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Abstract The transfer matrix method for multibody systems (MSTMM), which is a highly
efficient and novel approach for multibody system dynamics, was proposed and perfected
in the past 20 years. The deduction of the overall transfer equation of the system is one of
the key techniques in MSTMM. The topology figure of the dynamics model of multibody
systems is a novel pictorial expression to describe the relationship among the state vectors
of connection points of different elements in MSTMM. In this paper, the block diagram
in control theory is introduced and incorporated into the topology figure of the dynamics
model to represent the connection relationship between different mechanical elements in
the system as well as the control relations. Meanwhile, the transfer equations of the con-
trolled element, control subsystem and the overall transfer equation of the linear controlled
multibody systems are deduced. The proposed method greatly reduces the efforts to study
the linear controlled multibody systems since the procedures are stylized. Two numerical
examples are given to validate the proposed method.

Keywords Transfer matrix method for multibody systems · Topology figure · Dynamics
control · Block diagram · Overall transfer equation · Eigenvalue · Frequency response
characteristics

1 Introduction

A multibody system comprises bodies (rigid or deformable) and hinges in an arbitrary fash-
ion. Typically, bodies may undergo large translational and rotational displacements while
ideal joints kinematically constrain the relative motions between two adjacent bodies. Along
with the requirement by the development in engineering technology, the theory and tech-
niques of multibody system dynamics (MSD) [1–6], such as modeling approaches, formu-
lations of system equations of motion, integration algorithms etc., were put forward and
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improved creatively by many scholars and experts continually in the past 50 years. The clas-
sical transfer matrix method (TMM) is an old approach in structural dynamics [7] and rotor-
dynamics [8]. Later the finite element transfer matrix method (FETMM) was presented by
Dokanish [9] to analyze the vibration of plate structures. The Riccati TMM was put forward
by Horner [10] to overcome the computational difficulties in calculating the eigenvalues.
Further, Kumar et al. [11] proposed the discrete time transfer matrix method (DT-TMM) to
study the dynamics response of time-variant structures.

It has been more than 20 years since the transfer matrix method for multibody systems
(MSTMM) was established by Xiaoting Rui and his co-workers [12]. On the one hand,
the transfer matrix method for linear multibody systems (linear MSTMM) was first intro-
duced by Rui in 1993 and was used to analyze the natural vibration characteristics of multi-
rigid-flexible-body systems [13]. The linear MSTMM was then perfected by developing
new transfer matrices and orthogonal properties of linear multibody system [14] and fur-
ther extended to two dimensional systems [15]. Moreover, Bestle and Abbas [16] proposed
an approach to improve the computational stability and accuracy. On the other hand, by
combining TMM with linearization and numerical integration procedures, the discrete time
transfer matrix method of multibody systems (DT-MSTMM) was introduced and gradually
developed by Rui in 1999, which could be applied to time-variant, nonlinear, large-motion,
general multibody systems [17, 18]. More recently, MSTMM was enhanced by (i) proving
an automatic deduction theorem of overall transfer equation of general multibody system
which facilitates the programming [19, 20], (ii) by improving the computational accuracy of
MSTMM, meanwhile simplifying the derivation for transfer equations of elements [21].

The goal of a control system is to adjust the input u of the plant so that its output y

can vary as we expect. The regulator problem is to regulate u so that the influence of the
disturbance d on y can be canceled. The servo problem, on the other hand, is to adjust u

so that the output y can track the behavior of a reference input r . In both cases, the error
signal e = y − r is expected to be controlled as small as possible. The algorithm to adjust
u according to the information obtained is called controller Gc [22]. The block diagram can
rightly describe the transfer relations among the signals between different components in
a system, represent the cause-and-effect relation between different variables, and indicate
the calculation of those variables [23, 24]. Since typically one desperately demands fast re-
sponse and accurate manipulation of the dynamics of a system, the control of a multibody
system has been one of the focuses in MSD [25]. For a controlled dynamics system, it’s gen-
erally necessary to establish the global dynamics equation of the system, whose dimension
will go up with the increase of the system’s degrees of freedom (DOF), thus resulting in low
computational speed.

Strictly speaking, various engineering mechanical systems, such as machine tools,
weaponry, carrier rockets, airplane and vehicles, as well as electromechanical systems with
a controller, are nonlinear and time-variant multibody systems. However, more often than
not, the engineering demand in accuracy can be satisfied in many situations even using the
model of a linear multibody system, such as in multi-rocket launch systems consisting of
tens of bodies, beams, springs and dampers in any spatial arrangement with a tree or closed-
loop topology [12–14]. The linear MSTMM shares a similar procedure with linear control
theory based on Laplace transformation, which sets up a bridge between control theory and
MSD [26]. Generally speaking, linear MSTMM has the following advantages: (i) no global
dynamics equations of the system are required, (ii) overall transfer matrix has low order,
(iii) the assembly of the overall transfer equation is highly stylized programming, (iv) and
a linear multibody system composed of both discrete and continuous elements can be el-
egantly modeled without discretization in the whole frequency domain, resulting in exact
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solutions. Although linear MSTMM has so many merits, there are only a few articles re-
porting its combination with control. In 1976, Book [27] first mentioned that TMM could
be used to model controlled dynamics system in the frequency domain. In 1983, Book and
Majette [28] established the frequency model of mechanical arms and converted it into the
state space in the time domain to analyze the dynamics response and design the controller.
In the context of FETMM, Hung et al. [29] added the control signal into the state vector and
successfully solved both collocated and non-collocated control problems of a chain system.
Based on Hung’s thoughts, Yang et al. [30] put forward the modeling approach of a branched
system in the frequency domain and studied the dynamics response of the controlled system
in the time domain by using the orthogonality of the augmented state vector in MSTMM.
In 2006, Lu et al. [31] utilized the extended transfer matrix method to study the steady state
response of a controlled chain system, which can be applied to non-collocated feedback con-
trol. Another noticeable work was carried out by Ryan Krauss. He used the extended TMM
to model the non-collocated feedback control of the chain system. According to the sensor
and actuator position along the transfer direction, both upstream and downstream cases were
studied. In his work, the state vector of the sensor element had to be expressed by that of
the actuating element using the transfer equation between them, resulting in a compact form
of the overall transfer matrix of the system by successive multiplication of transfer matrices
[32]. Further, he proposed a method to determine the parameters of the controller based on
Contour Plots [33]. More recently, the combination of the block diagram with TMM was
adopted by Dieter Bestle to express the relationship between the controlled variables and
the input signal intuitively [26]. Further, Hossam applied this method for the tuning of the
parameters of the controller on a 1/4 car model [34].

The above existing modeling approaches have, more or less, the following characteris-
tics. First, the control subsystem has to be merged into the transfer matrix of the controlled
element, and is considered a part of the transfer matrix of the mechanical element. Second,
the transfer matrix of the controlled element may depend on other elements. These two is-
sues break the encapsulation as well as modularity of the transfer matrix of the controlled
mechanical element and do not facilitate the programming. Third, the control relations and
processing cannot be reflected in the dynamics system in a straightforward way. Fourth, they
are typically only suitable for a dynamics system with a simple topological structure like the
chain system.

