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Abstract This work presents a systematic method for the dynamic modeling of multi-rigid
links confined within a closed environment. The behavior of the system can be completely
characterized by two different mathematical models: a set of highly coupled differential
equations for modeling the confined multi-link system when it has no impact with sur-
rounding walls; and a set of algebraic equations for expressing the collision of this open
kinematic chain system with the confining surfaces. In order to avoid the Lagrangian for-
mulation (which uses an excessive number of total and partial derivatives in deriving the
governing equations of multi-rigid links), the motion equations of such a complex system
are obtained according to the recursive Gibbs–Appell formulation. The main feature of this
paper is the recursive approach, which is used to automatically derive the governing equa-
tions of motion. Moreover, in deriving the motion equations, the manipulators are not limited
to planar motions only. In fact, for systematic modeling of the motion of a multi-rigid-link
system in 3D space, two imaginary links are added to the n-real links of a manipulator in
order to model the spatial rotations of the system. Finally, a 2D and a 3D case studies are
simulated to demonstrate the effectiveness of the proposed approach.

Keywords Recursive algorithm · Gibbs–Appell · Finite motion · Impulsive motion ·
Closed environment

1 Introduction

When a multibody system is subjected to impact forces which may originate from external
impulses or impulsive constraints, the velocity of every component of that system changes
abruptly. The dynamic modeling of an open kinematic chain system confined inside a closed
environment has many engineering applications. For example, for the dynamic modeling of
a chain of molecular connections confined in a closed environment or for the mathematical
modeling of humanoid robotic systems that walk on the ground or may collide with side
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barriers, it is necessary to know what happens during the pre-impact, impact and post-impact
time intervals.

The study of impact phenomena in multibody systems goes back to about 40 years ago
when Wittenburg [1] applied the Newton–Euler formulation and graph theory to derive the
motion equations for impact conditions. Chang and Peng [2] used the piecewise model and
Kane’s method to study the single-point frictionless collision between two multibody sys-
tems. In their works, four different types of impulsive constraints were also considered.
Multiple frictional contacts in multibody systems have been investigated by Hurmuzlu and
Marghitu [3]. They have examined the conditions in which two bodies contact each other
while the causing impact occurs elsewhere in the system. Rodriguez and Bowling [4] pre-
sented a method for determining the behavior of a rigid body undergoing multiple, simul-
taneous impacts, and also subjected to the effect of friction. Zhang et al. [5] focused on the
experimental validation of the multiple impact law by applying the Coulomb friction on a
planar block/anvil system. They concluded that the free-rocking experiments can be used
to develop the parameters of the impact law for simulating the dynamics of more complex
systems with base excitations. Gloker [6] studied the conditions under which Newtonian
impacts lead to an energetically consistent post-impact state. In this study, the mechanisms
responsible for a potential violation were also identified. Nonetheless, the main goal of all
the above-mentioned works has been to improve the modeling of contact between colliding
objects; and rigid multibody systems have not been simulated.

In some robotic systems, in order to achieve better results, it is necessary to model the
system with the actual number of interconnected rigid bodies. As more links are used in
modeling a system, the procedures required to derive the relevant motion equations become
more laborious and complicated. Also, the development of an impact model that involves
the multiple points of a multi-rigid link system makes the derivation of motion equations
more difficult. So, it is essential to apply a recursive formulation to automatically obtain the
governing equations. There are numerous recursive algorithms that can be applied to open
kinematic chain systems [7–13]. However, the emphasis of this manuscript is on the less-
frequently-used recursive Gibbs–Appell formulation. Recently, Korayem and Shafei suc-
cessfully employed this method for the systematic modeling of elastic robotic manipulators
[14–16], mobile robotic manipulators [17–19], and manipulators with revolute-prismatic
joints [20, 21]. But, none of these works have considered the effects of impact between a
manipulator and the surrounding walls.

The motion equations of multibody systems including unilateral constraints have already
been well formulated. In fact, the finite motions of multibody systems undergoing impact
can be described by differential equations; and algebraic equations should be used to ex-
press the motions of such systems at the moment of impact. However, the combined use
of these differential–algebraic equations is still limited by high computational complexity,
especially when a large number of rigid links have to be simulated. Therefore, researchers
have tried to improve the recursive algorithms for simulating complex multibody systems
that involve the impact phenomena. Förg et al. [22] proposed a time-stepping method for
dealing with multibody systems with many unilateral constraints. They employed an iter-
ative algorithm based on the Gauss–Seidel relaxation scheme to handle multiple contacts.
A recursive O(n) algorithm based on the Projection Equation was proposed by Gattringer
et al. [23]. In their research, the impact occurring in the transformation phase between the
free and the constrained systems was also considered. The motion equations of a 13-link
biped robotic system were derived by Tlalolini et al. [24]. They employed a recursive
Newton–Euler algorithm to develop a parametric optimization algorithm for determining
the optimal cyclic gaits of the robot. Also, in the work of Lot and Dalio [25], the math-
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ematical model of a multibody system was entirely derived in a symbolic form by using
the MBSsymba software program. In their developed software, it is possible to define the
constraints for the holonomic and non-holonomic systems by using the algebraic and dif-
ferential equations, respectively. However, in none of these works, the impact model (which
should be used to determine a robot’s velocity after impact) has been recursively formu-
lated.

