example to ver-
ify the correctness of using the weighted Moore–Penrose generalized inverse to solve the
optimal force distribution of the redundantly actuated PMs.

The set of parameters of the 6-legged walking machine is given as follows. The size of
the main body is 380 × 190 × 20 mm3. The lengths of each leg’s links from the ground to
the main body are l1 = 160 mm, l2 = 120 mm, and l3 = 80 mm, respectively. The weight of
the main body is 100 N. When the machine is walking, the length of each step is 180 mm.
The span of the feet located on both sides of the main body is 590 mm, and the height of
the main body’s center is 150 mm. The masses of each leg are neglected, and the minimum
driving torques are selected as the optimization goal.

At a moment when the main body is supported by legs 1, 3 and 5, we choose joint 2 of
leg 1, joints 3 and 4 of leg 3, and joints 2, 3 and 4 of leg 5 as the generalized actuated joints,
with the rest of the joints being non-generalized actuated joints. Then, the input torques of
the non-generalized actuated joints and those of the generalized actuated joints can be solved
by Eqs. (4) and (5) (as derived by Huang et al. [13]), respectively. Otherwise, all of the input
torques can be solved directly using the W -weighted Moore–Penrose generalized inverse,
i.e., Eq. (21) derived in this paper. The resulting two sets of values are shown in Table 1.

Table 1 shows that the non-generalized input torques of the walking machine (as solved
by Eq. (4)) and the generalized input torques (as solved by Eq. (5)) are exactly equal to
those obtained directly by Eq. (21). Therefore, the force analysis of a redundantly actuated
PM can be solved directly by resorting to the weighted Moore–Penrose inverse.

In addition, the results obtained by other optimal methods for the force distribution of the
redundantly actuated PMs are consistent with those obtained by directly using the weighted
Moore–Penrose generalized inverse. For example, the optimal force solution of a planar re-
dundantly actuated hand as solved by Nahon et al. [11] is exactly equal to that solved by
Eq. (21) with the same weighted factor matrix. The force optimization of a planar redun-
dantly actuated 2-DOF PM as obtained by Wu et al. [32] (with the minimum deformations
of key components as the optimization goal) is consistent with that obtained by Eq. (21)
(with the weighted factor matrix composed of the deformations of each component under
the effects of unit force/torque).

3 Relationship between the weighted Moore–Penrose generalized inverse
and the force analysis of passive overconstrained PMs

In this section, the relationship between the weighted Moore–Penrose generalized inverse
and the force analysis of passive overconstrained PMs is discussed on the basis of the results
obtained previously by the authors of [26, 27, 35].
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Table 1 Input torques solved by the expressions derived by Huang et al. [13] and by the W -weighted Moore–
Penrose generalized inverse

Supporting
legs

Actuated
joints

Input torques solved by the expressions
derived by Huang et al. [13]

Input torques solved by the
W -weighted Moore–Penrose
generalized inverse (i.e., Eq. (21))
(N·mm)

Input torques
solved by Eq. (4)
(N·mm)

Input torques
solved by Eq. (5)
(N·mm)

leg 1 joint 2 −8.8064 −8.8064

joint 3 −7.7058 −7.7058

joint 4 13.5907 13.5907

leg 3 joint 2 8.8064 8.8064

joint 3 7.7058 7.7058

joint 4 13.5907 13.5907

leg 5 joint 2 0 0

joint 3 0 0

joint 4 27.1814 27.1814

3.1 Passive overconstrained PMs in which each limb supplies only one constraint
force/couple

For a passive overconstrained PM in which each supporting limb supplies only one con-
straint force along the axial direction of the limb to its moving platform (such as the 7-SS
6-axis force sensor PM [26] or the redundant grasping problem [27]), its force analyses
were carried out by Wang et al. [26] and Kerr et al. [27]. These researchers found that
the solution of each limb’s axial force or each grasping force is just the stiffness-weighted
Moore–Penrose generalized inverse solution, as shown below:

f = (
GF

f

)+
W
/SF = W−(

GF
f

)T(
GF

f W−(
GF

f

)T)−1
/SF (23)

where f is the vector composed of all limbs’ axial forces or all grasping forces, /SF denotes
the 6-dimensional external force, GF

f is the matrix mapping f into /SF , W is the stiffness-
weighted factor matrix that is given by W = diag−1(k1 k2 · · · kn), and ki denotes each limb’s
axial stiffness or contact stiffness.