Based on linear MSTMM, this paper presents a scenario to model general linear con-
trolled multibody systems in the frequency domain. There is no need to augment the state
vector by adding “1” or the control signal. The transfer equations of the controlled (me-
chanical) element are derived, while the control force (or control input signal) is considered
separately rather than merged into the transfer matrix of the element. Further, the transfer
equation of the control subsystem is defined rather than integrated in the transfer equation of
the controlled (mechanical) element. Meanwhile, by combining the topology figure of the
dynamics model of multibody systems [20] with the block diagrams in the control theory
[26], the proposed topology figure of controlled multibody systems is utilized to describe the
connection topology of different elements as well as the control relations. The overall trans-
fer equation of the controlled chain system and the tree system are then deduced easily. The
proposed method greatly reduces the efforts to study linear controlled multibody systems
since the procedure is stylized. It also lays a potential foundation to automatically deduce
the overall transfer equation of linear controlled multibody systems with a computer. The
approach is fit for general spatial linear multibody systems under linear control. One basic
example illustrates the concepts, and another numerical example of a flexible manipulator is
given to demonstrate the application of the proposed method. The results are compared with
the simulation and test in [32], which validates the approach of this paper.
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2 Outline of the transfer equation of multibody systems

The basic idea of MSTMM is to [12, 17]: break up a complex multibody system into several
body elements and hinge elements first, then establish the transfer equations and the transfer
matrices of these elements, and at last, according to the system topology, deduce the overall
transfer equation and the overall transfer matrix of the system by hand and by a computer
automatically.

2.1 Elements with one inboard end and one outboard end

The transfer equation of element j can be denoted as

Zj,O = U jZj,I , (1)

where U j is the transfer matrix of element j , Zj,I and Zj,O are the state vectors of the
inboard and outboard ends for element j , respectively.

2.2 Elements with multiple inboard ends and one outboard end

Assuming the number of inboard ends is N , one can write the transfer equation as [20]

Zj,O =
N∑

k=1

U j,IkZj,Ik , (2)

where U j,Ik is the transfer matrix corresponding to the kth inboard end of element j .
Zj,Ik and Zj,O are the state vectors of the kth inboard end and the outboard end of ele-
ment j , respectively.

Typically, the geometrical equation of the elements with multiple inboard ends and one
outboard end takes the form [20]

H j,I1Zj,I1 = H j,IkZj,Ik (k = 2,3, . . . ,N). (3)

2.3 Controlled elements

2.3.1 The control device taking effect on its adjacent two bodies

As shown in Fig. 1(a), an elastic damping hinge and a plunger are connected in parallel.
Inside the plunger there is gas or liquid which can offer control forces on its adjacent bodies
located at both sides of the hinges. The magnetorheological or piezoelectric material, which
applies additional forces on the adjacent bodies of the hinge because of magnetorheological
or piezoelectric effects, may also replace the plunger.

As shown in Fig. 1(b), the control force, fjc , can be regarded as an internal force acting
on the connected body elements through the inboard end I and outboard end O of the hinge.
Thus, we simply regard the actuated hinge as controlled element in this case. The positive
directions of the control force and the axes of inertial coordinate system are denoted with an
arrow in the figure. The positive directions of internal forces that act on the elastic damping
hinge by the adjacent bodies are also drawn using an arrow in the figure according to the
sign convention in [12].
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Fig. 1 Control device and elastic
damping hinge connected in
parallel

Regardless of the mass of the hinge element, due to the force equilibrium, one can obtain

qxO
= qxI

. (4)

For a spring and a damper, one has

qxO
= kj (xI − xO) + cj (ẋI − ẋO) + fc. (5)

For the damped free vibration, the state vector z can be expressed as z = Zeλt , where Z

is the complex amplitude and λ is the complex eigenvalue. Thereby, the transfer equation of
the controlled element can be deduced according to Eqs. (4) and (5) as

Zj,O :=
[

X

Qx

]

O

=
[

1 − 1
kj +cj λ

0 1

][
X

Qx

]

I

+
[

1
kj +cj λ

0

]
Fjc

=: U jZj,I + EjcFjc, (6)

where

U j =
[

1 − 1
kj +cj λ

0 1

]
, (7)

Ejc =
[

1
kj +cj λ

0

]
. (8)

Hereby, Ejc is defined as the extraction matrix of control force of the controlled ele-
ment j . U j is the transfer matrix of the elastic damping hinge. Fjc is the complex amplitude
of fjc .

2.3.2 The control device affecting only a single body

In the vehicle suspension design, there exist the concepts of a “skyhook damper” and a
“skyhook spring” [35]. They are hypothetical spring and damper between the vehicle and
the inertial ground. The “skyhook damper” and “skyhook spring” correspond to a virtual
force acting on the vehicle and can be regarded as an external force. Meanwhile, for a pulse
jet fixed on an object, the pulse thrust can also be considered as an external force acting on
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Fig. 2 Rigid body with multiple
inboard ends and one outboard
end vibrating in space

the object when the change of the mass distribution of the system can be neglected if the
consumption of the fuel in the pulse jet is in essence trivial. Naturally, we regard the body,
which is actuated by control forces, as controlled element in this case.

Figure 2 shows a rigid body j experiencing spatial motion with N inboard ends and
one outboard end. The body is connected with other elements through its inboard ends
IL (L = 1,2, . . . ,N) and outboard end O . The control force f jc generated by the con-
trol device is acting on point Pc of the rigid body. The oxyz frame is the inertial coordinate
system corresponding to the equilibrium position and orientation of the rigid body. Its origin
represents the equilibrium position of the first input point of the rigid body. And O2x2y2z2

is the body-fixed reference frame whose base point is the first input point of the rigid body.
The rigid body has 6 DOFs with respect to its inboard body element. Denote the coordi-
nate matrix of any point P of the rigid body by rP = [x y z]TP in the oxyz frame and
lI1P in the O2x2y2z2 frame, respectively. Represent the mass center of the rigid body by
C. Further, the angular displacements of the rigid body, which can be regarded as a vector
due to small rotations, are expressed using three coordinates in the oxyz frame and denoted
as θ = [θx θy θz]T . The matrix of moment of inertia about the first input point I1 in the
body-fixed frame O2x2y2z2 is J I1 .

Due to the fact that the orientation angles of a rigid body are global variables, and the
orientation angles at the input point and output point should be the same,

θO = θ I1 . (9)

The geometrical relationship between the first input point and output point of the rigid
body can be expressed as

rO = rI1 − l̃I1Oθ I1 . (10)

According to the theorems of momentum for a system of particles and considering the
sign convention for internal forces [12], one obtains

mr̈I1 − ml̃I1C θ̈ =
N∑

L=1

qIL
− qO + f jc, (11)

where m is the mass of the rigid body; qIL
, qO and f jc are the coordinate matrices of the

internal forces and control force at the input point IL, output point O and point Pc in the
oxyz inertial reference frame, respectively. Here, the positive directions of f jc coincide
with the positive directions of the axes of the oxyz frame.
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Equation (11) can be rewritten as

qO = −mr̈I1 + ml̃I1C θ̈ +
N∑

L=1

qIL
+ f jc. (12)

Due to the theorems of relative moment of momentum about the moving point I1 of a
rigid body,

J I1 θ̈ I + ml̃I1C r̈I1 =
N∑

L=2

l̃I1ILqIL
− l̃I1OqO + l̃I1Pcf jc −

N∑

L=1

mIL + mO, (13)

where mIL and mO are the coordinates matrices of the internal moments at the input point
IL and output point O in the inertial reference frame, respectively.