As was previously mentioned, this paper focuses on the symbolic modeling of the finite
and impulsive motions of a multi-rigid link system in 3D space. So, some aspects such
as friction and elastic deformation at contact points are disregarded. The rest of the paper
has been organized as follows: In Sect. 2, the kinematics of the system are described. The
dynamics of the system, including the system’s behavior in finite motion (flight phase) and
impulsive motion (impact phase) are modeled in Sect. 3. Two numerical simulations are
performed in Sect. 4 to demonstrate the effectiveness of the proposed method. And finally
in Sect. 5, the concluding remarks are summarized, and the merits of the proposed method
are highlighted.

2 Kinematics of the system

This section introduces the kinematic model of a robotic manipulator in 3D space, which
consists of rigid links, connected via rigid, frictionless, revolute joints to form a single open
kinematic chain.

Link i − 1 and Link i of this open kinematic chain are shown in Fig. 1. As is shown
in this figure, the coordinate system of every link is attached based on the following rule:
xi,1xi,2xi,3 is the coordinate system of Link i, whose origin is positioned at the beginning of
this link; the xi,1 axis is along the length of Link i, from Oi to Oi+1, the xi,3 axis is along
the joint axis, about which Link i rotates relative to Link i − 1, and xi,2 completes the right-
handed coordinate system. Also, refX1

refX2
refX3 is an inertial reference frame attached to

the ground. Here, it is assumed that the base of the manipulator is not fixed to the ground
and that it can be easily moved in space. So, the translational motions of the first body’s
local coordinate system (i.e., O1, in the refX1, refX2 and refX3 directions) are denoted by
X1, X2 and X3, respectively. Moreover, the absolute velocities of this point with respect to
the inertial reference frame are expressed by Ẋj where j = 1,2,3. Except for the first link,
all the other links in this open kinematic chain have only one rotational degree of freedom.
The first link, as a rigid body that can move freely in space, has three rotational degrees of
freedom; so, it can be modeled as three joints (O−1,O0 and O1) of one DOF connected with
two imaginary links of zero length (link (−1) and link (0)). These two links are shown in
gray in Fig. 1. Therefore, without loss of generality, only the manipulators with one DOF
joints will be considered.

Let us consider an arbitrary differential element, Q, on Link i. The position of this dif-
ferential element with respect to the xi,1xi,2xi,3 coordinate system is expressed by i�rQ/Oi

=
ηi �xi,1 where i �xi,1 = {1 0 0}T and η is the distance between points Oi and Q. Since the ap-
proach developed in this manuscript is based on the Gibbs–Appell formulation, the absolute
acceleration of this differential element is required, which can be represented as

i �̈rQ = i �̈rOi
+ i �̇ωi × i�rQ/Oi

+ i �ωi × (
i �ωi × i�rQ/Oi

)
(1)

where i �̈rOi
is the absolute acceleration of the ith joint and i �ωi and i �̇ωi are the angular velocity
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Fig. 1 A multi-rigid-link chin floating in space

and acceleration of the ith link, respectively. In the next section, Eq. (1) will be used to
construct the acceleration energy of the whole system.

3 Dynamics of the system

This section develops a mathematical model for studying the mentioned robotic system.
The dynamics of the system are composed of two different phases: (i) flight phase and (ii)
impact phase. The different flight and impact phases lead to mathematical models that in-
clude distinct parts: differential equations for describing the system dynamics during the
flight phase, and an algebraic equation for expressing the dynamics when this open kine-
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matic chain touches the surrounding surfaces. In the following, the derivation of the motion
equations for these two different phases will be detailed.

3.1 Flight phase

In the flight phase, there is no contact with the surrounding surfaces, and the robot has n+ 5
degrees of freedom (where n is the number of all real links). n + 2 degrees of freedom of
this system are associated with the orientation of the links (θj ), while the other three degrees
concern the position of the first joint with respect to the inertial reference frame (Xj ).

