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Abstract The paper concerns a detailed comparison between two optimization methods that
are used to perform the structural optimization of flexible components within a multibody
system (MBS) simulation. The dynamic analysis of flexible MBS is based on a nonlinear fi-
nite element formulation. The first method is a weakly coupled method, which reformulates
the dynamic response optimization problem in a two-level approach. First, a rigid or flexible
MBS simulation is performed, and second, each component is optimized independently us-
ing a quasi-static approach in which a series of equivalent static load (ESL) cases obtained
from the MBS simulation are applied to the respective components. The second method, the
fully coupled method, performs the dynamic response optimization using the time response
obtained directly from the flexible MBS simulation. Here, an original procedure is proposed
to evaluate the ESL from a nonlinear finite element simulation, contrasting with the float-
ing reference frame formulation exploited in the standard ESL method. Several numerical
examples are provided to support our position. It is shown that the fully coupled method
is more general and accommodates all types of constraints at the price of a more complex
optimization process.

Keywords Structural optimization · Dynamic response optimization · Equivalent static
load · Flexible multibody system · Nonlinear finite element method

1 Introduction

Since the early 1960s, structural optimization has undergone considerable evolution. Nowa-
days, the achieved developments are such that optimization techniques are embedded in
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commercial software tools and are daily used to solve industrial problems. Even if the ma-
jority of real loads are dynamic in essence, optimization techniques are usually applied to
the design of structural components under (quasi-)static or vibration design criteria due to
the intrinsic difficulties of evaluating the dynamic response and then incorporating it in an
optimization problem.

Historically, design of mechanisms first considered a component-based approach,
wherein the standard methods of static response optimization are used. Saravanos and
Lamancusa [20] selected several configurations of the mechanism, whereupon structural
optimization was performed based on representative loading conditions coming from the
designer experience for each posture. This approach is not rational since a few configura-
tions can hardly represent the overall motion and the optimal design strongly depends on the
designers’ choices. Moreover, the coupling between rigid and elastic motions are omitted,
which causes an inaccuracy on the displacements and stresses.

With the evolution of multibody system (MBS) analysis, Bruns and Tortorelli [6] pro-
posed an approach combining rigid MBS analysis and optimization techniques to design
optimal components. The component-based approach is thusly extended toward a system-
based approach, which better captures the behavior of the whole system. The optimization
procedure is performed with load cases evaluated directly during the MBS analysis. The
method is illustrated on the design of a slider–crank mechanism loaded with the maximum
tensile force calculated during the simulation. This breakthrough is essential since the opti-
mal design may be very sensitive to the support and loading conditions [2].

Using a system-based approach to perform the dynamic response optimization of com-
ponents, two optimization methods can currently be identified, the weakly and fully coupled
methods.

The weakly coupled method reformulates the dynamic response optimization problem in
a two-level approach. First, a rigid or flexible MBS simulation computes the loads applied
to each component, and second, each isolated component is optimized independently using
a quasi-static approach, in which a series of equivalent static load cases obtained from the
MBS simulation are applied to the respective components. An important development has
been made by Kang et al. [18], who proposed a rational method to define equivalent static
loads (ESLs) to optimize flexible mechanisms. During the static response optimization pro-
cess, whereas ESLs are implicit functions of the dynamic simulation response, they are not
updated. Thus, cycles are needed to account for the ESL dependency on design variables.
Häussler [13] showed the importance of considering the update of quasi-static loads at each
cycle due to the property changes of component inertia since these interactions might be
significant. The weakly coupled method is used in e.g. [14–16, 23].

The fully coupled method considers a more integrated approach of the optimization prob-
lem wherein the optimization is performed using the time response directly obtained from
the MBS simulation. Oral and Kemal Ider [19] proposed a methodology to consider the cou-
pled rigid-elastic motion of the MBS system and the time-dependency of the constraints.
They investigated the representation of global constraints either by the most critical con-
straint or aggregated with a Kresselmeier–Steinhauser function. Later on, Brüls et al. [5]
took advantage of the evolution of numerical simulations and topology optimization tools
to design structural components within a flexible MBS simulation. They showed the fea-
sibility and convenience of integrating the optimization loop directly to the flexible MBS
simulation. Doing so, the dynamic effects are naturally taken into account. However, the
resulting optimization problem is not a simple extension of structural optimization. The in-
fluence of the changes of component inertial property on vibrations and the interactions
between flexible components generally result in complex design problems. Moreover, treat-
ing time-dependent responses coming from the MBS analysis in the optimization process
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is rather complex. The formulation of the optimization problem is essential to obtain good
convergence properties [28]. The fully coupled method is used in e.g. [15, 21, 27].

The objective of this paper is to investigate the performance of the weakly and fully
coupled methods. In addition, the standard ESL method was developed for flexible MBS
described using a floating reference frame formulation [18]. This formalism facilitates the
derivation of the equivalent static loads notably as this formulation deals with body-attached
frame. However, in our previous developments of the fully coupled method [5, 28], we
adopted a nonlinear finite element formalism [12]. In order to realize a fair comparison
between both optimization methods, it is preferable to use a unique MBS formalism. There-
fore, another contribution of this paper is to adapt the ESL method to the nonlinear finite
element formulation because the ESL method proposed by Kang et al. [18] cannot be simply
translated and directly applied to the latter formalism.

The first part of the paper briefly discusses the flexible MBS analysis, that is, the deriva-
tion of the equations of motion and the time integration algorithm. Afterwards, the ESL
method is presented in three parts: the ESL definition, the ESL derivation for a floating
reference frame formalism, and the proposed method to derive the ESL for a nonlinear fi-
nite element formalism. The fully coupled method is then described. The following part
introduces the general framework of the dynamic response optimization problem and dif-
ferent approaches to solve it. Several standard examples are investigated to compare both
approaches, to illustrate the similarities and differences and to support our discussion before
drawing our conclusions.

2 Flexible multibody systems approach

2.1 Equations of motion of flexible multibody systems

In this paper, flexible MBS are modeled using a nonlinear finite element formulation as pro-
posed by Géradin and Cardona [12], which is based on an inertial frame approach. Absolute
nodal coordinates that correspond to the displacements and orientations of each node of the
finite element mesh are gathered in the generalized coordinate vector q.

The motion of the system is subject to kinematic constraints �(q, t) that ensure the
connections between bodies due to kinematic joints such as hinges, spherical joints, etc.
They introduce nonlinear kinematic constraints between generalized coordinates.