Substituting Eq. (12) into Eq. (13), one obtains

mO = ml̃OC r̈I1 + (J I1 + ml̃I1O l̃I1C)θ̈ I1 +
N∑

L=1

mIL +
N∑

L=1

l̃ILOqIL
+ l̃PcOf jc. (14)

By substituting z = Zeλt into Eqs. (9), (10), (12), and (14), the transfer equation of the
controlled element can be acquired as

Zj,O :=

⎡

⎢⎢⎢⎣

R

Θ

M

Q

⎤

⎥⎥⎥⎦

O

=

⎡

⎢⎢⎢⎢⎣

I 3 −l̃I1O O3×3 O3×3

O3×3 I 3 O3×3 O3×3

mλ2 l̃OC λ2(J I1 + ml̃I1O l̃I1C) I 3 l̃I1O

−mλ2I 3 mλ2 l̃I1C O3×3 I 3

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

R

Θ

M

Q

⎤

⎥⎥⎥⎦

I1

+
N∑

L=2

⎡

⎢⎢⎢⎣

O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 I 3 l̃ILO

O3×3 Om3×3 O3×3 I 3

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

R

Θ

M

Q

⎤

⎥⎥⎥⎦

IL

+

⎡

⎢⎢⎢⎣

O3×3

O3×3

l̃PcO

I 3

⎤

⎥⎥⎥⎦F jc

=: U j,I1Zj,I1 +
N∑

L=2

U j,ILZj,IL + EjcF jc, (15)

where

U j,I1 =

⎡

⎢⎢⎢⎢⎣

I 3 −l̃I1O O3×3 O3×3

O3×3 I 3 O3×3 O3×3

mλ2 l̃OC λ2(J I1 + ml̃I1O l̃I1C) I 3 l̃I1O

−mλ2I 3 mλ2 l̃I1C O3×3 I 3

⎤

⎥⎥⎥⎥⎦
, (16)

U j,IL =

⎡

⎢⎢⎢⎣

O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 I 3 l̃ILO

O3×3 O3×3 O3×3 I 3

⎤

⎥⎥⎥⎦ , (17)



270 Q. Zhou et al.

Ejc =

⎡

⎢⎢⎢⎣

O3×3

O3×3

l̃PcO

I 3

⎤

⎥⎥⎥⎦ . (18)

Hereby, Ejc is the extraction matrix of the control force of controlled element j . l̃PcO is
the skew-symmetric matrix of lPcO.U j,Ik is the transfer matrix of the rigid body of spatial
motion with N inboard ends and one outboard end. F jc is the complex amplitude of f jc .

The geometrical relationship between the first input point and other input points of the
rigid body can be expressed as

rI1 = rIL + l̃ILOθ I1 (L = 2,3, . . . ,N). (19)

Obviously,

θ I1 = θ IL (L = 2,3, . . . ,N). (20)

By substituting z = Zeλt into Eqs. (19) and (20), one acquires the geometrical equation
of the controlled element as

H j,I1Zj,I1 :=
[

I 3 O3×3 O3×3 O3×3

O3×3 I 3 O3×3 O3×3

]

I1

⎡

⎢⎢⎢⎣

R

Θ

M

Q

⎤

⎥⎥⎥⎦

I1

=
[

I 3 l̃ILO O3×3 O3×3

O3×3 I 3 O3×3 O3×3

]

IL

⎡

⎢⎢⎢⎣

R

Θ

M

Q

⎤

⎥⎥⎥⎦

IL

=: H j,ILZj,IL . (21)

3 Topology figure of the dynamics model of multibody systems

The topology figure of a general multibody system, which contains a closed-loop subsystem,
is shown in Fig. 3.

In Fig. 3, a circle ◦ denotes a body element, an arrow → denotes a hinge element, the
“0” denotes a boundary end. Since the transfer direction is prescribed from tips to root of
a tree structure in [20], all elements can be regarded as having multiple inboard ends and
one outboard end (an element with one inboard end and one outboard end is the special
case of an element with multiple inboard ends and one outboard end). For a general system
that consists of closed-loop subsystems, the deduction of its overall transfer equation can be
treated as that of a tree system after “cutting” the closed-loop structure at the junction P16,19

of body 16 and hinge 19 and regarding the state vectors that emerge at the “cutting point” as
the tip “boundaries”. The notations are also explicitly set in [20], and are used to describe
the transfer equations and the geometrical equations for each element. Moreover, [20] also
provides the approach used for deducing the overall transfer equation of a general system.
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Fig. 3 Description of the
topology figure for a non-tree
system

Fig. 4 A 3-DOF forced damped
vibration system with feedback
control

4 Deduction of the overall transfer equation for linear controlled
multibody systems

4.1 Single feedback control loop in a chain (sub-)system

The system shown in Fig. 4 is made up of 3 lumped masses and 3 elastic damping hinges.
m3 is affected by the periodic external disturbance force fd , thus the system vibrates along
the x-axis with damping. In order to reduce the vibration of lamped mass m1, the feedback
control is introduced, where the control error signal originates from m1 and the control force
acting on the two ends of elastic hinge 4 is fc = −Kaẍ1,2 − Kvẋ1,2 − Kdx1,2 whose positive
direction is shown in Fig. 4. In the following, the overall transfer equation for the controlled
multibody system will be derived using MSTMM, and the eigenvalue of the system and the
steady-state frequency response H(jΩ) = X1,0/Fd will be analyzed and computed.

Elements are numbered as 1 to 6 from right to left, respectively, and the boundaries are
denoted as 0. The state vectors of each connection point of elements i and j share the same
form, namely Zi,j = [X,Qx]Ti,j . Since the left end is fixed and the right end is free, the
boundary conditions of the system are Z6,0 = [0 Qx]T6,0 and Z1,0 = [X 0]T1,0. The transfer
direction is from left to right. Figure 5 shows the topology figure of the dynamics model for
the controlled multibody system, where the solid arrows represent hinge elements and circles
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Fig. 5 The topology figure of
the dynamics model for the
controlled multibody system
which is made up of the control
subsystem and the topology
figure of the dynamics model

represent body elements. The arrows and circles connect with each other in a sequence to
describe the connection topology of elements and denote the transfer direction of the state
vector in an uncontrolled system.

In order to demonstrate the control relations in the topology figure of the dynamics
model, a control subsystem that originates from the measurement device and terminates
on the outboard end of the control device (or actuator) is introduced. It is drawn using
dashed–dotted arrows and blocks in Fig. 5.

The control subsystem is explained as follows. The measurement of the displacement
of element 1, namely x1,2, is taken as the error signal for the control subsystem, which
corresponds to

X1,2 = EZ1,2Z1,2, (22)

where

EZ1,2 = [1 0]. (23)

Hereby, EZ1,2 is defined as the extraction matrix of the measurement signal from the state
vector Z1,2.

Then the error signal x1,2 is transmitted to the controller, and the control force can be
generated by the actuator as

fc = gcx1,2, (24)

where gc is the control law to be determined.
By substituting the transformation fc = Fce

λt and x1,2 = X1,2e
λt into fc = −Kaẍ1,2 −

Kvẋ1,2 − Kdx1,2, the following equation can be obtained:

Fc = Gc(λ)X1,2, (25)

where

Gc(λ) = −Kaλ
2 − Kvλ − Ka. (26)

Gc is the expression of the control law under modal coordinates. According to Eq. (6), for
the controlled element 4,

Z3,4 = U 4Z5,4 + E4cFc. (27)

Substituting Eqs. (22) and (25) into Eq. (27) results in

Z3,4 = U 4Z5,4 + E4cGc(λ)EZ1,2Z1,2. (28)
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The transfer equation of the control subsystem is defined as

Z4c := E4cGc(λ)EZ1,2Z1,2 =: U 4cZ1,2, (29)

where

U jc = EjcGc(λ)EZ1,2 (j = 4) (30)

is defined as the transfer matrix of the control subsystem, which readily describes the whole
process of measurement, the emerging of error signal, the processing of the controller, and
the generation of the control force by the actuator acting on the controlled element j .