In the flight phase, the dynamic model is obtained by means of the Gibbs–Appell method.
In this approach, the acceleration and potential energies of each link are computed first, and
then these partial terms are summed to get the total acceleration energy, S, and total potential
energy V . The effect of gravity can be directly incorporated into the motion equations by
assuming that the origin of the inertial reference frame, i.e., Oref, has an acceleration of 1g

in the refX2 direction. So, without any extra calculations, the effect of gravity is taken into
consideration. On the other hand, the acceleration energy (Gibbs function) of n real links
with length li can be expressed as

S =
n∑

i=1

∫ li

0

[
1

2
μi(ηi)

(
i �̈rT

Q · i �̈rQ

) + 1

2
i �̇ωT

i · Ji(ηi)
i �̇ωi + i �̇ωT

i · i ω̃iJi(ηi)
i �ωi

]
dηi (2)

where μi(η) and Ji(η) are the mass per unit length and mass moment of inertia per unit
length of the ith link, respectively. Note that, if the links of the manipulator are assumed
thin enough, the second and the third terms in Eq. (2) can be ignored. By inserting Eq. (1)
into Eq. (2), we get

S =
n∑

i=1

1

2
B0i

i �̈rT
Oi

· i �̈rOi
− i �̈rT

Oi
· B1i

i �̇ωi − i �̈rT
Oi

· i ω̃iB1i
i �ωi + 1

2
i �̇ωT

i · (B2i + B3i )
i �̇ωi

+ i �̇ωT
i · i ω̃i (B2i + B3i )

i �ωi + ineffective terms (3)

where

B0i =
∫ li

0
μi dηi, (4)

B1i =
∫ li

0
μi

i r̃Q/Oi
dηi, (5)

B2i =
∫ li

0
μi

i r̃T
Q/Oi

i r̃Q/Oi
dηi, (6)

B3i =
∫ li

0
Ji dηi . (7)

Also i ω̃i and i r̃Q/Oi
are skew symmetric matrices related to vectors i �ωi and i�rQ/Oi

. In
the Gibbs–Appell formulation, the motion equations will be obtained by differentiating the
Gibbs function with respect to an independent set of quasi-accelerations (it should be noted
that, in holonomic systems, quasi-accelerations are exactly the same as generalized accelera-
tions). So, all the terms in Gibbs function that are not functions of generalized accelerations



26 A.M. Shafei, H.R. Shafei

can be discarded as “ineffective terms”. In this manuscript, the generalized accelerations
due to the rotational motion of links (i.e., θ̈j ), and the generalized accelerations due to the
translational motion of O1 (i.e., Ẍj ) are selected as quasi-accelerations. So,

• Partial derivative of Gibbs function with respect to θ̈j is

∂S

∂θ̈j

=
n∑

i=j+1

∂i �̈rT
Oi

∂θ̈j

· (B0i
i �̈rOi

− B1i
i �̇ωi − i ω̃iB1i

i �ωi

)

+
n∑

i=j

∂i �̇ωT
i

∂θ̈j

· (B1i
i �̈rOi

+ (B2i + B3i )
i �̇ωi + i ω̃i (B2i + B3i )

i �ωi

)
, j = −1, . . . , n;

(8)

• Partial derivative of Gibbs function with respect to Ẍj is

∂S

∂Ẍj

=
n∑

i=−1

∂i �̈rT
Oi

∂Ẍj

· (B0i
i �̈rOi

− B1i
i �̇ωi − i ω̃iB1i

i �ωi

)
, j = 1, . . . ,3. (9)

The motion equations of this open kinematic chain of rigid links is finalized by consider-
ing the generalized forces which originate from the external loads or the torques which are
exerted on the links or joints. But the assumption here is that there are no external loads on
the links and no external torques on the joints. With this assumption, the governing equations
of n rigid links connected by revolute joints, in the flight phase, can be expressed as

• The j th rotational motion equation in the flight phase is

∂S

∂θ̈j

= 0, j = −1, . . . , n; (10)

• The j th translational motion equation in the flight phase is

∂S

∂Ẍj

= 0, j = 1, . . . ,3. (11)

The state variables of the above equations are highly nonlinear and coupled. So, before de-
riving the motion equations of this multi-rigid-link system for the impact phase, the inverse
dynamic equations should be converted to forward dynamic equations.