If the axial stiffness or contact stiffness of all limbs is completely equal, then Eq. (23)
can be simplified into

f = (
GF

f

)+
/SF . (24)

From Eq. (23), we can conclude that by using the weighted Moore–Penrose generalized
inverse, the constraint forces/couples of the passive overconstrained PMs (in which each
limb supplies only one constraint force/couple to the moving platform) can be solved di-
rectly.

3.2 Passive overconstrained PMs in which each limb supplies multiple constraint
forces/couples

As mentioned in Sect. 3.1, for the special kind of passive overconstrained PMs in which
each supporting limb supplies only one constraint force/couple to the moving platform, the
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Fig. 2 Schematic diagram of a
general passive overconstrained
PM

weighted Moore–Penrose generalized inverse can be directly used to solve the constraint
forces/couples. However, for the general passive overconstrained PMs in which each limb
supplies more than one forces/couples to the moving platform, it is not clear that whether
the weighted Moore–Penrose generalized inverse can be directly used to solve the constraint
forces/couples. For example, the 3-PRRR orthogonal 3-DOF translational overconstrained
PM [35], each supporting limb of which supplies an actuated force and two constraint cou-
ples to the moving platform. In the following, we will investigate whether the weighted
Moore–Penrose generalized inverse can be directly used to the force analysis of the general
passive overconstrained PMs.

The schematic diagram of a general passive overconstrained PM that consists of a moving
platform, a fixed base and t supporting limbs is shown in Fig. 2. Assume that the ith limb
supplies Ni (i = 1,2, . . . , t ) constraint wrenches (including the actuation wrenches, which
are not reciprocal to the twist of the driving joint, but are reciprocal to all the twists of
the other joints within the ith limb [36]) to the moving platform, as denoted by /S i

j (j =
1,2, . . . ,Ni ), respectively. For a general passive overconstrained PM, the inequality N1 +
N2 + · · · + Nt > 6 is always satisfied.

For convenience of analysis, a reference coordinate system O-XYZ is attached at a central
point O on the moving platform. In the absence of gravity and friction, the force/torque
equilibrium equation of the moving platform can be expressed as

/SF = f 1
1 /̂S1

1 + f 1
2 /̂S1

2 + · · ·f 1
N1/̂S

1
N1 + · · · + f t

1 /̂S
t
1 + f t

2 /̂S
t
2 + · · ·f t

Nt /̂S
t
Nt = GF

f f (25)

where /SF stands for the 6-dimensional external wrench imposed on the moving platform,
f = (f 1

1 f 1
2 · · · f 1

N1 · · · f t
1 f t

2 · · · f t
Nt )

T in which f i
j (i = 1,2, . . . , t, j = 1,2, . . . ,Ni) is

the magnitude of /S i
j , and GF

f is the 6 × (N1 + N2 + · · · + Nt) matrix mapping f into /SF ,
which is given by

GF
f =

(
/̂S1

1 /̂S1
2 · · · /̂S1

N1 · · · /̂S t
1 /̂S t

2 · · · /̂S t
Nt

)
(26)

in which /̂S i
j represents the unit screw of /S i

j , expressed in the coordinate system O-XYZ.
The general expression of the magnitudes of the Ni constraint wrenches supplied by the

ith supporting limb was derived by Xu et al. [35] as

f i = K iJ
T
i K

−1/SF , i = 1,2, . . . , t (27)
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where f i = (f i
1 f i