After being merged into the whole system, the transfer equation of controlled element 4
is

Z3,4 = U 4Z5,4 + Z4c = U 4Z5,4 + U 4cZ1,2. (31)

The transfer equations of elements 1, 2, 3, 5 and 6 take the form of

Zj,O = U jZj,I (j = 1,2,3,5,6), (32)

where U j (j = 1,3,5) and U j (j = 2,6) are the transfer matrices of a one-dimensional
lumped mass and an elastic damping hinge, respectively.

According to the topology figure, the stave vector of the measurement point can be ex-
pressed as

Z1,2 = U 2U 3Z3,4. (33)

By substituting Eq. (33) into Eq. (31), one can eliminate the state vector Z1,2 of the
measurement point and thus obtain

Z3,4 = U 4Z5,4 + U 4cU 2U 3Z3,4. (34)

As a consequence, the relationship between the state vectors of the inboard end and outboard
end of the controlled element 4 is

Z3,4 = (I − U 4cU 2U 3)
−1U 4Z5,4. (35)

Let

U c
4 = (I − U 4cU 2U 3)

−1U 4. (36)

Equation (35) can then be read as

Z3,4 = U c
4Z5,4. (37)

From the topology figure and Eq. (37), one acquires

Z1,0 = U 1U 2U 3Z3,4

= U 1U 2U 3U
c
4Z5,4

= U 1U 2U 3U
c
4U 5U 6Z6,0, (38)

namely

U allZall =
[−I T 6−1

]
[

Z1,0

Z6,0

]
= 0, (39)
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Fig. 6 Topology figure of the
dynamics model for the
controlled system with forced
vibration

where

T 6−1 = U 1U 2U 3U
c
4U 5U 6. (40)

Knowing the above equation, one can write the overall transfer equation of the controlled
chain system according to the automatic deduction theorem of the overall transfer equation
of a chain system in [20], by replacing the transfer matrix U 4 of the elastic damping hinge
with U c

4. Further, U c
4 is the multiplication of U 4 by a coefficient matrix which is the inverse

matrix of the identity matrix I minus the successive premultiplication of all transfer matrices
of elements in the mechanical transfer path from the outboard end of the controlled element
to the measurement device, continually premultiplied by the transfer matrix of the control
subsystem.

In the following, the system that vibrates with damping under the external disturbance
force fd acting on element 3 will be analyzed. The topology figure of the dynamics model
for the controlled system with forced vibration is shown in Fig. 6.

Compared to Fig. 5, element 3 is forced by a periodic external force whose transfer
equation can be expressed as

Z3,2 = U 3Z3,4 + E3dFd, (41)

where E3d = [ 0
1

]
.

In comparison with Eq. (32), Eq. (41) has one more term in the disturbance force. The
form of the transfer equations of other elements remains the same. Consequently, one can
obtain the transfer matrices of all the elements in a damped forced vibration system by
simple substitution λ → jΩ in the preceding transfer matrices of all elements in the damped
free vibration analysis.

It is obvious that Eq. (31) is still valid for the damped forced vibration system. From
Fig. 6 and Eq. (41), the state vector of the measurement point can be expressed as

Z1,2 = U 2Z3,2 = U 2(U 3Z3,4 + E3dFd). (42)

By substituting Eq. (42) into Eq. (31), one eliminates the state vector of the measurement
point and thus obtains

Z3,4 = (I − U 4cU 2U 3)
−1U 4Z5,4 + (I − U 4cU 2U 3)

−1U 4cU 2E3dFd

=: U c
4Z5,4 + (I − U 4cU 2U 3)

−1U 4cU 2E3dFd . (43)
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A combination with the topology given in Fig. 6 results in

Z1,0 = U 1U 2Z3,2

= U 1U 2(U 3Z3,4 + E3dFd)

= U 1U 2U 3U
c
4Z5,4 + [

U 1U 2E3d + U 1U 2U 3(I − U 4cU 2U 3)
−1U 4cU 2E3d

]
Fd

= U 1U 2U 3U
c
4U 5U 6Z6,0 + [

U 1U 2E3d + U 1U 2U 3(I − U 4cU 2U 3)
−1U 4cU 2E3d

]
Fd

=: T 6−1Z6,0 + T d−1Fd. (44)

The above equation is the overall transfer equation of the system, which can be written in
partitioned matrix form as

U allZall := [−I T 6−1]
[

Z1,0

Z6,0

]
= −T d−1Fd. (45)

Considering the boundary conditions Z6,0 = [0 Qx]T6,0 and Z1,0 = [X 0]T1,0, Eq. (45)
may be reduced to

U ∗
allZ

∗
all = −T d−1Fd, (46)

where Z∗
all = [X1,0 Qx6,0 ]T is composed of the unknown state variables only, and U ∗

all is a
2 × 2 square matrix resulting from elimination of all columns of U all associated with zeros
in Zall (i.e., U ∗

all is composed of the first and fourth columns of U all given in Eq. (45)).
Obviously,

H(jΩ) = X1,0/Fd = −[1 0]U ∗−1
all T d−1. (47)

The dynamics parameters of the system are given as: m1 = 0.5 kg, m3 = 3 kg, m5 =
10 kg, K2 = 200 N/m, K4 = 150 N/m, K6 = 300 N/m, C2 = 0.1 N s/m, C4 = 0.5 N s/m,
C6 = 2.5 N s/m, Ka = 5.0 N s2/m, Kv = 5.0 N s/m, Kd = 5.0 N/m. In Fig. 7, the curves
of the steady-state frequency response H(jΩ) = X1,0/Fd with Ω ∈ [10−1,103] are plotted
according to Eq. (47) and the Newton method, respectively. As can be seen, the two methods
show good agreement. A comparison of the frequency response between the uncontrolled
system without feedback and the controlled system is pictured in Fig. 8.

By setting Fd = 0 in Eq. (46) and substituting the transformation Ω → −iλ into the
transfer matrix of each element, one can rightly obtain Eq. (39) as

U ∗
allZ

∗
all = 0. (48)

The nonzero solution of Eq. (48) must satisfy

�
(
λr, λi

) = detU ∗
all = 0. (49)

Table 1 exhibits the eigenvalues of the controlled system with free damped vibration
solved by Eq. (49) (see [13]) and the Newton method. The two approaches reach good
agreement.
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Fig. 7 The amplitude–frequency characteristics and the phase–frequency characteristics of the displacement
of lumped mass m1 under the external excitation in the controlled system

Fig. 8 A comparison of the frequency response of H(jΩ) = X1,0/Fd between the uncontrolled system and
the controlled system

4.2 Multiple feedback control loops existing in a chain (sub-)system

In the preceding section, the case that a single feedback control loop exists in a chain
(sub-)system has been discussed. The transfer equations (6) and (15) of controlled elements,
as well as Eqs. (22) and (25) which correspond to the emerging of error signal and the
generation of control force, have a general form.
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Table 1 The eigenvalues of the
controlled system shown in Fig. 4
with free damped vibration

Methods Eigenvalues, λ = −λr + iλi (rad/s)

λ1 λ2 λ3

MSTMM −2.1293e−01 −2.3720e−01 −6.6592e−02

±i3.6205e+00 ±i6.3284e+00 ±i3.4283e+01

ODE −2.1294e−01 −2.3715e−01 −6.6580e−02

±i3.6205e+00 ±i6.3284e+00 ±i3.4283e+01

As a short conclusion, the transfer equation of a controlled element takes general form

Zj,O =
N∑

L=1

U jZj,IL + EjcF jc =:
N∑

L=1

U j,ILZj,IL + Zjc, (50)

where U j,IL is the transfer matrix corresponding to the Lth inboard end of the uncontrolled
element j , Ejc is the extraction matrix of control force of controlled element j . The element
with single inboard end and single outboard end can be regarded as a special case of elements
with more than two ends (multiple inboard ends and single outboard end) when L = 1.