3.2 Forward dynamics

The main goal of this section is to present the governing equations of the mentioned multi-
rigid links (Eq. (10) and Eq. (11)) in a forward dynamic form as follows:

If (Θ) �̈Θ = →
R(Θ, Θ̇). (12)

In the above relation, If (Θ) is the inertia matrix of this open kinematic chain in the flight

phase, which is symmetric and positive-definite. Also �̈Θ (the quasi-acceleration vector) and
→
R(Θ, Θ̇) (the remaining dynamics terms containing Coriolis and centrifugal forces) can be
represented as

�̈Θ = {
θ̈−1 θ̈0 θ̈1 . . . θ̈n−1 θ̈n Ẍ1 Ẍ2 Ẍ3

}T
, (13)
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�R(Θ, Θ̇) = {
Rθ−1 Rθ0 Rθ1 . . . Rθn−1 Rθn RX1 RX2 RX3

}T
. (14)

To achieve the objective of this section, the partial derivatives of i �̈rOi
and i �̇ωi with respect

to quasi-accelerations, which appeared in Eq. (8) and Eq. (9), should be evaluated. The sum
of these two terms can be written as

i �̈rOi
= i �̈rOs,i

+ i �̈rOv,i
, (15)

i �̇ωi = i �̇ωs,i + i �̇ωv,i (16)

where i �̈rOs,i
and i �̇ωs,i represent those terms of i �̈rOi

and i �̇ωi that include the generalized

accelerations, while i �̈rOv,i
and i �̇ωv,i denote those terms of i �̈rOi

and i �̇ωi that do not have θ̈j

and Ẍj as quasi-accelerations. These terms can be expressed as

i �̈rOs,i
=

3∑

j=1

iRref
ref �XjẌj +

i−1∑

k=−1

iRk

(
k �̇ωs,k × k�rOk+1/Ok

)
, (17)

i �̈rOv,i
= iRref

ref �X2g +
i−1∑

k=−1

iRk

(
k �̇ωv,k × k�rOk+1/Ok

+ k �ωk × (
k �ωk × k�rOk+1/Ok

))
, (18)

i �̇ωs,i =
i∑

k=−1

iRk
k �xk,3θ̈k, (19)

i �̇ωv,i =
i−1∑

k=−1

iRk
k �ωk × iRk+1

k+1 �xk+1,3θ̇k+1 (20)

where k�rOk+1/Ok
= lk

k �xk,1, ref �X1 = {1 0 0}T , ref �X2 = {0 1 0}T , ref �X3 = {0 0 1}T , and
k �xk,3 = {0 0 1}T . Also, iRk is a 3 × 3 compound rotation matrix which shows the orien-
tation of the kth body’s local reference system (i.e., xk,1xk,2xk,3) with respect to the ith one
(i.e., xi,1xi,2xi,3). Now, the partial derivatives of i �̈rOi

and i �̇ωi with respect to generalized
accelerations can be expressed as

∂i �̈rOi

∂θ̈j

= iRj
j �xj,3 × i�rOi/Oj

, (21)

∂i �̇ωi

∂θ̈j

= iRj
j �xj,3, (22)

∂i �̈rOi

∂Ẍj

= iRref
ref �Xj (23)

where i�rOi/Oj
indicates the position vector of Oi with respect to Oj , expressed in the ith

body’s local coordinate system.

3.2.1 Constructing the inertia matrix for the flight phase

To construct the inertia matrix for this multi-link chain in flight, it is sufficient to insert
Eqs. (15) and (16) and also Eqs. (21)–(23) into the relevant parts of Eqs. (10) and (11). Then,
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all the terms that have θ̈j and Ẍj should be preserved on the left hand side of the equality
sign, and all the remaining terms should be moved to the right hand side. By putting the right
hand side terms of the motion equations in a matrix form, the inertia matrix of this flying
open kinematic chain will be obtained. The details are described below.

The coefficients of generalized accelerations in the rotational motion equations. In
Eq. (10), all the terms that include θ̈k and Ẍk as their coefficients can be grouped as:

[
n∑

k=−1

j �xT
j,3 · j σk

k �xk,3
︸ ︷︷ ︸

1

+
n∑

k=−1

−j �xT
j,3 · jψk

k �xk,3
︸ ︷︷ ︸

2

+
n−1∑

k=−1

−j �xT
j,3 · jUk

k �xk,3
︸ ︷︷ ︸

3

]

θ̈k

+
[

n+3∑

k=n+1

j �xT
j,3 · j ξref

ref �Xk−n
︸ ︷︷ ︸

4

+
n+3∑

k=n+1

j �xT
j,3 · j γref

ref �Xk−n
︸ ︷︷ ︸

5

]