2 · · · f i
Ni

)T, J i = (/̂S i
1 /̂S i

2 · · · /̂S i
Ni

), K i is the Ni × Ni stiffness matrix of
the ith limb’s constraint wrenches (including the actuation wrenches), which is the mapping
matrix between the magnitudes of the limb’s constraint wrenches and the elastic deforma-
tions of the limb’s end in the axes of constraint wrenches under the action of those wrenches
[35], and K is the stiffness matrix of the whole mechanism, which can be obtained by

K = J 1K1J
T
1 + J 2K2J

T
2 + · · · + J tK tJ

T
t . (28)

It should be noted that for a general passive overconstrained PM, one constraint wrench
may produce coupling deformation in the axis of another constraint wrench within the same
limb. Thus, the stiffness matrix K i of the ith limb’s constraint wrenches is a symmetric
matrix, but not a diagonal matrix, and this matrix has the following form:

K i =

⎛

⎜⎜
⎜⎜
⎝

ci
11 ci

12 · · · ci
1Ni

ci
21 ci

22 · · · ci
2Ni

...
...

...
...

ci
Ni1 ci

Ni2 · · · ci
NiNi

⎞

⎟⎟
⎟⎟
⎠

−1

(29)

where ci
jk = ci

kj (j, k = 1,2, . . . ,Ni ), and ci
jk denotes the elastic deformation of the ith

limb’s end in the axis of constraint wrench /S i
j under the action of unit wrench /S i

k . Thus,
if the deformations generated by /S i

j and /S i
k are independent of each other, then ci

jk = 0
(j �= k), or on the contrary, ci

jk �= 0.
Let W = diag−(K1 K2 · · · K t ), then Eq. (28) can be rearranged as

K = GF
f W−(

GF
f

)T
. (30)

Combining the matrices GF
f and W , Eq. (27) can be rewritten as

f = W−(
GF

f

)T
K−1/SF . (31)

Substituting Eq. (30) into Eq. (31) yields

f = W−(
GF

f

)T(
GF

f W−(
GF

f

)T)−1
/SF = (

GF
f

)+
W
/SF (32)

where

W =

⎛

⎜⎜
⎜
⎝

K1 0 0 0
0 K2 0 0

0 0
. . . 0

0 0 0 K t

⎞

⎟⎟
⎟
⎠

−1

is the (N1 + N2 + · · · + Nt) × (N1 + N2 + · · · + Nt) weighted factor matrix.
From Eq. (32), it can be seen that the weighted Moore–Penrose generalized inverse can

also be applied to the force analysis of the general passive overconstrained PMs in which
each supporting limb supplies more than one force/couple. The weighted factor matrix W is
a symmetric matrix, as it is composed of the non-diagonal stiffness matrices K i of all limbs’
constraint wrenches. For redundantly actuated PMs, however, the weighted factor matrix W

is a diagonal matrix, as it is assumed that there are no mutual effects among the actuated
joints, i.e., a condition of ci

jk = 0 (j �= k) always exists.
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3.3 Solving the constraint wrenches of the passive overconstrained PM using the
weighted Moore–Penrose inverse

On the basis of the analyses in Sects. 3.1 and 3.2, the detailed steps for the force analysis
of a general passive overconstrained PM by using the weighted Moore–Penrose generalized
inverse can be summarized as follows:

1. Establish the force/torque equilibrium equation of the moving platform to get the map-
ping matrix GF

f , as shown in Eq. (25).
2. Solve the stiffness matrix K i of each supporting limb’s constraint wrenches (including

the actuation wrenches), the details of which are available in [35]. For the overconstrained
PMs in which each limb contains only one force/couple, the stiffness matrix K i is equal
to ki . Although each limb contains more than one force/couple, K i is a positive definite
symmetric matrix.

3. Construct the positive definite weighted factor matrix W as W = diag−(K1 K2 · · · K t ).
4. Then, the force analysis of the passive overconstrained PM can be solved directly by

Eq. (32).

For passive overconstrained PMs, the W -weighted Moore–Penrose generalized inverse has
the physical meaning of minimizing the elastic potential energy of the mechanism because
the weighted factor matrix W consists of the stiffness matrices of each supporting limb’s
constraint wrenches.