A control subsystem consists of the following components: (i) a sensor for generating
the measurement signal, (ii) a comparator computing the error signal, (iii) a controller ad-
justing the input signal of the controlled element according to the error signal and certain
algorithms, and (iv) an actuator (or control device) generating the control force and acting
on the controlled element. The transfer equation of the control subsystem can always be
written as

Zjc = EjcGcEZm,nZm,n = U jcZm,n, (51)

where Ejc is the extraction matrix of control force of the controlled element j , Gc is the
expression of the control law in modal coordinates, Zm,n is the state vector of measurement
point, EZm,n is the extraction matrix of measurement signal from the state vector Zm,n, and

U jc = EjcGcEZm,n (52)

is the transfer matrix of the control subsystem.
Hence, a general discussion about the topology figure of the dynamics model of a con-

trolled multibody system regardless of the specific system will be conducted below.

4.2.1 Two feedback control loops intersecting each other

There are two feedback control loops intersecting each other in the chain (sub-)system as
shown in Fig. 9. The feedback signal of control loop 1 originates from the inboard end of
body element 1, and the control forces are internal forces which act on body 5 and body 3
connected by hinge element 4. At the same time, the feedback signal of control loop 2 comes
from the outboard end of body element 3, and the control force is an external force acting
on body 7.

For control loop 1, the transfer equation of the control subsystem is

Z4c = E4cGc1EZ1,2Z1,2 =: U 4cZ1,2. (53)
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Fig. 9 The topology figure of the dynamics model of a controlled system with two feedback control loops
intersect each other

From the transfer equation of controlled element 4, one has

Z3,4 = U 4Z5,4 + Z4c = U 4Z5,4 + U 4cZ1,2. (54)

The state vector of the measurement point is known from the topology figure as

Z1,2 = U 2U 3Z3,4. (55)

From Eqs. (53)–(55), one deduces

Z3,4 = (I − U 4cU 2U 3)
−1U 4Z5,4 =: U c

4Z5,4. (56)

For control loop 2, the transfer equation of the control subsystem is

Z7c = E7cGc2EZ3,2Z3,2 =: U 7cZ3,2. (57)

From the transfer equation of controlled element 7, one gets

Z7,6 = U 7Z7,8 + Z7c = U 7Z7,8 + U 7cZ3,2. (58)

The state vector of the measurement point can be obtained from the topology figure in
combination with Eq. (56), namely

Z3,2 = U 3Z3,4

= U 3U
c
4Z5,4

= U 3U
c
4U 5U 6Z7,6. (59)

By substituting Eq. (59) into Eq. (58) to eliminate the intermediate variable Z3,2, one
obtains

Z7,6 = U 7Z7,8 + U 7cU 3U
c
4U 5U 6Z7,6. (60)

That is to say, the relationship between the state vectors of inboard end and outboard end of
the controlled element 7 is

Z7,6 = (
I − U 7cU 3U

c
4U 5U 6

)−1
U 7Z7,8. (61)
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Let

U c
7 = (

I − U 7cU 3U
c
4U 5U 6

)−1
U 7, (62)

then Eq. (61) can be rewritten as

Z7,6 = U c
7Z7,8. (63)

As a conclusion from Eq. (62), for a chain system which has N control loops intersecting
one another, if one consecutively numbers the N control loops along the opposite direction
of the transfer direction from the root (the end of transfer path) to the tip (the start of transfer
path) as 1,2, . . . ,N , the U c

ej
of the controlled element ej actuated by the j th control loop

can be calculated by the following approach:

(a) Let j = 1;
(b) U c

ej
is the multiplication of U ej

of the corresponding uncontrolled element by a coef-
ficient matrix which is the inverse matrix of the identity matrix I minus the successive
premultiplication of all transfer matrices of elements in the mechanical transfer path
from the outboard end of the controlled element to the measurement device, continually
premultiplied by the transfer matrix of the control subsystem.

(c) Replace the transfer matrix U ej
of uncontrolled element ej by U c

ej
;

(d) j = j + 1;
(e) If j = N then stop, otherwise go back to step (b).

By combining the topology figure with Eqs. (56) and (63), one obtains

Z1,0 = U 1U 2U 3Z3,4

= U 1U 2U 3U
c
4Z5,4

= U 1U 2U 3U
c
4U 5U 6Z7,6

= U 1U 2U 3U
c
4U 5U 6U

c
7Z7,8

= U 1U 2U 3U
c
4U 5U 6U

c
7U 8Z8,0, (64)

namely

U allZall =
[−I T 8−1

]
[

Z1,0

Z8,0

]
= 0, (65)

where

T 8−1 = U 1U 2U 3U
c
4U 5U 6U

c
7U 8. (66)

From Eq. (66), one can write the overall transfer equation of the controlled chain system
with multiply control loops intersecting each other according to the automatic deduction
theorem of the overall transfer equation of a chain system in [20], by replacing the transfer
matrix U 4 and U 7 of the uncontrolled elements with U c

4 and U c
7.

4.2.2 Outer feedback control loop enclosing inner feedback control loop

In the chain (sub-)system shown in Fig. 10, the outer feedback control loop encloses the
inner feedback control loop. The feedback signal of inner-loop control subsystem comes
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Fig. 10 The topology figure of the dynamics model of a controlled system with outer feedback control loop
enclosing inner feedback control loop

from the outboard end of body element 3, and the control force is an external force acting
on body element 7. The feedback signal of the outer-loop control subsystem originates from
the input end of body element 1, and the control forces are internal forces acting on body
element 7 and body element 9 through hinge element 8.

For the inner-loop control subsystem, one obtains

Z7c = Gc2EZ3,2Z3,2 = U 7cZ3,2. (67)

According to the transfer matrix of controlled element 7,

Z7,6 = U 7Z7,8 + U 7cZ3,2. (68)

Following the topology figure, the state vector of the measurement point can be read as

Z3,2 = U 3U 4U 5U 6Z7,6. (69)

From Eqs. (67)–(69), one deduces

Z7,6 = (I − U 7cU 3U 4U 5U 6)
−1U 7Z7,8 =: U c

7Z7,8. (70)

For the outer-loop control subsystem, one acquires

Z8c = E8cGc1EZ1,2Z1,2 = U 8cZ1,2. (71)

From the transfer equation of the controlled element 8, we have

Z7,8 = U 8Z9,8 + U 8cZ1,2. (72)

The state vector of the measurement point can be written by using the topology figure
combined with Eq. (70) as

Z1,2 = U 2U 3U 4U 5U 6Z7,6

= U 2U 3U 4U 5U 6U
c
7Z7,8. (73)

Through Eqs. (72) and (73), one can eliminate the intermediate variable Z1,2 and obtain

Z7,8 = U 8Z9,8 + U 8cU 2U 3U 4U 5U 6U
c
7Z7,8. (74)
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Namely, the relationship between the state vectors of the inboard end and outboard end of
controlled element 8 is

Z7,8 = (
I − U 8cU 2U 3U 4U 5U 6U

c
7

)−1
U 8Z9,8. (75)

Let

U c
8 = (

I − U 8cU 2U 3U 4U 5U 6U
c
7

)−1
U 8, (76)

then Eq. (75) can be rewritten as

Z7,8 = U c
8Z9,8. (77)

Equation (76) leads us to a short summary. For a chain system which has N control loops
enclosed one by one, if one consecutively numbers the N control loops from inside to out-
side as 1,2, . . . ,N , the U c

ej
of the controlled element ej actuated by the j th control loop

can also be calculated by the recursive approach mentioned in Sect. 4.2.1.
From Eqs. (70) and (77) and the topology figure, one obtains

Z1,0 = U 1U 2U 3U 4U 5U 6Z7,6

= U 1U 2U 3U
c
4U 5U 6U

c
7Z7,8

= U 1U 2U 3U
c
4U 5U 6U

c
7U

c
8Z9,8

= U 1U 2U 3U
c
4U 5U 6U

c
7U

c
8U 9Z9,0, (78)

namely

U allZall =
[−I T 9−1

]
[

Z1,0

Z9,0

]
= 0, (79)

where

T 9−1 = U 1U 2U 3U
c
4U 5U 6U

c
7U

c
8U 9. (80)

From the equation above, one can write the overall transfer equation of the controlled chain
system with outer control loop enclosing inner control loop according to the automatic de-
duction theorem of the overall transfer equation of a chain system in [20], by replacing the
transfer matrix U 7 and U 8 of the uncontrolled elements with U c

7 and U c
8.