The constrained dynamic problem is formulated using an augmented Lagrangian ap-
proach based on the kinetic and potential energies of the system. The augmented Lagrangian
approach introduces a penalty term p�T

q � with penalty coefficient p in the formulation of
the constraints notably for convergence reasons. Nevertheless, since this term vanishes at
convergence, the response of the system is independent of the choice of p.

Following [12], the motion of the system is obtained by solving the following differential-
algebraic equation system (DAE):

M(q)q̈ + �T
q (q, t)

(
kλ + p�(q, t)

) = g(q̇,q, t),

k�(q, t) = 0,
(1)

subject to the initial conditions

q(0) = q0 and q̇(0) = q̇0. (2)
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In this system, M is the mass matrix, q̈, q̇, and q are respectively the acceleration, velocity,
and displacement vectors, the vector g gathers the external, internal and complementary
inertia forces, k is a scaling factor, λ is the Lagrange multiplier vector and the subscript (·)q

denotes the derivative with respect to q. It should be noted that the mass matrix can depend
on the generalized coordinates.

2.2 Time integration

To solve the set of nonlinear DAE (1), Géradin and Cardona [12] consider the generalized-α
time integration scheme initially developed by Chung and Hulbert [9]. Arnold and Brüls [1]
demonstrated that, despite the presence of algebraic constraints and the nonconstant charac-
ter of the mass matrix, this integration scheme leads to accurate and reliable results with a
small amount of numerical damping.

According to the generalized-α method, a vector a of acceleration-like variables is de-
fined by the recurrence relation

(1 − αm)an+1 + αman = (1 − αf )q̈n+1 + αf q̈n (3)

with a0 = q̈0. The vector an is an auxiliary variable used by the algorithm and can be inter-
preted as an approximation of the true acceleration q̈(t) at time t = tn + (αm − αf )h.

The integration scheme is subsequently obtained by employing the pseudo-acceleration
an in the Newmark integration formulae:

qn+1 = qn + hq̇n + h2

(
1

2
− β

)
an + h2βan+1, (4)

q̇n+1 = q̇n + h(1 − γ )an + hγ an+1, (5)

where h denotes the time step. If the parameters αf , αm, β , and γ are properly chosen
according to [9], second-order accuracy and unconditional stability are guaranteed for linear
problems. It is convenient to define these parameters in terms of the spectral radius at infinite
frequencies ρ∞ ∈ [0,1] as

αm = 2ρ∞ − 1

ρ∞ + 1
, αf = ρ∞

ρ∞ + 1
,

γ = 1

2
− αm + αf , β = 1

4

(
γ + 1

2

)2

.

(6)

The choice ρ∞ = 0 annihilates high-frequency response, whereas ρ∞ = 1 corresponds to no
numerical damping.

At time step n + 1, the variables q̈n+1, q̇n+1, qn+1, and λn+1 must satisfy the system
of nonlinear equations (1). To solve this dynamic equilibrium problem, a Newton–Raphson
procedure associated with the linearized form (7) of (1) is employed, which brings the resid-
ual of (1), that is, r = Mq̈ +�T

q (kλ+p�)− g and �, close to zero. More precisely, around
an approximate solution q̈, q̇, q, λ, the following linearized residual equations are solved:

r(q + �q, q̇ + �q̇, q̈ + �q̈,λ + �λ)

� r(q, q̇, q̈,λ) + M�q̈ + Ct�q̇ + Kt�q + �T
q (k�λ + p�q�q) = 0,

k�(q + �q) � k�(q) + k�q�q = 0,

(7)
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where Ct = ∂r/∂q̇ and Kt = ∂r/∂q denote the tangent damping and tangent stiffness matri-
ces, respectively.

3 Weakly coupled approach: Equivalent static load method

3.1 Introduction and definition

In the context of dynamic response, the optimization problem formulation involves time-
dependent functions. The purpose of the equivalent static load method is to remove the
time component from the problem, that is, to transform the dynamic response optimization
problem into a static optimization problem with multiple load cases [8]. Indeed, all the
advantages of static response optimization and all the standard methods can thus be used,
whereas the problems related to time-dependent functions are circumvented.

In [18], the authors define an equivalent static load as follows.

Definition 1 When a dynamic load is applied to a structure, the equivalent static load is
defined as the static load that produces the same displacement field as the one created by the
dynamic load at an arbitrary time.

In order to introduce the concept of equivalent static loads, let us consider the following
equilibrium equation of a linear structure1 subject to a dynamic load g(t):

M(p)q̈(p, t) + K(p)q(p, t) = g(t), (8)

where p is the design variable vector, q and q̈ are the displacement and acceleration vectors,
respectively, and the damping effect is neglected. Terms of Eq. (8) can be rearranged as

K(p)q(p, t) = g(t) − M(p)q̈(p, t). (9)

The left-hand-side of (9) has a similar layout as the classical static equilibrium equation of
a structure. By identification and according to the previous definition, the equivalent static
load at time t is defined as

geq(t) = g(t) − M(p)q̈(p, t). (10)

It should be noticed that the equivalent static load geq(t) is an implicit function of the design
variables and that it involves the external loads and inertia forces. From an analysis point
of view, equivalent static loads seem useless, but they are developed in order to elaborate
a static response optimization problem. In lieu of considering the dynamic loading, they
offer the possibility of considering a series of static loads that give at each time step the
same displacement field as the one given by the dynamic loading. Therefore, the dynamic
optimization problem is transformed into a optimization problem subject to multiple static
load cases with a load case for each integration time step.

1The difference is made between a multibody system and a structure since the latter is composed of only one
body. This enables a simplification of the equations for this introductory section.
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3.2 Derivation of the equivalent static loads using a floating frame of reference
formalism

Initially, the ESL method has been developed for flexible MBS modeled using a floating
reference frame formulation [18]. In order to develop the ESL derivation, the equations of
motion and the notation corresponding to this formalism are first reminded.