In what follows, numerical examples are given to verify the correctness of using the
weighted Moore–Penrose generalized inverse to solve the constraint wrenches of general
passive overconstrained PMs. Concerning the passive overconstrained PMs in which each
limb supplies only a constraint force, Kerr et al. [27] and Wang et al. [26] have validated
that the constraint forces solution is equal to the W -weighted Moore–Penrose generalized
inverse solution, so that no more numerical examples for these cases are given. As for the
passive overconstrained PMs in which each limb supplies multiple constraint forces/couples,
we take the 2-RPU+SPR passive overconstrained PM [37] as a numerical example.

The schematic diagram of the 2RPU+SPR passive overconstrained PM is shown in
Fig. 3. This PM consists of a moving platform, a fixed base and three supporting limbs.
The first two limbs are of identical kinematic structure, and they connect the fixed base to
the moving platform by a passive R joint, an actuated P joint and a passive U joint, in se-
quence. The third limb connects the fixed base to the moving platform by a passive S joint,
an actuated P joint and a passive R joint, in sequence. In addition, for the RPU limb, the
axis of the R joint is parallel to the axis of the U joint close to the base, and is perpendicular
to the axis of the P joint within the same limb. The axes of the two R joints within the two
RPU limbs are parallel to each other, and the axes of the two U joints close to the moving
platform are collinear. For the SPR limb, the axis of the R joint is parallel to the axis of the
U joint close to the moving platform of the RPU limb.

For the purpose of analysis, a reference coordinate system O-XYZ is attached at the
midpoint O of the side R1R2 on the base, as shown in Fig. 3, with the X-axis parallel to the
axis of the R joint within the RPU limb, and the Z-axis perpendicular to the base. For the
RPU limb, reciprocal screw theory indicates that three wrenches are imposed on the moving
platform. These wrenches include a driving force along the axial direction of the limb, a
constraint force parallel to the X-axis and passing through the center of the U joint within
the corresponding limb, and a constraint couple perpendicular to the two axes of the U joint.
These wrenches are denoted by /S i

j (i = 1,2, j = 1,2,3), respectively. The SPR limb exerts
two wrenches to the moving platform, namely, a driving force along the axial direction of the
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Fig. 3 Schematic diagram of the
2RPU+SPR passive
overconstrained PM

limb and a constraint force passing through the center of the S joint and parallel to the axis of
the R joint within this limb. These two wrenches are denoted by /S3

j (j = 1,2), respectively.
To solve the constraint forces/couples (including the driving forces) of the 2RPU+SPR

mechanism using the weighted Moore–Penrose generalized inverse, the mapping matrix GF
f

(which maps the constraint forces/couples f into the external wrench /SF ) should be built
first.

The force/torque equilibrium equation of the moving platform for the 2RPU+SPR mech-
anism can be expressed as

/SF = f 1
1 /̂S1

1 + f 1
2 /̂S1

2 + f 1
3 /̂S1

3 + f 2
1 /̂S2

1 + f 2
2 /̂S2

2 + f 2
3 /̂S2

3 + f 3
1 /̂S3

1 + f 3
2 /̂S3

2 = GF
f f (33)

where GF
f = (/̂S1

1 /̂S1
2 /̂S1

3 /̂S2
1 /̂S2

2 /̂S2
3 /̂S3

1 /̂S3
2) is a 6 × 8 mapping matrix.

Second, the weighted factor matrix W should be derived.
The stiffness matrix K1 of the R1P1U1 limb’s constraint wrenches can be obtained by

the following steps [35].
For the purpose of analysis, a local coordinate system o1-x1y1z1 is attached at the end

of the R1P1U1 limb, as shown in Fig. 3, with the y1-axis parallel to the axis of the R joint
within the R1P1U1 limb, and the z1-axis pointing along the axis of the limb. Thus, the unit
screws of the actuation wrench /S1

1 and the constraint wrenches /S1
2 and /S1

3 can be expressed
in the coordinate frame o1-x1y1z1 as

⎧
⎪⎨

⎪⎩

o1/̂S1
1 = (0 0 1 0 0 0)T

o1/̂S1
2 = (0 1 0 0 0 0)T

o1/̂S1
3 = (0 0 0 sin θ1 0 cos θ1)

T

(34)

where θ1 is the angle between /S1
1 and /S1

3.