4.3 Feedback control in a tree system

The dynamics topology figure of the controlled system is shown in Fig. 11. The feedback
signal of the control subsystem derives from the outboard end of body 2, and the control
force acts on body 6. It can be seen that the control subsystem spans body 2 at which there
exists a bifurcation in the mechanical tree system. Then the overall transfer equation of this
system is deduced as follows.

For the control subsystem, one obtains

Z6c = E6cGcEZ2,1Z2,1 = U 6cZ2,1. (81)

The transfer equation of the controlled element 6 given by Eq. (50) can be read as

Z6,4 = U 6,7Z6,7 + U 6,8Z6,8 + Z6c. (82)
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Fig. 11 The topology figure of
the dynamics model for the
controlled multibody system
where the control subsystem
spans the mechanical element
with multiple inboard ends and
one outboard end in a tree system

It can be seen from the topology figure that the state vector of the measurement point is

Z2,1 = U 2,3Z2,3 + U 2,4Z2,4

= U 2,3Z2,3 + U 2,4U 4Z6,4. (83)

Substituting Eqs. (81), (83) into Eq. (82) and eliminating the intermediate variables Z6c

and Z2,1, one can achieve

Z6,4 = (I − U 6cU 2,4U 4)
−1U 6,7Z6,7 + (I − U 6cU 2,4U 4)

−1U 6,8Z6,8

+ (I − U 6cU 2,4U 4)
−1U 6cU 2,3Z2,3. (84)

In the above equation, let

U c
6,7 = (I − U 6cU 2,4U 4)

−1U 6,7, (85a)

U c
6,8 = (I − U 6cU 2,4U 4)

−1U 6,8, (85b)

T c
2−6 = (I − U 6cU 2,4U 4)

−1U 6cU 2,3. (85c)

Then Eq. (84) can be rewritten as

Z6,4 = U c
6,7Z6,7 + U c

6,8Z6,8 + T c
2−6Z2,3. (86)

Since the control subsystem spans element 2 possessing more than two ends, the state vector
Z6,4 at the outboard end of the controlled element 6 is not only associated with the state vec-
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tors Z6,7 and Z6,8 at the inboard ends of element 6 itself, but also the state vector Z2,3 (which
does not appear in the control loop) at the inboard ends of the bifurcation element 2 related
to the measurement point. It can be seen from Eqs. (85a)–(85c) that U c

6,7 and U c
6,8 are the

multiplication of U 6,7 and U 6,8 of the corresponding uncontrolled element by a coefficient
matrix, respectively. The coefficient matrix can be derived in the same manner as described
in Sects. 4.1, 4.2.1, and 4.2.2. Meanwhile, T c

2−6 is the successive premultiplication of the
transfer matrix along the mechanical transfer path from the inboard end (which does not
appear in the control loop) of the bifurcation element 2 to the measurement device, premul-
tiplied by the transfer matrix of the control subsystem, and then continually premultiplied
by the preceding coefficient matrix.

Combining the topology figure with Eq. (86), one derives

Z1,0 = U 1(U 2,3Z2,3 + U 2,4Z2,4)

= U 1U 2,3Z2,3 + U 1U 2,4U 4Z6,4

= U 1U 2,3Z2,3 + U 1U 2,4U 4

(
U c

6,7Z6,7 + U c
6,8Z6,8 + T c

2−6Z2,3

)

= U 1

(
U 2,3 + U 2,4U 4T

c
2−6

)
Z2,3 + U 1U 2,4U 4U

c
6,7Z6,7 + U 1U 2,4U 4U

c
6,8Z6,8

= U 1
(
U 2,3 + U 2,4U 4T

c
2−6

)
U 3U 5Z5,0 + U 1U 2,4U 4U

c
6,7U 7U 9Z9,0

+ U 1U 2,4U 4U
c
6,8U 8U 10Z10,0. (87)

Let

U c
2,3 = U 2,3 + U 2,4U 4T

c
2−6, (88)

then Eq. (87) can be rewritten as

Z1,0 = U 1U
c
2,3U 3U 5Z5,0 + U 1U 2,4U 4U

c
6,7U 7U 9Z9,0 + U 1U 2,4U 4U

c
6,8U 8U 10Z10,0

=: T 5−1Z5,0 + T 9−1Z9,0 + T 10−1Z10,0. (89)

The above equation is exactly the main transfer equation of the controlled system. Note that
when replacing the transfer matrices U 6,7, U 6,8 and U 2,3 of the uncontrolled elements by
U c

6,7, U c
6,8 and U c

2,3, respectively, one can obtain the main transfer equation of the controlled
tree system by means of the automatic deduction theorem of the overall transfer equation
for a tree system mentioned in [20].

Considering the geometrical equation of element 6,

H 6,7Z6,7 = H 6,8Z6,8, (90)

and combining the topology figure, one obtains

−H 6,7U 7U 9Z9,0 + H 6,8U 8U 10Z10,0 =: G9−6Z9,0 + G10−6Z10,0 = 0. (91)

Considering the geometrical equation of the element 2,

H 2,3Z2,3 = H 2,4Z2,4, (92)
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and combining Eq. (86) and the topology figure, one acquires

H 2,3U 3U 5Z5,0 = H 2,4U 4Z6,4

= H 2,4U 4
(
U c

6,7Z6,7 + U c
6,8Z6,8 + T c

2−6Z2,3
)

= H 2,4U 4
(
U c

6,7U 7U 9Z9,0 + U c
6,8U 8U 10Z10,0 + T c

2−6U 3U 5Z5,0
)
. (93)

After simple arrangements of Eq. (93), we have

−(
H 2,3 −H 2,4U 4T

c
2−6

)
U 3U 5Z5,0 +H 2,4U 4U

c
6,7U 7U 9Z9,0 +H 2,4U 4U

c
6,8U 8U 10Z10,0 = 0.

(94)
Let

H c
2,3 = H 2,3 − H 2,4U 4T

c
2−6, (95)

then Eq. (94) can be rewritten as in the following form:

−H c
2,3U 3U 5Z5,0 + H 2,4U 4U

c
6,7U 7U 9Z9,0 + H 2,4U 4U

c
6,8U 8U 10Z10,0

=: G5−2Z5,0 + G9−2Z9,0 + G10−2Z10,0 = 0. (96)

Equations (91) and (96) are the geometrical transfer equations. Note that by replacing
the matrix H 2,3 by H c

2,3, we obtains the geometrical transfer equations of the controlled
tree system according to the automatic deduction theorem of the overall transfer equation
for a tree system proposed in [20].