According to [22], the equations of motion that govern a flexible multibody system using
a floating frame of reference formalism can be expressed as

⎡

⎢
⎣

mb
xx mb

xθ mb
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mb
θθ mb
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mb
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⎤

⎥
⎦

⎡

⎢
⎣

ẍb
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⎡
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⎣

(Qb
v)x

(Qb
v)θ

(Qb
v)f

⎤

⎥
⎦ , b = 1,2, . . . , nb, (11)

where nb is the number of bodies, qf is the nodal deformation, xb
0 is a set of Cartesian

coordinates that defines the origin location of the floating body reference frame, and θb
0 is

a set of rotational coordinates that describes the orientation of the floating body reference
frame. The right-hand-side terms of (11) are respectively the reaction force vector from the
joint constraints, the external load vector, and the quadratic velocity vector including the
effect of Coriolis and centrifugal forces. As with the nonlinear finite element formalism, all
the terms depend on time, and the flexible MBS expressed by (11) is subject to dynamic
loads.

According to Definition 1, the equation system (11) must be solved to obtain the ESL.
The last row can be rearranged as

Kb
ff qb

f = −mb
xf ẍb

0 − mb
f θ θ̈

b

0 − mb
ff q̈b

f − CT

qb
f

λ + (
Qb

e

)
f

+ (
Qb

v

)
f
. (12)

Thus, from Definition 1, the ESL of body b at time step tn in the body-attached frame for a
flexible MBS system described using a floating reference frame formulation is

Kb
ff qb

n,f = gb
n,eq, (13)

where

gb
n,eq = −mb

xf ẍb
n,0 − mb

f θ θ̈
b

n,0 − mb
ff q̈b

n,f − CT

qb
n,f

λn + (
Qb

n,e

)
f

+ (
Qb

n,v

)
f
. (14)

In (14), the first two terms represent the effect of the coupling between rigid-body motion
and elastic deformation, whereas the third term represents the inertia force vector caused
by elastic deformation of flexible bodies. The fourth term is the reaction force vector from
the joint constraints, the fifth term is the external load vector, and the last term includes the
effect of the Coriolis and centrifugal forces.

From the previous developments initially made by Kang et al. [18] we observe that the
resulting equations of motion resulting from the floating reference frame formalism are suit-
able to obtain directly the ESL.
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3.3 Derivation of the equivalent static loads using a nonlinear finite element
formalism

In [18], the derivation of the ESL for flexible MBS is straightforward due to inherent prop-
erties of the floating reference frame formulation. First, we point out that the stiffness matrix
is constant in the body-attached frame during the entire motion. Thus, independently of the
system configuration, a single stiffness matrix per body is considered in the optimization
process, that is, for all the time steps. Second, the component deformation is computed in
the body-attached frame and is readily extracted for the ESL computation.

These essential characteristics do not exist in a standard nonlinear finite element formal-
ism. The equations of motion are developed in an inertial frame, that is, the forces are not
expressed in a body-attached frame. Furthermore, no decoupling exists between rigid-body
motion and elastic deformation, which is usually one of its key points.

Hereafter, we propose a method to recover these characteristics in a post-processing step
of the MBS simulation wherein ESL are obtained. We note that the proposed method does
not alter the MBS analysis.

At a converged time step tn, linearizing the equations of motion (1) leads to

M�q̈ + Ct�q̇ + Kt�q + �T
q (k�λ + p�q�q) = �r,

k�q�q = ��.
(15)

At first sight, it would be possible to obtain a similar expression as in (9). However, several
problems are encountered when trying to apply Definition 1. First, the tangent stiffness
matrix is related to the whole system, and it evolves with the system configuration. It would
be very inefficient to store this matrix for each time step. Second, the body tangent stiffness
matrix Kb

t of body b is needed to derive the ESL of body b. Third, the generalized coordinate
vector q(tn) exhibits no decoupling between rigid-body motion and elastic deformation,
whereas the knowledge of deformation is required to derive ESL.

The key idea of the method is to introduce a corotational frame per body in a post-
processing step so that the required characteristics can be recovered. We note that several
definitions of the corotational frame exist such as, for example, a definition based on the
minimization of the strain energy, a chord frame, or a tangent frame definition [29].

The above-mentioned problems are circumvented as follows. (1) A single tangent stiff-
ness matrix for a chosen reference state Kt (tref) is stored whereupon appropriate transfor-
mations must be applied to the vector q(tn) in order to bring it back to the reference con-
figuration for all other time steps. Based on the corotational frame, transformation rules can
be established to switch from the actual configuration to the reference configuration and
vice versa. (2) For each body b, the body tangent stiffness matrix Kb

t (tref) is extracted from
Kt (tref) of the reference state. This is easily performed by identifying the coordinates related
to the nodes of body b and then extracting the body tangent stiffness matrix from the com-
plete matrix. This technique is possible because, in our implementation of the finite element
formalism, each body has its own set of nodal rotation and translation coordinates, which are
not shared with other bodies. (3) Component deformation measure is defined with respect
to the body-attached frame, that is, the corotational frame.

For each body b, a corotational frame definition is adopted and defined by xb
0 and θb

0,
the position of the body-attached frame in the inertial frame and the relative rotation vector
of the body-attached frame compared to its reference configuration. As illustrated in Fig. 1,
the relationship between the absolute position xi and orientation Ψi of node i of a flexible
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Fig. 1 Kinematic description of
a corotational frame

component and its local displacement ui and rotation ψ i with respect to the corotational
frame is given by

xi = xb
0 + Rb

0(Xi + ui ), (16)

Ψi = θb
0 ◦ ψ i , (17)

where Rb
0(θ

b
0) is the rotation matrix between the inertial frame and the corotational frame,

Xi is the position of node i in the body-attached frame for the nondeformed configuration,
and the operation ◦ symbolizes the composition of rotations. Amongst others, Cardona and
Géradin [7] provide a comprehensive definition of corotational frames.

By (16)–(17), a local generalized displacement vector ub
n with respect to the corotational

frame for body b at time step tn is defined as

ub
n = [

uT
1 ψT

1 . . .uT
i ψT

i . . .uT
nnψ

T
nn

]T
, (18)

where nn numbers the nodes of body b. The size of the vector ub
n is (nu +nψ)nn× 1, where

nu and nψ represent the dimensions of the local displacement and rotation vectors, respec-
tively. For planar problems, nu = 2 and nψ = 1, and for spatial problems, nu = nψ = 3.