The weighted Moore–Penrose generalized inverse . . . 377

Based on the analysis method proposed by Dai et al. [38, 39], the compliance matrix of
the R1P1U1 limb can be expressed in the coordinate frame o1-x1y1z1 as

o1C1 =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜
⎝

l31
3EI1

0 0 0
l21

2EI ′′
1

0

0
l31

3EI1
0 − l21

2EI ′′
1

0 0

0 0 l1
EA1

0 0 0

0 − l21
2EI ′′

1
0 l1

EI ′
1

0 0
l21

2EI ′′
1

0 0 0 l1
EI ′

1
0

0 0 0 0 0 l1
GIp1

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟
⎠

(35)

where l1 = l11 + l12, I1 = I11I12l31
l312I11+(l311+3l211l12+3l212l11)I12

, I ′
1 = I11I12l1

l11I12+l12I11
, I

′′
1 = I11I12l21

l212I11+(l211+2l11l12)I12
,

A1 = A11A12l1
l11A12+l12A11

, Ip1 = Ip11Ip12l1
l11Ip12+l12Ip11

, l11 and l12 denote the length of links R1P1 and P1U1,

A11 and A12 are the cross-sectional areas of links R1P1 and P1U1, E and G are the elastic
modulus and shear modulus of links R1P1 and P1U1, and I11, Ip11, I12 and Ip12 denote the
inertia parameters of the cross-section of links R1P1 and P1U1, respectively.

Then, under the effect of the R1P1U1 limb’s constraint wrenches /S1
1, /S1

2 and /S1
3, the

deflection twist generated at the end of the R1P1U1 limb is

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

δ1x

δ1y

δ1z

ψ1x

ψ1y

ψ1z

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

= o1C1

(
f 1

1
o1/̂S1

1 + f 1
2

o1/̂S1
2 + f 1

3
o1/̂S1

3

) =

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎝

0

f 1
2

l31
3EI1

− f 1
3 sin θ1

l21

2EI
′′
1

f 1
1

l1
EA1

−f 1
2

l21

2EI
′′
1

+ f 1
3 sin θ1

l1
EI ′

1

0
f 1

3 cos θ1
l1

GIp1

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎠

. (36)

Thus, the overall deflection of the R1P1U1 limb’s end in the axes of the constraint
wrenches /S1

1, /S1
2 and /S1

3 in the local coordinate frame o1-x1y1z1 can be obtained as

⎛

⎜
⎝

δ1
1

δ1
2

ψ1
3

⎞

⎟
⎠ =

(
o1/̂S1

1
o1/̂S1

2
o1/̂S1

3

)T

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

δ1x

δ1y

δ1z

ψ1x

ψ1y

ψ1z

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

=

⎛

⎜⎜
⎜
⎝

f 1
1

l1
EA1

f 1
2

l31
3EI1

− f 1
3 sin θ1

l21

2EI
′′
1

sin θ1(−f 1
2

l21

2EI
′′
1

+ f 1
3 sin θ1

l1
EI ′

1
) + f 1

3 cos2 θ1
l1

GIp1

⎞

⎟⎟
⎟
⎠

= C1

⎛

⎝
f 1

1
f 1

2
f 1

3

⎞

⎠ (37)
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where

C1 =

⎛

⎜
⎜⎜
⎝

l1
EA1

0 0

0
l31

3EI1
− l21 sin θ1

2EI ′′
1

0 − l21 sin θ1

2EI
′′
1

l1 sin2 θ1
EI ′

1
+ l1 cos2 θ1

GIp1

⎞

⎟
⎟⎟
⎠

,

and K1 = C−1
1 is just the stiffness matrix of the R1P1U1 limb’s constraint wrenches.