Summarizing Eqs. (89), (91) and (96) in matrix from, the overall transfer equation of the
controlled tree system is obtained as

U allZall =
⎡

⎢⎣
−I T 5−1 T 9−1 T 10−1

O O G9−6 G10−6

O G5−2 G9−2 G10−2

⎤

⎥⎦

⎡

⎢⎢⎢⎣

Z1,0

Z5,0

Z9,0

Z10,0

⎤

⎥⎥⎥⎦ = 0. (97)

5 Numerical example

A flexible robot, called small articulated manipulator II (SAMII) and reported in [32], will
be addressed here as a numerical example to validate the proposed method. The dynamics
model is shown in Fig. 12(a). A linear model is built considering a small rotation and vi-
bration along y axis, where all links are configured vertically in their equilibrium positions.
The cantilever Euler–Bernoulli beam (EB beam) numbered 6 is mounted at its tip fixed to
the ceiling. A base spring/damper numbered 7 is modeled due to the flexibility between the
ceiling and the beam. A rigid body number 5 is fixed at the other side of the beam. Mean-
while, a rigid link numbered 3 is articulated by a revolute hinge numbered 4 to rigid body 5.
In a similar manner, a terminal rigid link numbered 1 is connected with link 3 through a rev-
olute hinge. Hinge 4 is considered locked, and thus modeled by a torsional spring/damper.
Finally, hinge 2 is actuated by a hydraulic motor in series with a torsional spring/damper.
Two boundaries are numbered 0.
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Fig. 12 (a) The dynamics model of SAMII and (b) its topology figure with an open loop

For position control purpose, an optical encoder measures the relative angle θ of hinge 2
in degrees, that is,

θ = θlink1 − θlink3 = θ1,2 − θ3,2. (98)

At the same time, in order to suppress the vibration of the terminal link 1, an accelerom-
eter is mounted on the end of beam 6 to measure the acceleration ÿ5,6.

The actuator is a hydraulic motor controlled by a servo-value, whose dynamics is mod-
eled with the transfer function expressed as [32]:

Gact := Θc

V
= Kactp

s(s + p)
, (99)

where v is the input voltage to the actuator and θc is the relative angle generated by the
motor, Kact and p are two constants, while s is the Laplace variable.

For hinge 2, considering the internal compliance, the actuator is modeled to be connected
by a torsional spring/damper in series, which is shown in Fig. 13(a). Thereby, the transfer
equation of hinge 2 is deduced as follows.

The actuated hinge is numbered as j . The moments acting on its inboard end I and
outboard end O are depicted with their positive directions in Fig. 13(a). In order to ana-
lyze the dynamics of the spring/damper and the motor, respectively, a separation is made in
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Fig. 13 (a) The dynamics model of the hydraulic motor and (b) its force analysis

Fig. 13(b). For the torsional spring/damper, one has

K ′
j (θm − θzI ) + C ′

j (θm − θ̇zI ) = mm, (100)

mm = mzI . (101)

For the motor that can generate a relative angle θc between the output point O and the
internal intermediate point M (not drawn in the figure), the geometry can be read as

θc = θzO − θm. (102)

Neglecting its inertia results in

m′
m = mzO. (103)

Due to Newton’s third law, one obtains

mm = m′
m. (104)

By eliminating the intermediate variables mm, m′
m, θm and carrying out the transformation

z = Zeλt , one deduces the transfer equation as
[

Θz

Mz

]

j,O

=
[

1 1
K ′

j
+C′

j
λ

0 1

][
Θz

Mz

]

j,I

+
[

1

0

]
Θc. (105)

Finally, considering that the input point I and output point O are constrained by a revolute
hinge, Eq. (105) can be easily extended to

Zj,O :=

⎡

⎢⎢⎢⎣

Y

Θz

Mz

Qy

⎤

⎥⎥⎥⎦

j,O

=

⎡

⎢⎢⎢⎣

1 0 0 0

0 1 1
K ′

j
+C′

j
λ

0

0 0 1 0

0 0 0 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

Y

Θz

Mz

Qy

⎤

⎥⎥⎥⎦

j,I

+

⎡

⎢⎢⎢⎣

0

1

0

0

⎤

⎥⎥⎥⎦Θc

=: U jZj,I + EjcΘc (j = 2). (106)
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Hereby, it should be noted that Eq. (106) is slightly different from Eq. (50) as transfer equa-
tions for a controlled element. In Eq. (50), the control force Fjc is the control input signal
to the element j under control, while in Eq. (106) the actuator output Θc is selected as the
control input signal to the controlled element j . However, this subtle difference has no in-
fluence on the form of transfer equation (50) of controlled elements in spirit due to a simple
substitution Θc → Fjc.

The state vector of any connecting point Pi,j is defined as Zi,j = [Y Θz Mz Qy]Ti,j in
the system. For other uncontrolled elements in Fig. 12(a), their transfer equations are all in
the form of Eq. (1). For the unactuated hinge 4 and base spring 7, their transfer matrices
rightly take the form in Eq. (106). Thereby, as a short conclusion,

U j =

⎡

⎢⎢⎢⎣

1 0 0 0

0 1 1
K ′

j
+C′

j
λ

0

0 0 1 0

0 0 0 1

⎤

⎥⎥⎥⎦ (j = 2,4,7), E2c =

⎡

⎢⎢⎢⎣

0

1

0

0

⎤

⎥⎥⎥⎦ . (107)

For the longitudinally vibrating rigid body and EB beam, their transfer matrices can be
found in [12] and are listed below as

Uj =

⎡

⎢⎢⎢⎣

1 b1 0 0

0 1 0 0

−mλ2(b1 − c1) λ2(JzI − mb1c1) 1 b1

−mλ2 −mλ2c1 0 1

⎤

⎥⎥⎥⎦ (j = 1,3,5), (108)

where m is the mass, JzI is the moment of inertial with respect to the input point I , c1 is the
distance from input point I to mass center C, b1 is the distance from input point I to output
point O , and λ is the complex variable,

U 6 =

⎡

⎢⎢⎢⎢⎣

S T
β

U

EIβ2
V

EIβ3

βV S T
EIβ

U

EIβ2

EIβ2U EIβV S T
β

EIβ3T EIβ2U βV S

⎤

⎥⎥⎥⎥⎦
,

S = ch + c

2
, T = sh + s

2
, U = ch − c

2
, V = sh − s

2
,

ch = cosh(βl), sh = sinh(βl), c = cos(βl), s = sin(βl), β = 4
√−m̄λ/(EI),

(109)

where EI is the bending stiffness, l is the length of the beam, and m̄ is the mass per length.