For MBS modeled using a standard nonlinear finite element formalism, the ESL gb
n,eq in

the corotational frame at time tn for body b is defined as

gb
n,eq = Kb

t (tref)ub
n. (19)

To solve (19), boundary conditions must be enforced to remove the stiffness matrix sin-
gularity caused by the rigid-body modes. They mainly depend on the choice of the corota-
tional frame definition. For example, if a tangent frame is used at node i, then the local dis-
placement of node i should be zero, that is, clamping conditions must be enforced in (19).
A parallel reasoning can be drawn with the floating reference frame formulation wherein
boundary conditions must be imposed to components in order to introduce flexibility in the
MBS analysis; see e.g. the component mode synthesis method [22].

In summary, to define ESL for MBS modeled using a standard nonlinear finite element
formalism, five steps must be followed:

1. Select a reference configuration.
2. For each body b, extract the tangent stiffness matrix Kb

t (tref) of the body out of the global
tangent stiffness matrix Kt (tref).

3. For each time step tn and each body b.
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3.1. Compute xb
0,n, θb

0,n, and Rb
0,n related to the body-attached frame.

3.2. Construct the vector ub
n via (18).

3.3. Compute gb
n,eq via (19).

3.4 Remarks

Once the MBS analysis has been realized, ESL can be computed whereupon the optimiza-
tion process can be performed. We note that the optimization process concerns isolated
components whereas the effects of the whole system stem from load cases.

4 Fully coupled method

The fully coupled method naturally incorporates dynamic effects into the optimization pro-
cess. Cost and constraint functions are formulated with the time responses obtained from
the MBS simulation. Hence, the behavior of the whole mechanical system is considered in
the optimization process, that is, it is not limited to the behavior of the optimized compo-
nent isolated from the rest of the system. This approach also offers a global–local view of
the optimization problem, which is necessary when designing lighter–more flexible compo-
nents. Indeed, reducing the mass and thus increasing the flexibility of a lone component can
significantly influence the overall mechanical system behavior. The fully coupled approach
evaluates the dynamic loading exerted on the considered component (local view) based on
a global system-level simulation, and the optimization process also accounts for the system
global behavior.

With the fully coupled method, possibilities seem increased compared to an isolated
component optimization approach since more complex and coupled behaviors related to the
whole system are considered. However, the optimization problem formulation should be
carefully addressed to obtain good convergence [28].

5 Optimization of flexible multibody systems

5.1 Formulation of the MBS optimization problem

Engineering design problems can be formulated as a mathematical optimization prob-
lem (20) in which an objective function f0(p) is minimized subject to nc constraints fj (p)

ensuring the integrity of the structural design and design requirements. The nv independent
design variables are gathered in the vector p. Side-constraints p

i
≤ pi ≤ pi reflect techno-

logical considerations.

minimize
p

f0(p)

subject to fj (p) ≤ f j , j = 1, . . . , nc,

p
i
≤ pi ≤ pi, i = 1, . . . , nv.

(20)

This formulation provides a general and robust design framework that can be solved by
various types of optimization algorithms.

In MBS optimization, the cost and constraint functions are based on structural properties
and responses, that is, mass, displacement, or stress measures at particular points and time
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steps. The design variables nv can be sizing, shape, or topological variables. Only sizing
variables are considered here.

In the paper, the optimization problem concerns the minimization of the mechanical sys-
tem mass m(p), whereas constraints are enforced at each time step, that is, a local formu-
lation of the constraints is used. This option offers a tight control over the optimal design,
but the large number of constraints hinders the optimization process. Local formulations
are usually opposed to global formulations that agglomerate parts or entire responses into
a few constraints. The reduced number of constraints generally facilitates the optimization
convergence, but the precise control of the optimized design is relinquished due to their
global nature. The complexity of the treated examples is rather moderate, so that basic local
formulations are sufficient.

Particularizing the general formulation (20) to the MBS optimization considered in this
paper reads

minimize
p

m(p)

subject to M(p)q̈n + �T
q (p)

(
kλn + p�(p)

) = g(p),

k�(p) = 0,

fj (p,qn, q̇n, q̈n,λn, tn) ≤ f j , j = 1, . . . , nc,

p
i
≤ pi ≤ pi, i = 1, . . . , nv,

(21)

for n = 1, . . . , nend, where nend is the number of simulation time steps.
We note that this formulation can easily be extended to account for global constraints of

the form
nend∑

k=1

f k
j (p,qn, q̇n, q̈n,λn, tn) ≤ f j . (22)

5.2 Optimization algorithm and sensitivity analysis

Mathematical programming tools are used to solve the optimization problem (21). Gradient-
based methods have been employed to solve large-scale structural and multidisciplinary
optimization problems with great success [10, 24]. The major advantage of these methods
is their good convergence rates, which limits the number of function evaluations to obtain
an optimal design. However, these methods are sensitive to local optima. In this study, we
employ an “active-set” algorithm, which is based on the sequential quadratic programming
approach and is part of the optimization toolbox of Matlab® [17].

Gradient-based optimization methods require a sensitivity analysis to compute the
derivatives of the cost and constraint functions. The efficiency of the sensitivity analysis
is an essential part of the optimization process because it can drastically affect computa-
tion time. Whereas a semi-analytical sensitivity analysis needs less computational efforts in
comparison to a finite difference scheme, the latter approach is adopted in this paper. This
sensitivity analysis requires one additional simulation per design variable, and thus, CPU
time grows by a factor nv + 1. However, we adopt it to carry out the investigations since this
method is easy to use and the computation time is rather small for the examples considered
here.
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5.3 Weakly coupled method

Employing the weakly coupled method, the optimization problem formulation (21) is refor-
mulated so that the dynamic response of the system is replaced by a series of static responses,
that is, at time step tn, the component deformation under the dynamic loading is mimicked
by an ESL. As proposed in [8], the optimization process repeatedly solves the following
static response optimization problem wherein ESL are incorporated:

minimize
p

m(p)

subject to Kb
t (p, tref)ub

n = gb
n,eq, b = 1, . . . nb,

fj

(
p,ub

n, tn
) ≤ f j , j = 1, . . . , nc,

p
i
≤ pi ≤ pi, i = 1, . . . , nv,

(23)

for n = 1, . . . , nend.
In the optimization problem (23), the constraints are formulated with respect to the local

generalized displacement vector ub
n, that is, responses in the corotational frame. To consider

responses in the inertial frame, a relation must be defined to switch from the corotational
frame to the inertial frame representation based on (16)–(17). As shown afterward in the
examples, the constraints are often formulated as functions of qb

n, that is, f ∗
j (p,qb

n(u
b
n), tn) ≤

f
∗
j , where qb

n is the generalized coordinate vector related to body b at time step tn in the
inertial frame defined as

qb
n = [

xT
1 Ψ T

1 . . .xT
i Ψ T

i . . .xT
nnΨ

T
nn

]T
. (24)

We note that after the first iteration of the static optimization process, the assembly of
qb

n for all bodies creates a global generalized coordinate vector, which does not respect the
kinematic constraints anymore since each component has been optimized independently.