Similar to the above solution process, the stiffness matrices of the R2P2U2 and the SPR
limbs’ constraint wrenches can be obtained in the corresponding local coordinate frames as

K2 = C−1
2 =

⎛

⎜⎜
⎜
⎝

l2
EA2

0 0

0
l32

3EI2
− l22 sin θ2

2EI
′′
2

0 − l22 sin θ2

2EI
′′
2

l2 sin2 θ2
EI ′

2
+ l2 cos2 θ2

GIp2

⎞

⎟⎟
⎟
⎠

−1

and K3 = C−1
3 =

(
l3

EA3
0

0
l33

3EI3

)

(38)
where

li = li1 + li2 (i = 2,3), Ai = Ai1Ai2li

li1Ai2 + li2Ai1
(i = 2,3),

I2 = I21I22l
3
2

l3
22I21 + (l3

21 + 3l2
21l22 + 3l2

22l21)I22
, Ip2 = Ip21Ip22l2

l21Ip22 + l22Ip21
,

I ′
2 = I21I22l2

l21I22 + l22I21
, I ′′

2 = I21I22l
2
2

l2
22I21 + (l2

21 + 2l21l22)I22
, and

I3 = I31I32l
3
3

l3
32I31 + (l3

31 + 3l2
31l32 + 3l2

32l31)I32 + 3l31l32l3(I31 − I32)
.

Thus, the weighted factor matrix W of the 2RPU+SPR mechanism can be obtained as

W =
⎛

⎝
K1 0 0
0 K2 0
0 0 K3

⎞

⎠

−1

. (39)

Finally, if the external wrench /SF is given, then the constraint forces/couples of the
2RPU+SPR mechanism can be obtained directly by substituting the mapping matrix GF

f ,
the weighted factor matrix W and the external wrench /SF into Eq. (32).

A set of structural parameters of the 2RPU+SPR overconstrained PM are given as E =
2.07 × 1011 Pa, μ = 0.29, G = E/(2(1 + μ)), l11 = l21 = l31 = 140 mm, d11 = d21 = d31 =
20 mm, and d12 = d22 = d32 = 16 mm, where di1(i = 1,2,3) denotes the cross-sectional
diameter of cylindrical links R1P1, R2P2 and SP3, and di2(i = 1,2,3) denotes the cross-
sectional diameter of cylindrical links P1U1, P2U2 and P3R3. Then, the parameters of the
cross-section of links R1P1, R2P2 and SP3 can be obtained by Ai1 = πd2

i1/4, Ii1 = πd4
i1/64,

Ipi1 = πd4
i1/32, and the parameters of links P1U1, P2U2 and P3R3 can be obtained by

Ai2 = πd2
i2/4, Ii2 = πd4

i2/64 and Ipi2 = πd4
i2/32. In the initial configuration, the moving

platform is parallel to the base, l12 = l22 = 200 mm, l32 = 205.5 mm, and θ1 = θ2 = 10.16◦.
The external wrench imposed on the moving platform expressed in the reference coordi-
nate frame O-XYZ is /SF = (10 N 10 N − 10 N 10 N·m 10 N·m 10 N·m)T. By
resorting to the Adams simulation software, the force simulation model of the 2RPU+SPR
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Fig. 4 Force simulation model
of the 2RPU+SPR mechanism

Table 2 Comparison between the theoretical values of the constraint wrenches and the simulation values

Supporting
limb

Constraint
force/couple

Theoretical
value

Simulation
value

% Error

limb 1 f 1
1 11.9095 N 11.870 N 0.333

f 1
2 5.3360 N 5.343 N 0.131

f 1
3 2.0562 N·m 2.057 N·m 0.039

limb 2 f 2
1 56.9724 N 56.940 N 0.057

f 2
2 −15.2565 N −15.20 N 0.372

f 2
3 2.2447 N·m 2.245 N·m 0.013

limb 3 f 3
1 −80.3106 N −80.240 N 0.088

f 3
2 17.9523 N 17.90 N 0.292

Note: error = (|Theoretical value − Simulation value|/|Simulation value|) × 100 %

mechanism is built up, as shown in Fig. 4, in which all links within each limb are built as
flexible bodies, and the moving platform, base and all kinematic joints are considered as
rigid bodies.