Ẍk−n, j = −1, . . . , n, (I)

where

j σk =
n∑

i=max(j,k)

jRi(B2i + B3i )
iRk, (24)

jψk =
n∑

i=max(j+1,k)

j r̃Oi/Oj

jRiB1i
iRk, (25)

jUk =
n−1∑

t=k

(
j ξt+ + j γt

)
t r̃Ot+1/Ot

tRk, (26)

j ξt+ =
n∑

i=max(j,t+1)

jRiB1i
iRt , (27)

j γt =
n∑

i=max(j+1,t+1)

j r̃Oi/Oj
B0i

jRt , (28)

j ξref =
n∑

i=j

jRiB1i
iRref, (29)

j γref =
n∑

i=j+1

j r̃Oi/Oj
B0i

jRref. (30)

The constructive terms of Eq. (I), numbered from (1) to (5), fill the inertia matrix of the
whole system (Fig. 2). Note that, for deriving Eq. (I), the order of summation has been
changed as needed, in the following way:

n∑

i=j+1

i−1∑

k=−1

aibk =
n−1∑

k=−1

n∑

i=max(k+1,j+1)

aibk, (31)

n∑

i=j+1

i∑

k=−1

aibk =
n∑

k=−1

n∑

i=max(k,j+1)

aibk, (32)
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Fig. 2 Inertia matrix of the whole system for the flight phase

n∑

i=j

i−1∑

k=−1

aibk =
n−1∑

k=−1

n∑

i=max(k+1,j)

aibk, (33)

n∑

i=j

i∑

k=−1

aibk =
n∑

k=−1

n∑

i=max(k,j)

aibk, (34)

n−1∑

i=−1

i∑

k=−1

aibk =
n−1∑

k=−1

n−1∑

i=k

aibk, (35)

n∑

i=−1

i−1∑

k=−1

aibk =
n−1∑

k=−1

n∑

i=k+1

aibk. (36)

The coefficients of generalized accelerations in the translational motion equations. Like
in the previous step, in Eq. (11), all the terms that contain θ̈k and Ẍk should be grouped.
However, since the inertia matrix of the whole system is symmetric, the coefficient of θ̈k in
Eq. (11) is the same as the coefficient of Ẍk in Eq. (10), which was once evaluated in Eq. (I).
So, it is sufficient to evaluate only the coefficient of Ẍk in Eq. (11), which is obtained as
follows:

MtotẌj , (II)

where Mtot is the mass of the whole system and can be expressed as

Mtot =
n∑

i=1

B0i . (37)

The position of Eq. (II) in the inertia matrix of the system for the flight phase is shown
by Mtot. As was mentioned before, the inertia matrix of the whole system is symmetric;
consequently, it is not necessary to evaluate again the gray region of this matrix. This greatly
reduces the number of necessary computations for constructing the inertia matrix of the
whole system in symbolic form.
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Fig. 3 Right hand side of the motion equations for the flight phase

3.2.2 Constructing the right hand sides of the motion equations for the flight phase

Now, let us construct the right hand sides of the forward dynamics equations. In Eq. (10),
if all the terms that do not include θ̈k and Ẍk are transferred to the right hand side of the
equality sign, the following equation will be obtained:

Rθj
=

n∑

i=j+1

−∂i �̈rT
Oi

∂q̈j

· i �Si

︸ ︷︷ ︸
6

+
n∑

i=j

−∂i �̇ωT
i

∂q̈j

· i �Ti

︸ ︷︷ ︸
7

. (38)

In the above equation,

i �Si = B0i
i �̈rOv,i

− B1i
i �̇ωv,i − i ω̃iB1i

i �ωi, (39)

i �Ti = B1i
i �̈rOv,i

+ (B2i + B3i )
i �̇ωv,i + i ω̃i (B2i + B3i )

i �ωi. (40)

And also, in Eq. (11), all the terms that do not include generalized accelerations should be
moved to the right hand sides of the motion equations as follows:

RXj
=

n∑

i=−1

−∂i �̈rT
Oi

∂Ẍj

· i �Si

︸ ︷︷ ︸
8

. (41)

The constructive terms of Eq. (38) and Eq. (41), which are numbered from (6) to (8) and
contain the Coriolis and centrifugal forces, fill the right hand side vector of the motion
equations, as is shown in Fig. 3.

Figures 2 and 3 graphically illustrate the motion equations of n rigid links flying through
a defined space. In the next section, the effect of the collision of this system with the sur-
rounding surfaces will be studied.