In the optimization problem formulation (23), each body is loaded by as many load cases
as the number of time steps. During the static response optimization process, the ESL are
not updated. Therefore, cycles between MBS analysis and static response optimization are
needed to account for the effects of the design modification over the ESL. Reference [15]
shows that doing so is identical to neglecting the time dependency in the sensitivity analysis
of (21).

To solve the dynamic response optimization problem using the weakly coupled method,
the algorithm proposed in [8], apart from the stopping criteria, is as follows:

1. Initialize the design variables and set it = 0.
2. Perform a dynamic MBS analysis.
3. Compute the ESL.
4. If it = 0, go to step 5. If it > 0 and if

∑tend
n=1 ‖gb

n,eq,it − gb
n,eq,it−1‖

∑tend
n=1 ‖gb

n,eq,it−1‖
< ε, (25)

then stop. Otherwise go to step 5.
5. Solve the static response optimization problem (23). The iterations to solve this optimiza-

tion problem are hereafter denoted as inner iterations.
6. Set it = it + 1 and go to step 2.
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Fig. 2 Flowchart of the weakly
coupled method

One cycle is composed of steps 2 to 6. Reference [26] discusses the convergence of
the solution obtained using this optimization method toward the optimal solution of the
original dynamic response optimization problem. Figure 2 illustrates the flowchart of the
ESL method.

5.4 Fully coupled method

Considering the fully coupled method, the optimization problem formulation (21) is em-
ployed as it is. The flowchart of the optimization process is illustrated in Fig. 3. The MBS
simulation and the optimization process are fully coupled, that is, at each iteration of the
optimization process, an MBS analysis is performed. However, as described in Sect. 4, the
design problem is quite complex, and the convergence may suffer poor properties if not
treated properly. This is due to the existence of significant couplings between vibrations and
large amplitude motions, the influence of the changes of component inertial property on the
vibrations, and the interactions between flexible components.

Using the fully coupled method, the sensitivity analysis can be costly if not addressed
with care. Efficient semi-analytical sensitivity methods have been proposed to compute the
response derivatives, that is, dqn/dp, dq̇n/dp, dq̈n/dp, dλn/dp [3, 4]. The sensitivity analy-
sis can also be incorporated into the time integration scheme of the MBS analysis whereupon
the cost of gradient computation is significantly lessened.

6 Optimization of 2-dof planar robot

6.1 Modeling hypotheses

The first example concerns the mass minimization of a 2-dof planar robot inspired
from [18, 19]. Each robot arm has a length of 600 mm and is modeled by two equal-length
beam elements with a hollow cross section (Fig. 4(a)). The adopted beam element model is
described in [12]. The robot is made of aluminum with a Young’s modulus of E = 72 GPa,
Poisson’s ratio of ν = 0.3, and mass density of 2700 kg/m3. Each revolute joint is driven by
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Fig. 3 Flowchart of the fully
coupled method

Fig. 4 Modeling of the 2-dof robot

an ideal motor, which imposes a smooth joint trajectory θ1(t) and θ2(t) such that the robot tip
deploys along a straight line. The initial joint angles are θ1(t0) = 120◦ and θ2(t0) = −150◦.
The ideal (rigid MBS) tip displacement corresponds to the following trajectory equation:

�xtip(t) = �ytip(t) = 0.5

T

(
t − T

2π
sin

2πt

T

)
, (26)

where the period of the deployment motion T is set to 0.5 s.
The actuator of the second robot arm is located at joint A and has a mass of 2 kg. The

combined mass of the end-effector plus the payload is 1 kg. The gravity field is considered.
The simulation is performed using the generalized-α scheme with a time step h = 5×10−4 s
and a spectral radius of ρ∞ = 0.5.

The design variables pi are the outer diameters of the hollow beam elements whose wall
thickness is set to 0.1 × pi . Initial values of the design variables are set to 50 mm. Tangent
corotational frames are adopted to derive the ESL. Thus, the boundary conditions of each
static load case correspond to fixed-free beam conditions.

The optimization problem concerns the mass minimization of the robot m(p) subject to
nc deviation constraints �l(p,qn, tn), where nc equals the number of integration time steps.
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Mathematically, it is stated as

minimize
p

m(p)

subject to �l(p,qn, tn) ≤ �l, n = 1, . . . , nend,

0.02 m ≤ pi ≤ 0.06 m, i = 1, . . . ,4.

(27)

Two different optimization problems are studied hereafter, which result from two different
formulations of the deviation constraints.

6.2 Component-based constraints

Inspired from the initial paper [18] considering the coupling between the ESL method and
flexible MBS, the deviation constraint at time step tn reads

�l =
√

(yA − yAr )
2 + (

(ytip − ytipr
) − (yA − yAr )

)2 ≤ 0.001 m, (28)

where yA and ytip are respectively the joint A and tip y-positions in the inertial frame
(Fig. 4(b)), and the subscript r refers to a reference mechanism, here the same mechanism
but whose components are modeled as rigid bodies.

The constraint formulation (28) is not suitable to perform the optimization problem using
the weakly coupled method since the terms are related to values in the inertial frame whereas
the weakly coupled method makes use of values in the body-attached frame. Based on (16)–
(17), (28) is easily reformulated as

�l =
√(

R1
0,nu1

n,A|y
)2 + (

R2
0,nu2

n,tip|y
)2 ≤ 0.001 m, (29)

which only contains values related to the body-attached frames. Formulation (28) is em-
ployed with the fully coupled method.

The simulation time interval is 0.65 s corresponding to 1301 time steps. The fully cou-
pled method is deemed converged when the relative changes of the objective function value
and the relative constraint violation are less than 10−3 and 10−6, respectively. The weakly
coupled method is deemed converged when the stopping criterion (25) with ε equal to 10−2

is satisfied. These stopping criteria ensure a tight convergence of the optimization processes
so that the comparison is performed on converged solutions.