Then, both the theoretical values of all constraint forces/couples (including the driving
forces) of the 2RPU+SPR mechanism solved by Eq. (32) and the corresponding simulation
values measured by the simulation model are listed in Table 2.

It can be seen from Table 2 that the maximum error between the theoretical values and
the simulation values is less than 0.5 %, which effectively shows that the force analysis
results obtained using the weighted Moore–Penrose generalized inverse for the 2RPU+SPR
passive overconstrained PM are correct.

For the 3-PRRR orthogonal 3-DOF translational overconstrained PM, if a set of structure
parameters are given as the same as those used in [35], then the theoretical results obtained
by Eq. (32) in this paper are also identical with those obtained by Xu et al. [35].
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4 Discussion of the application of the weighted Moore–Penrose
generalized inverse in the force analysis of overconstrained PMs

From the previous two sections, we can conclude that the weighted Moore–Penrose general-
ized inverse can be applied to force analyses of both redundantly actuated PMs and passive
overconstrained PMs, and that their solutions have the following common form:

f = (
GF

f

)+
W
/SF (40)

in which f is a vector composed of driving forces/torques or constraint forces/couples, /SF

denotes the generalized external force, GF
f is the matrix mapping f to /SF (which can be

obtained by establishing the force/torque equilibrium equation of the whole mechanism or
of the moving platform), and W is the weighted factor matrix.

In other words, the weighted Moore–Penrose generalized inverse can be applied to solve
not only the forces/torques distribution problems for redundantly actuated PMs, but also the
forces/couples of general passive overconstrained PMs in which each limb supplies multiple
constraint forces/couples to the moving platform.

One difference between these two applications of the weighted Moore–Penrose gener-
alized inverse is that for the redundantly actuated PMs, the value of the weighted factor
matrix W can be given arbitrarily according to different optimization goals, so that there are
an infinite number of solutions for the driving forces/torques distribution problem. For the
passive overconstrained PMs, however, the weighted factor matrix W has a unique value,
because the elastic deformation compatibility relationship of the PMs must be taken into ac-
count. In other words, the optimization goal of the minimum elastic potential energy for this
kind of PM is always achieved passively. Therefore, from this point of view, the solution for
the force analysis of the passive overconstrained PMs can simply be regarded as a special
solution for the redundantly actuated PMs, for cases in which the minimum elastic potential
energy of the whole mechanism is selected as the optimization goal.

The other difference between these two applications concerns the elements of the
weighted factor matrix W . For the redundantly actuated PMs, the weighted factor matrix
W is a diagonal matrix composed of the weighted factors of each actuated joint, and each
factor represents only the weight of the corresponding actuated joint, as it is assumed that
there are no mutual effects among the actuated joints, i.e., they are considered to be inde-
pendent of each other. For the passive overconstrained PMs, however, the weighted factor
matrix W is composed of the stiffness matrices of each limb’s constraint wrenches (includ-
ing the actuation wrenches), and the stiffness matrix of a limb’s constraint wrenches is a
symmetric matrix, not a diagonal matrix, as the elastic deformations of the limb’s end pro-
duced by the constraint wrenches within the same limb are coupled, so the weighted factor
matrix W of this kind of PM is a symmetrical matrix rather than a diagonal matrix.

5 Conclusions

This paper discusses the relationship between the weighted Moore–Penrose generalized in-
verse and the force analyses of both redundantly actuated PMs and passive overconstrained
PMs. The main conclusions reached are as follows:

1. Based on the principles of linear algebra, the optimal force distribution solution of a re-
dundantly actuated walking machine (obtained by the weighted coefficient method [13])
is just the weighted Moore–Penrose generalized inverse solution of the force Jacobian
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matrix GF
f . Therefore, the driving forces/torques of the redundantly actuated PMs can

be solved directly by the weighted Moore–Penrose generalized inverse, and various op-
timization goals can be achieved by choosing different values of the positive definite
weighted factor matrix. In other words, the weighted Moore–Penrose generalized inverse
can be used in the dynamics of the redundantly actuated PMs.