3.3 Impact phase

An impact occurs when each joint of the mentioned open kinematic chain touches the sur-
faces that surrounded the chain. Before modeling the impact phase, let us present the abso-
lute velocity of each joint in the inertial reference frame. Obviously, for an open kinematic
chain which is composed of n rigid links, there are n − 1 joints and two end points (O1 and
On). By employing the Jacobian matrix, the velocities of these n+1 points can be expressed
as

ref �̇rOi
(Θ, Θ̇) = J (Θ) �̇Θ. (42)

The Jacobian matrix is graphically depicted in Fig. 4.
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Fig. 4 Jacobian matrix for n flying rigid links

It should be noted that
∂ref�rOi

∂Θj
is the partial derivative of the ith joint’s position (described

in the inertial reference frame) with respect to the j th quasi-coordinate (again, it should be
emphasized that in holonomic systems, the quasi-coordinates are exactly the same as the
generalized coordinates). Also iJj,: is a representation for the j th row and every column of
the ith joint’s Jacobian matrix.

As mentioned before, in this paper, an impact results from the contact of each joint with
the surrounding surfaces. The externally applied forces in an impact can be represented by
impulses. So, the obtained equations in the previous section (flight phase), which include no
external forces or torques, can be modified for the impact phase as

If (Θ) �̈Θ = →
R(Θ, Θ̇) + J T (Θ)δ �F(t) (43)

where δ �F(t) represents the vector of the external forces acting on the joints due to the col-
lision between these joints and confining surfaces. As was pointed out, these forces are im-
pulsive; therefore, the δ �F(t) notation is used. If Eq. (43) is integrated over the infinitesimal
duration of the impact time (t− → t+), it yields

If

(
Θ−)( �̇Θ+ − �̇Θ−) = J T

(
Θ−) �F (44)

where �F = ∫ t+
t− δ �F(t) dt and also �̇Θ− and �̇Θ+ are the quasi-velocities (or generalized ve-

locities) just before and just after and impact. In an impact, the configuration of a system is
assumed not to change over a very short time interval; hence, �Θ+ = �Θ−. Finally, it should
be noted that the values of �R(Θ, Θ̇) containing Coriolis and centrifugal forces are finite; so,
they vanish in the integration. In Eq. (44), if all the unknown terms are transferred to the left
hand side of the equality sign and all the known terms are moved to the right hand side, the
following equation will be obtained:

If

(
Θ−) �̇Θ+ − J T

(
Θ−) �F = If

(
Θ−) �̇Θ−. (45)

Equation (45) can be rewritten in a compact form as

[
If

(
Θ−)∣∣ − J T

(
Θ−)]

{ �̇Θ+

�F
}

= [
If

(
Θ−)]{ �̇Θ−}

. (46)
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Fig. 5 A sample inertia matrix for the impact phase

Equation (46) represents n + 5 equations and n + 5 + dim( �F) unknowns, where the un-

knowns are �̇Θ+ and �F . So, it is required to find as many additional equations as is the di-
mension of vector �F . These additional equations are generated by equating the pre-collision
and post-collision velocities of the joints that impact the surrounding surfaces. Based on the
Newton’s kinematic impact law, these equations can be written as

J
(
Θ−) �̇Θ+ = −eJ

(
Θ−) �̇Θ− (47)

where e is called the coefficient of restitution. A coefficient e = 1 means that the contacting
joint will rebound with exactly the same velocity as it strikes the surface (elastic impact).
On the other hand, e = 0 indicates that the contacting joint will cling to the surface with
no rebound (plastic impact). However, most impact conditions lie somewhere between these
two extremes. By considering Eqs. (46) and (47) and presenting them in compact form, we
get

[
If (Θ−)

J (Θ−)

∣∣
∣∣
−J T (Θ−)

0

]

︸ ︷︷ ︸
Ii (Θ

−)

{ �̇Θ+

�F
}

=
[

If (Θ−)

−eJ (Θ−)

]
{ �̇Θ−}

. (48)

For example, if three impulsive forces of δF
X3
p (t), δF

X1
q (t) and δF

X2
r (t) are respectively

and simultaneously applied on the pth joint in the ref �X3 direction, qth joint in the ref �X1

direction and on the r th joint in the ref �X2 direction, then three rows and columns should be
added to the preliminary inertia matrix derived for the flight phase in order to construct the
inertia matrix for the impact phase (Fig. 5).

Since If (Θ) is positive definite and J (Θ) is of full rank, the inertia matrix for the impact
phase (i.e., Ii(Θ)) is invertible [26]. By pre-multiplying both sides of Eq. (48) by I−1

i (Θ) the
unknown variables including the quasi-velocities just after an impact and also the impulses
of the applied forces will be determined. In fact, the impact of this multi-rigid-link sys-
tem with the surrounding surfaces changes the velocity components of the quasi-coordinate
vector very quickly. The final results of an impact phase become the new initial conditions
for the next flight phase. Figure 6 shows a block diagram of the procedures developed in
this work for deriving the motion equations of multi-rigid links in the flight and impact
phases.
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Fig. 6 Block diagram of the
developed procedure