The optimization results are gathered in Table 1, and the convergence history is illustrated
in Fig. 5. For readability reasons of this figure, markers are printed each 0.01 s. It is observed
that both optimization methods converge quickly toward a similar optimal design. The fully
coupled method has no inner iteration compared to the weakly coupled method. However,
the inner iterations are based on static computations, and static analyses are less CPU-time
consuming than dynamic analyses. Moreover, in this example, the weakly coupled method
needs less global iterations, that is, MBS analysis, to converge. However, it is not easy to
draw a general conclusion about the relative efficiency of the two methods in this case.

6.3 Multicomponent-based constraints

In [19], the authors enforce a trajectory tracking constraint expressed at time step tn as

�l =
√

(xtip − xtipr
)2 + (ytip − ytipr

)2 ≤ 0.001 m, (30)



Weakly and fully coupled methods for mechanism design 405

Table 1 Numerical results (in kg and mm): 2-dof robot, formulation (28)

Method Mass Iter. Inner iter. p1 p2 p3 p4

Weakly coupled 0.962 6 57 39.29 28.33 34.94 25.19

Fully coupled 0.962 9 / 39.35 28.25 35.14 24.91

Fig. 5 2-Dof robot, formulation (28): objective function history and deviation constraint for the optimal
design

where xtip and ytip are respectively the tip x- and y-positions in the inertial frame. The
simulation time interval is still equal to 0.65 s. Stopping criteria are identical to those used
in Sect. 6.2.

In the previous example, each optimized component is subject to component-based con-
straints, that is, each component is constrained by its own responses. Here, the trajectory
tracking constraint enforces a multicomponent-based constraint, that is, by constraining the
absolute deflection of the robot tip, all components are constrained. However, the weakly
coupled method concerns the optimization of components that are isolated from the rest of
the system during the optimization process. Thus, (30) must be reformulated in order to
consider the flexibility of the whole system by enforcing component-based constraints.

Due to the open-loop system properties, we formulate the deflection of the tip as a linear
combination of all the component deflections. At time step tn, the deflection of the tip is
stated as

[
xtip − xtipr

ytip − ytipr

]
=

nb∑

k=1

Rk
0,nuk

n,ext, (31)

where k is the robot link index, and the subscript ‘ext’ denotes the link extremity.
Using the fully coupled method, multicomponent-based constraints are incorporated in

the optimization problem without any difficulty. The generalized coordinates of the MBS
analysis are available for the optimization process and naturally account for the flexibility
of the whole mechanism.

The optimization results are given in Table 2 and are illustrated in Fig. 6. Markers are
again printed each 0.01 s. The weakly coupled method is deemed converged after five cycles,
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Table 2 Numerical results (in kg and mm): 2-dof robot, formulation (30)

Method Mass Iter. Inner iter. p1 p2 p3 p4

Weakly coupled 1.411 5 49 47.87 34.51 42.11 30.08

Fully coupled 1.408 11 / 48.58 35.02 41.43 29.08

Fig. 6 2-Dof robot, formulation (30): objective function history and deviation constraint for the optimal
design

whereas the fully coupled needs 11 iterations. Although the optimal values of objective
functions are similar, the design variable values are slightly different. The effect is observed
in Fig. 6, where the time responses of the optimal systems are different. However, the critical
time zone around 0.1 s exhibits not so much difference between the two optimal solutions
in terms of time response.

7 Optimization of a 4-bar mechanism

7.1 Modeling hypotheses

The optimization problem concerns the mass minimization of a 4-bar mechanism inspired
from [11, 18, 25]. The 4-bar mechanism consists of three flexible links connected to each
other and to the ground by revolute joints (Fig. 7). The three links have a constant solid
circular cross section, Young’s modulus of E = 68.95 GPa, Poisson’s ratio of ν = 0.3, and
mass density of ρ = 2757 kg/m3. Each link is modeled by six beam elements [12]. The
lengths of the links are l1 = 0.3048 m, l2 = l4 = 0.9144 m, and l3 = 0.762 m. Lumped
masses of 5 kg are located at points A and B. The 4-bar mechanism moves in the horizontal
plane so that gravity can be ignored. The input crank is driven by an ideal motor, which
imposes the rotation θ(t) with a linear acceleration from 0 to 10π s−1 in 0.3 s and then
maintains a constant angular velocity until 0.5 s. The simulation is performed using the
generalized-α scheme with a time step h = 5 × 10−4 s and a spectral radius of ρ∞ = 0.5.

The design variables pi are the link diameters. The initial values of design variables are
set to 250 mm. The tangent corotational frames are adopted to derive the ESL.
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Fig. 7 Kinematic model of the
4-bar mechanism

7.2 Optimization problem and numerical results

The optimization problem is to find the mobile link diameters that minimize the total mass
of the system subjected to a deviation constraint on point A. Mathematically, it is stated as

minimize
p

m(p)

subject to �l(p,qn, tn) ≤ 0.001 m, n = 1, . . .1001,

0.015 m ≤ pi ≤ 0.5 m, i = 1, . . . ,3,

(32)

where at time step tn,

�l =
√

(xA − xAr )
2 + (yA − yAr )

2. (33)

In (33), xA and yA are respectively the x- and y-positions of point A in the inertial frame. The
reference mechanism is the same mechanism but with components modeled as rigid bodies.
The optimization differs from [11, 18, 25], wherein authors consider stress constraints.

The weakly coupled method can hardly incorporate the loop closure kinematic in the op-
timization problem formulation due to the component-based characteristics of the method.
To overcome this difficulty, the closed-loop system is opened in the optimization problem
formulation, and the multicomponent-based constraint is split into two constraints. The first
one enforces a limit on the deflection of link 1, and the second one constrains the cumulative
deflection of links 2 and 3. At time tn, using the values related the body-attached frames, it
reads

�l1 = ((
R1

0,nu1
n,A|x

)2 + (
R1

0,nu1
n,A|y

)2) 1
2 ≤ 0.001 m, (34)

�l2 = ((
R2

0,nu2
n,A|x + R3

0,nu3
n,B |x

)2 + (
R2

0,nu2
n,A|y + R3

0,nu3
n,B |y

)2) 1
2 ≤ 0.001 m, (35)

where the last subscript of ub
n denotes the point where the displacement is considered. Note

that the loop closure constraint is still enforced in the MBS simulation, it is only discarded
at the level of the optimization procedure. On the contrary, the fully coupled method incor-
porates constraint (33) without any difficulty.