2. By further deriving the general analytical expression for the solution of each supporting
limb’s constraint wrenches in the general passive overconstrained PMs (as obtained by
Xu et al. [35]), it is found that the solution is just the weighted Moore–Penrose gener-
alized inverse solution of the force mapping matrix GF

f , in which the weighted factor
matrix consists of the stiffness matrices of each limb’s constraint wrenches. Therefore,
the constraint forces/couples of the general passive overconstrained PMs (in which each
limb may supply single or multiple constraint forces/couples) can be solved directly by
means of the weighted Moore–Penrose generalized inverse.

The relationship between the weighted Moore–Penrose generalized inverse and the force
analysis of overconstrained PMs (including both general redundantly actuated PMs and pas-
sive overconstrained PMs) is that the driving forces/torques or constraint forces/couples can
be solved directly by the weighted Moore–Penrose generalized inverse, which supplies a
simple and highly efficient method for the force analysis of this kind of PM.
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Appendix: A method to calculate the square root and the inverse square
root of a positive definite matrix

Let A, B ∈ Cn×n, if B2 = A, then B is a square root of A, denoted by B = A
1
2 . If B is a

solution of the matrix equation AB2 = I , then B is an inverse square root of A, denoted

by B = A− 1
2 . There is a vast amount of literature focusing on the square root or the inverse

square root of a matrix [40–45]. If A is a nonsingular matrix, its square root and inverse
square root always exist.

Particularly, if A is a positive definite symmetric square matrix, then there exists a unique
positive definite symmetric square root B . Several different methods have been proposed
for finding the square root of a positive definite symmetric square matrix [40, 42]. Here, we
provide a basic method.

Let A, B ∈ C
n×n, if there is an invertible matrix P such that P −1AP = B , then A is

similar to B , denoted by A ∼ B . If A ∼ B , then they have the same eigenvalues but different
eigenvectors. In addition, if A is similar to a diagonal matrix B , then A is diagonalizable.

If A is an n by n positive definite symmetric Hermitian matrix, it can be diagonalized by
using its eigenvectors properly, i.e.,

P −1AP = P TAP = Λ (41)

where P is a unitary matrix whose columns consists of n linearly independent and orthogo-
nal eigenvectors of A, and Λ = diag(λ1, λ2, . . . , λn), in which λi is the ith eigenvalue of A.

From Eq. (41) we can get

A = PΛP −1. (42)
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Since A is a positive definite symmetric Hermitian matrix, all eigenvalues of A are real and
positive, i.e., λi (i = 1,2, . . . , n) > 0. Thus, the square root of the diagonal matrix Λ can be

obtained as Λ
1
2 = diag(λ

1
2
1 , λ

1
2
2 , . . . , λ

1
2
n ). Let B = PΛ

1
2 P −1, then

B2 = BB = (
PΛ

1
2 P −1

)(
PΛ

1
2 P −1

) = PΛ
1
2 P −1PΛ

1
2 P −1 = PΛ

1
2 Λ

1
2 P −1

= PΛP −1 = A. (43)

Then by the definition of the square root of a given matrix, it follows from Eq. (43) that

B = PΛ
1
2 P −1 is the unique square root of A, i.e.,

A
1
2 = PΛ

1
2 P −1. (44)

Similarly, the inverse square root of A can be derived by

A− 1
2 = PΛ− 1

2 P −1. (45)

The weighted factor matrices M and N in Eq. (11) are positive definite symmetric Her-

mitian matrices. Therefore, the M
1
2 , N

1
2 , M− 1

2 and N− 1
2 can be calculated by Eqs. (44)

and (45).
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