Fig. 7 A four-link planar robotic manipulator confined within a rectangle

4 Computational simulations

Case study 1 In this section, two simulations are performed to validate the developed
model. The first simulation involves a planar four-link rigid robotic manipulator, which is
shown in Fig. 7. The movement of this system is confined within a rectangle of 3 m length
and 2 m width.
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Table 1 Required parameters for simulating the planar motion of a four-rigid-link manipulator in flight

Parameters Value Unit

Lengths of the links l−1 = l0 = 0; l1 = l2 = l3 = l4 = 1 m

Mass per unit length μ−1 = μ0 = 0; μ1 = μ2 = μ3 = μ4 = 1 kg m−1

J−1 = J0 = [0 0 0; 0 0 0; 0 0 0]; kg m

Mass moment of inertia per unit length J1 = J2 = J3 = J4 =
[

5.89 0 0
0 2.94 0
0 0 2.94

]

× 10−5

Gravity g = 9.81 m s−2

Coefficient of restitution e = 1 —

Fig. 8 Angular positions of the
joints

Fig. 9 Angular velocities of the
joints

In order to force the system to remain in the refX1
refX2 plane, the initial conditions for

θ−1 and θ0 should be − π
2 rad and 0 rad, respectively. The other initial conditions for the

simulations are assumed as follows:

θ1|t=0 = π

4
rad; θ2 = θ3 = θ4|t=0 = −π

2
rad; X1|t=0 = 1.5 m; X2|t=0 = 0.3 m;

X3|t=0 = 0 m;

θ̇−1 = θ̇0 = θ̇1 = θ̇2 = θ̇3 = θ̇4|t=0 = 0
rad

s
; Ẋ1 = Ẋ2 = Ẋ3|t=0 = 0

m

s
.

All the other necessary parameters for the simulations can be found in Table 1.
By solving a set of 18 differential equations for the flight phase and also by solving the

algebraic equations related to the collision of the system with the surrounding rectangle, the
time responses of the system are obtained and illustrated in Figs. 8 through 13.



A systematic method for the hybrid dynamic modeling 35

Fig. 10 Positions of the joints in
the refX1 direction

Fig. 11 Absolute velocities of
the joints in the refX1 direction

Fig. 12 Positions of the joints in
the refX2 direction

Fig. 13 Absolute velocities of
the joints in the refX2 direction
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Fig. 14 Configurations of the system during the simulations

Also, the configurations of this open kinematic chain at different times are illustrated in
Figs. 14(A) through 14(E).

The initial conditions are deliberately chosen in such a way that the system is symmetric
with respect to the line at X1 = 1.5 m. As seen in Fig. 14(A), the first configuration of the
system at t = 0 s recalls a square (In fact, with regards to the initial conditions, joints O1 and
O5 are located at the same position). So, it is not unusual that the system preserves its sym-
metricity during the simulation. As is clearly shown in Fig. 14, the system touches the con-
fining surfaces at seven different times: t = 0.247, 0.443, 0.54, 1.05, 1.10, 1.25, 1.36 s.
As mentioned before, the impacts have no effect on the configuration of the system i.e.,
�Θ− = �Θ+. This fact can be verified in Figs. 8, 10 and 12, where the values of quasi-

coordinates are equal before and after impact. However, the quasi-velocities quickly change
at the moment of impact, as shown in Figs. 9, 11, and 13. Finally, the simulation results, es-
pecially Figs. 12 and 13, indicate that the system loses its symmetricity at the final moments
of simulation. This happens due to the numerical integration errors, which can be mitigated
by employing more accurate numerical integration methods. For more information on the
stability of integration methods for contact-impact analysis in multibody systems, one may
refer to [27], which presents a general and comprehensive approach for automatically ad-
justing the time step in variable time-step integration algorithms in the vicinity of contact.

Case study 2 In the previous simulation, the system was confined to have only planar
motion. But in this simulation, a single rigid link with 3D spatial motion inside a closed
cube is considered (Fig. 15).

The necessary parameters for the numerical simulation of the mentioned link are pre-
sented in Table 2.
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Fig. 15 A single flying link confined inside a closed cube

Table 2 Required parameters for simulating a single rigid link confined within a cube

Parameters Value Unit

Length of the links l−1 = l0 = 0; l1 = 0.5 m

Mass per unit length μ−1 = μ0 = 0; μ1 = 1 kg m−1

Mass moment of inertia per unit length J−1 = J0 = [0 0 0; 0 0 0; 0 0 0];
J1 = [5.89 0 0; 0 2.94 0; 0 0 2.94] × 10−5;

kg m

Gravitational acceleration g = 9.81 m s−2

Coefficient of restitution e = 1 —

Also the initial conditions are set as follows:

θ−1 = θ1|t=0 = π

6
rad; θ0|t=0 = 0 rad; X1 = X3|t=0 = 0.1 m; X2 = 0.4 m;

θ̇−1 = θ̇0 = θ̇1|t=0 = 0
rad

s
; Ẋ1 = Ẋ2 = Ẋ3|t=0 = 0

m

s
.