The fully coupled method is deemed converged when the relative changes of the objective
function value and design variable values vary less than 10−3 while the relative constraint
violation is less 10−6. The weakly coupled method is deemed converged when the stopping
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Table 3 Numerical results (in kg and mm): 4-bar mechanism

Method Mass Iter. Inner iter. p1 p2 p3

Weakly coupled 20.703 73 786 69.85 87.61 37.22

Fully coupled 2.967 21 / 56.15 15.10 16.24

Fig. 8 4-Bar mechanism: objective function history and deviation constraint for the optimal design

criterion (25) with ε equal to 10−2 is satisfied. These tolerance values ensure a tight con-
vergence of the optimization processes so that the comparison is performed on converged
solutions.

The initial design has a mass of 268 kg (without the lumped masses) and a maximum
deviation around 50 μm, which is far from the upper bound limit. The optimal design greatly
differs depending on the optimization method. The objective function optimal value is seven
times larger with the weakly coupled method (Table 3). The ESL method surprisingly needs
a large number of iterations to converge. In Fig. 8, it is observed that, in both methods, at
least one constraint is active once converged. The optimization processes would seem to be
trapped in local optima.

7.3 Trivial optimization

In order to explain the previously obtained behavior, the same optimization process is per-
formed, but the lumped masses at points A and B are removed.

Before performing the optimization, let us get a feeling of the optimal design. The goal
is to minimize the deviation of point A, which is mainly guided by the motor through link 1.
Links 2 and 3 mainly follow the imposed motion and produce reactions forces at point A.
Thus, physical intuition would tend to remove these links.

The optimization results are gathered in Table 4, and the convergence history is illustrated
in Fig. 9. The fully coupled method converges toward our predicted design wherein design
variables p2 and p3 reach the lower bounds of their side-constraints. The weakly coupled
method also converges, and at least one constraint is active at convergence, but the optimum
design is quite different. Links 2 and 3 cannot be removed; they are optimized in order
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Table 4 Numerical results (in kg and mm): 4-bar mechanism without lumped masses

Method Mass Iter. Inner iter. p1 p2 p3

Weakly coupled 13.321 37 410 54.75 68.46 35.37

Fully coupled 1.349 12 / 28.39 15.00 15.00

Fig. 9 4-Bar mechanism without lumped masses: objective function history and deviation constraint for the
optimal design

to satisfy (35). However, if this constraint is suppressed, links 2 and 3 can no more be
incorporated in the optimization problem. This example illustrates that the weakly coupled
is not suitable to consider multicomponent-based constraints in the presence of closed-loops.

8 On some particular behaviors

The 2-dof robot example developed in the previous section concerns the structural opti-
mization of mechanical systems wherein flexibility effects are not predominant. We have
illustrated that both optimization methods can converge toward the same optimal de-
sign.

In this section, the optimization problem of Sect. 6.2 is reconsidered since it concerns
optimization with component-based constraints suitable to both methods. The difference
is that the simulation time interval is slightly increased so that the mechanism approaches
a singularity as its motion is driven by the tip position. After time t = 0.65 s, the robot
Jacobian J defined as

J =
[ ∂xtip

∂θ1

∂xtip
∂θ2

∂ytip
∂θ1

∂ytip
∂θ2

]

(36)

tends to become singular whereupon inertia effects become predominant over the robot,
which is already in an extended configuration. As exposed hereafter, difficulties arise when
flexibility effects become more important.
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Table 5 Numerical results (in kg and mm): 2-dof robot, formulation (37)

Method Mass Iter. Inner iter. p1 p2 p3 p4

Fully coupled 1.099 11 / 43.54 32.56 34.20 25.90

8.1 Oscillating phenomenon

Recalling the optimization problem in Sect. 6.2, the deviation constraint formulation reads

�l =
√

(yA − yAr )
2 + (

(ytip − ytipr
) − (yA − yAr )

)2 ≤ 0.001 m, (37)

where yA and ytip are respectively the joint A and tip y-positions in the inertial frame. Here,
the only difference compared to the study conducted in Sect. 6.2 is that the simulation time
interval is set to 0.66 s corresponding to 1321 time steps. The same stopping criteria are
used.

The convergence history of the weakly coupled method is illustrated in Fig. 10. It is ob-
served that the objective function value oscillates, which prevents the convergence of the
optimization, and it reaches the allowed maximum number of iterations. Observing the tra-
jectory tracking constraint evolution during several iterations (Figs. 10(b)–10(e)), we point
out that the deviation constraint is always activated for the last time step but oscillating
phenomenon appears due to the deviation constraint around 0.125 s. Between iterations 4
and 5, the optimization process reduces the mass and then tries to converge. However, af-
ter performing the MBS analysis and updating the ESL, the optimization process converge
toward a design that was previously obtained so that the process enters an infinite loop.
Move-limits can be implemented to damp out these oscillations, but the optimal design is
thus artificially forced.

This example illustrates that in certain circumstances, oscillations prevent the optimiza-
tion convergence. However, in the present case, this phenomenon seems to appear only for
this particular simulation time interval, where there is a strong interaction between the acti-
vation of the constraint at the last time step and the activation of constraints around 0.125 s.

Employing the fully coupled method, the optimization problem smoothly converges
without any oscillation (Fig. 11 and Table 5). The optimization is deemed converged af-
ter 11 iterations, where a single constraint corresponding to the last time step is active.

8.2 Initial point influence

A general characteristic of gradient-based algorithms is that they are sensitive to local op-
tima. Thus, depending on the initial value of design variables, several optimal designs can
be obtained.