The time responses of the system as well as the configurations of this single flying link at
impact moments are depicted in Figs. 16–24.
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Fig. 16 Angular positions of the
joints

Fig. 17 Angular velocities of the
joints

Fig. 18 Positions of the joints in
the refX1 direction

Fig. 19 Absolute velocities of
the joints in the refX1 direction



A systematic method for the hybrid dynamic modeling 39

Fig. 20 Positions of the joints in
the refX2 direction

Fig. 21 Absolute velocities of
the joints in the refX2 direction

Fig. 22 Positions of the joints in
the refX3 direction

Fig. 23 Absolute velocities of
the joints in the refX3 direction
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Fig. 24 Configurations of the
single rigid link at the moments
of impact

Figure 18 displays the collisions of the first joint, i.e., O1, with the X1 = 0 and X1 = 1
planes at t3 = 0.353 s and t9 = 1.382 s, respectively. These two impact times are indicated
in Fig. 24 by symbol 
. Similarly, by considering Fig. 20, it is observed that O1 touches
the X2 = 0 plane at t1 = 0.285 s, t5 = 0.863 s, t8 = 1.264 s, and t11 = 1.647 s, and also O2

strikes this plane at t4 = 0.399 s, t7 = 1.113 s, and t12 = 1.690 s. All these impacts on the
X2 = 0 plane are marked by symbol ∗ in Fig. 24. Finally, according to Fig. 22, two impacts
occur due to the collision of O1 with the X3 = 0 plane at t2 = 0.325 s and t10 = 1.563 s, and
one impact occurs by the collision of O1 with the X3 = 1 plane at t6 = 0.886 s. These three
impact moments are depicted in Fig. 24 by the ✩ symbol. As expected, at these 12 impact
times during simulations, the quasi-velocities of the system change rapidly, as illustrated
in Figs. 17, 19, 21, and 23. The stability of system responses is highly dependent on step
size. So, besides employing the “ode45” solver and the EVENTS function available in the
MATLAB software, a computer program based on the fourth-order Runge–Kutta method
was also used to solve these differential–algebraic equations. The time step in this method
was increased until no significant error was observed. The CPU time for deriving and solving
the governing equations with a time step of 
t = 10−5 s is approximately 40 hr for the
first simulation and 3 hr for the second simulation. This is due to the additional degrees of
freedom of the first system. Both of these simulations have been performed in an Intel (R)
Core (TM) i3-3220 system running at 3.3 GHz.

5 Summary and conclusion

In this paper, a recursive approach has been presented for the hybrid dynamic modeling
of the finite and impulsive motions of serial chains with many degrees of freedom. Here,
instead of using too many formulas, we have attempted to explain the procedure graphi-
cally. The proposed method has been able to simulate an open kinematic chain composed
of n real rigid links flying through a confined space. By adding two imaginary links to this
open kinematic chain, it was possible to systematically model the rotations of the system.
The recursive Gibbs–Appell formulation has been used to derive the motion equations. As
was mentioned before, in holonomic systems, the quasi-velocities are the same as general-
ized velocities so ∂S

∂θ̈j
= d

dt
( ∂T

∂θ̇j
) − ∂T

∂θj
, j = 1,2, . . . , n. Obviously, as the DOF of a system
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increases, the Lagrangian formulation loses its efficiency relative to the Gibbs–Appell for-
mulation, since it requires a higher number of total and partial derivatives in deriving the
motion equations. The authors in [9] and [14] have respectively demonstrated that the num-
ber of mathematical operations in the recursive G–A method is less than that in the recursive
Lagrangian method for multi-rigid and multi-flexible links. In fact, even a little reduction in
the number of multiplications and additions may have a significant effect on the efficiency
of the algorithm used. As a result, one can execute the considered algorithm by a simpler
and less costly computing system and satisfactorily achieve the same end results. Moreover,
in the proposed approach, the effect of impact with the surrounding walls has been directly
incorporated into the relevant formulations. To our knowledge, this is the first time that a
combination of finite and impulsive motions is presented in recursive form.

For future works, the proposed method can be applied to multiple and flexible flying
links. More importantly, the friction effects at the contact points can be recursively consid-
ered in the motion equations.
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