In this section, four different starting points are used: p1
0 = [50,50,50,50], p2

0 =
[55,55,55,55], p3

0 = [55,45,35,25], and p4
0 = [45,45,45,45]. The latter is an infeasible

starting point making the optimization process more complex.
Considering the optimization problem treated in Sect. 6.2 and based on the numerical

results gathered in Table 6, we conclude that the influence of the initial point on the optimal
design is not significant. To support this conjecture, the deviation constraint is given as a
function of the design parameters in Fig. 12 for time t = 0.0995 s, where p1 and p3 are set
to 39.35 and 35 mm, respectively. The design domain presents similar shape for time steps
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Fig. 10 Weakly coupled method: illustration of the oscillating behavior of the optimization process
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Fig. 11 2-Dof robot, fully coupled method, formulation (37): objective function history and deviation con-
straint for the optimal design

Table 6 Formulation (28): Numerical results for four initial points (in kg and mm)

Initial point Mass Iter. Inner iter. p1 p2 p3 p4

Weakly coupled method

p0 = [50,50,50,50] 0.962 6 57 39.29 28.33 34.94 25.19

p0 = [55,55,55,55] 0.962 8 73 39.29 28.32 34.93 25.20

p0 = [55,45,35,25] 0.962 6 49 39.30 28.34 34.94 25.17

p0 = [45,45,45,45] 0.962 5 39 39.31 28.30 34.88 25.26

Fully coupled method

p0 = [50,50,50,50] 0.962 9 / 39.35 28.25 35.14 24.91

p0 = [55,55,55,55] 0.962 11 / 39.39 28.19 35.15 24.91

p0 = [55,45,35,25] 0.961 16 / 39.36 28.24 35.10 24.88

p0 = [45,45,45,45] 0.962 9 / 39.46 28.17 35.10 24.84

around. It is observed that the design space domain is relatively smooth whereupon the
convergence is facilitated and the optimization process is not very sensitive to local optima.

Let us now continue with the same optimization problem except that the 2-dof robot
undergoes a motion until the final joint angles θ1(tend) = 60◦ and θ2(tend) = −30◦ corre-
sponding to a simulation time interval of 0.6687 s and thus 1338 time steps. Approaching
the singularity of the mechanism, inertia effects become more important.

Analyzing the results given in Table 7, the weakly coupled method seems to be rather
insensitive to the starting points. Although the number of iterations needed to converge
strongly varies, the optimal design remains similar. Using the fully coupled method, optimal
designs differ with the initial points. Unlike the weakly coupled method, in Figs. 13–14, it
is observed that the fully coupled method generally activates only the constraint related
to the last time step at convergence. In Table 8, the history of active constraints is given
for p0 = [55,55,55,55], where it is clearly shown that the fully coupled method is more
affected by the dynamic effects occurring at the end of the simulation. Using the weakly
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Fig. 12 Design domain of the
deviation constraint at time step
200 (0.0995 s) plotted with
respect to design variables p2
and p4

coupled method, the optimization is less affected by the last time step, and as depicted in
Table 8, the last constraint is no more active at convergence within the given tolerance. This
behavior can be explained by the fact that design sensitivities are smoother in the weakly
coupled method due to their time independence. In this case, this approximation avoids
getting stuck in a local minimum created by the last time steps where inertia effects are
predominant.

To explain the difference between optimal designs obtained with the fully coupled
method, the design space domain of the deviation constraint as a function of design vari-
ables for time step t = 0.6685 s is illustrated in Fig. 15, where p1 and p3 are set to 52.49
and 33.24 mm, respectively. The design space configuration exhibits a lot of oscillations
near the upper bound value of the constraint preventing the convergence toward a unique
optimal design.

Lastly, observing Fig. 14, the convergence history exhibits oscillations. This is expected
since the convergence is hardened when the starting point is infeasible combined with a local
formulation of the optimization problem [28]. Other formulations can help to work with a
feasible domain of the design space more adapted to gradient-based algorithms, but these
difficult and important issues are left for future work.

9 Conclusions

Two optimization methods for the structural optimization of mechanisms have been com-
pared. On the one hand, the weakly coupled method uses an MBS simulation to generate
ESL whereupon static response optimization with multiple load cases is performed. On the
other hand, the fully coupled method solves a dynamic response optimization problem with
time responses obtained directly from the MBS analysis.

In order to carry out a fair comparison using a unique MBS formalism, we proposed a
method to derive ESL adapted to a standard nonlinear finite element formulation.

When the optimization problem concerns component-based constraints, that is, where
each component is optimized subject to its own set of constraints, both methods can con-
verge toward the same optimum. The weakly coupled method generally lessens the CPU
time consumption since it avoids the expensive gradient computation of the state variables.
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Fig. 13 Influence of the initial point on the optimization process: objective function history and deviation
constraint for the optimal design
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Table 7 Influence of the initial point on the optimal design (in kg and mm)

Initial point Mass Iter. Inner iter. p1 p2 p3 p4

Weakly coupled method

p0 = [50,50,50,50] 1.353 10 101 52.53 37.81 33.24 24.76

p0 = [55,55,55,55] 1.355 5 34 52.62 37.81 33.23 24.77

p0 = [55,45,35,25] 1.352 7 64 52.45 37.84 33.21 24.80

p0 = [45,45,45,45] 1.355 6 50 52.60 37.85 33.23 24.76

Fully coupled method

p0 = [50,50,50,50] 1.427 15 / 51.71 36.89 38.07 27.31

p0 = [55,55,55,55] 1.386 14 / 51.82 36.77 36.90 25.52

p0 = [55,45,35,25] 1.372 9 / 52.27 37.32 34.24 26.32

p0 = [45,45,45,45] 1.350 19 / 52.85 37.21 33.29 24.66

Table 8 History of active constraints, p0 = [55,55,55,55]

Iterations Weakly coupled method Fully coupled method

1 / /

2 1338 /

3 286, 287, 288, 289, 290, 1338 /

4 238, 239, 240, 241, 242, 1338 /

5 239, 240, 241, 242 /

6 - Conv - 1338
.
.
.

.

.

.

10 1338

11 /

12 /

13 /

14 1338

Also, less dynamic analyses are usually required to converge. However, this reduction is
partly balanced by inner iterations, which are performed at each cycle although the latter are
based on static computations.

When multicomponent-based constraints are considered, the weakly coupled method is
not suitable except in particular cases, that is, when the multicomponent-based constraints
can be properly translated into component-based constraints. The fully coupled method is
more general and accommodates all types of component- and multicomponent-based con-
straints at the price of a more complex optimization process.

The examples illustrate the potential of both methods to perform structural optimiza-
tion of flexible mechanisms. However, as illustrated by the last section, it is not trivial to
obtain convergence for mechanisms wherein flexibility and vibrations are important. The
understanding of the physical behavior of the mechanism is fundamental to manage the
optimization process and interpret afterward the optimization results.
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Fig. 14 Infeasible initial point p0 = [45,45,45,45]: objective function history and deviation constraint for
the optimal design

Fig. 15 Design domain of the
deviation constraint at time step
1338 (0.6685 s) plotted with
respect to design variables p2
and p4
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