5.1 Open-loop modeling

The topology figure of the uncontrolled system is depicted in Fig. 12(b) where two bound-
aries are numbered 0 and the transfer direction is from up to down. The open-loop system
has one input, the voltage v driving the hydraulic actuator, and two outputs, the measure-
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ments on relative angle θ and acceleration ÿ5,6. In the following paragraph, the two transfer

functions Θ
V

and Ÿ5,6
V

will be deduced.
According to the transfer equation of element 2, the dynamics of the actuator and the

topology figure in Fig. 12(b), one obtains

Z1,2 = U 2Z3,2 + E2cΘc = U 2U 3U 4U 5U 6U 7Z7,0 + E2cGactV. (110)

Further,

Z1,0 = U 1Z1,2 = T 7−1Z7,0 + T dV , (111)

where

T 7−1 = U 1U 2U 3U 4U 5U 6U 7, (112a)

T d = U 1E2cGact. (112b)

Then, Eq. (111) can be written in a compact form resulting in the overall transfer equation

U allZall := [I 4 −T 7−1]
[

Z1,0

Z7,0

]
= T dV . (113)

Due to the boundary conditions

Z1,0 = [Y Θz 0 0]T1,0, Z7,0 = [0 0 Mz Qy]T7,0, (114)

one can eliminate the zeroes in Zall and the corresponding columns in U all, that is,

U ∗
allZ

∗
all = T dV . (115)

Thereby, the unknown variables in the boundary state vector can be expressed in terms
of the system input V as

Z∗
all = U ∗ −1

all T dV =:

⎡

⎢⎢⎣

u1
2×1

. . .

u2
2×1

⎤

⎥⎥⎦V. (116)

Further,

Θ = Θ1,2 − Θ3,2 = [0 1 0 0](Z1,2 − Z3,2) = [0 1 0 0](U−1
1 Z1,0 − T 7−3Z7,0

)

= [0 1 0 0]
⎛

⎜⎝U−1
1

⎡

⎢⎣
u1

0

0

⎤

⎥⎦ − T 7−3

⎡

⎢⎣
0

0

u2

⎤

⎥⎦

⎞

⎟⎠V, (117a)

Y5,6 = [1 0 0 0]Z5,6 = [1 0 0 0]T 7−6Z7,0

= [1 0 0 0]T 7−6

⎡

⎢⎣
0

0

u2

⎤

⎥⎦V , (117b)
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where

T 7−3 = U 3U 4U 5U 6U 7, T 7−6 = U 6U 7. (117c)

Eventually, the two transfer functions can be obtained as

Θ

V
= [0 1 0 0]

⎛

⎜⎝U−1
1

⎡

⎢⎣
u1

0

0

⎤

⎥⎦ − T 7−3

⎡

⎢⎣
0

0

u2

⎤

⎥⎦

⎞

⎟⎠ , (118a)

Ÿ5,6

V
= s2[1 0 0 0]T 7−6

⎡

⎢⎣
0

0

u2

⎤

⎥⎦ , (118b)

where s is the Laplace variable.

5.2 Closed-loop modeling

The control subsystem in [32] consists of two control loops, namely, inner feedback loop for
position control and outer feedback loop for vibration suppression. The position control loop
utilizes the measurement of relative hinge angle θ as feedback to track the desired angular
displacement θd so that

v = Gθ(θd − θ), (119)

where Gθ = 1 is the gain to amplify the error signal in this case.
Combining Fig. 12(b) and Eqs. (98), (99), (119), it is natural to obtain the topology figure

for a system with position control subsystem in Fig. 14(a), from which one can easily infer
that

EZ3,2 = EZ1,2 := [0 1 0 0]. (120)

In order to further reduce the vibration, an inertial damping control scheme [36] is taken
to move hinge 2 out of phase with the vibration so that the resulting inertial forces and
moments counteracting the vibration. The acceleration ÿ5,6 is taken as the feedback signal
and added to the desired hinge motion θ̂d according to

Θd = Θ̂d − Gas
2Y5,6, (121)

where s is the Laplace variable and Ga is a low-pass filter that takes the form

Ga = Kaω
2
c

s2 + 2ζωcs + ω2
c

, (122)

where Ka = 18, ζ = 0.707, ωc = 12.566 (rad/s) in this case.
By combining the topology figure of Fig. 14(a) and Eqs. (121), (122), Fig. 14(b) can be

finally obtained as the topology figure for a system with both position control and vibration
suppression. In Fig. 14(b), one can easily infer that

EZ5,6 = [1 0 0 0]. (123)

Based on Fig. 14(b), the overall transfer equation of the system with two control loops
will be deduced as follows.
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Fig. 14 The topology figure of the dynamics model with (a) θ feedback, and (b) both θ and ÿ5,6 feedback

For controlled element 2, one gets

Z1,2 = U 2Z3,2 + E2cΘc

= U 2Z3,2 + E2cGactGθ

(
Θ̂d − Gas

2Y5,6 − Θ
)

= U 2Z3,2 + E2cGactGθ

[
Θ̂d − Gas

2EZ5,6Z5,6 − (EZ1,2Z1,2 − EZ3,2Z3,2)
]

= U 2Z3,2 + E2cGactGθΘ̂d − E2cGactGθGas
2EZ5,6Z5,6 − E2cGactGθEZ1,2Z1,2

+ E2cGactGθEZ3,2Z3,2

=: U 2Z3,2 + T d−2Θ̂d + U 2c1Z5,6 + U 2c2Z1,2 + U 2c3Z3,2, (124)

where

T d−2 = E2cGactGθ, U 2c1 = −E2cGactGθGas
2EZ5,6 ,

U 2c2 = −E2cGactGθEZ1,2 , U 2c3 = E2cGactGθEZ3,2 .

(125)

Combining similar terms in Eq. (124) results in

Z1,2 = (I 4 − U 2c2)
−1(U 2 + U 2c3)Z3,2 + (I 4 − U 2c2)

−1U 2c1Z5,6 + (I 4 − U 2c2)
−1T d−2Θ̂d

=: U
c1
2 Z3,2 + U

c2
2 Z5,6 + (I 4 − U 2c2)

−1T d−2Θ̂d, (126)
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Table 2 Dynamics parameters for the SAMII

Element Parameter

Base Spring 7 K ′
7 = 1.66358e+05 N C′

7 = 4.68789e+02 N s

Hinge 4 K ′
4 = 4.02828e+03 N C′

4 = 6.30580e+00 N s

Hinge 2 K ′
2 = 1.90049e+03 N C′

2 = 2.16805e+01 N s

Beam l = 4.6482 m EI = 339134.5276 N m2 m̄ = 5.7281 kg/m

Rigid body 5 m = 16.032 kg b1 = 0.3302 m c1 = 0.09020 m Jzc = 0.19 kg m2

Rigid body 3 m = 5.0264 kg b1 = 0.1969 m c1 = 0.06145 m Jzc = 0.0270 kg m2

Rigid body 1 m = 5.5799 kg b1 = 0.4001 m c1 = 0.1077 m Jzc = 0.0728 kg m2

Hydraulic actuator Kact = 4.35489e−01 p = 1.73833e+02

where

U
c1
2 = (I 4 − U 2c2)

−1(U 2 + U 2c3), U
c2
2 = (I 4 − U 2c2)

−1U 2c1 . (127)

Hereby combining Eq. (126) and Fig. 14(b), the overall transfer equation can be obtained:

Z1,0 = U 1Z2,1 = U 1U
c1
2 Z3,2 + U 1U

c2
2 Z5,6 + U 1(I 4 − U 2c2)

−1T d−2Θ̂d

= U 1U
c1
2 U 3U 4U 5U 6U 7Z7,0 + U 1U

c2
2 U 6U 7Z7,0 + U 1(I 4 − U 2c2)

−1T d−2Θ̂d

= U 1

(
U

c1
2 U 3U 4U 5 + U

c2
2

)
U 6U 7Z7,0 + U 1(I 4 − U 2c2)

−1T d−2Θ̂d

=: T 7−1Z7,0 + T dΘ̂d , (128)

where

T 7−1 = U 1

(
U

c1
2 U 3U 4U 5 + U

c2
2

)
U 6U 7, T d = U 1(I 4 − U 2c2)

−1T d−2. (129)

Up to Eq. (128), the remaining procedure to acquire the transfer functions Θ

Θ̂d
and Ÿ5,6

Θ̂d
is

the same as that in Eqs. (113) to (118a)–(118b), and thus is omitted.
The dynamics parameters used in [32] are listed in Table 2. Based on Eqs. (118a)–(118b),

the transfer functions Θ
V

, Ÿ5,6
V

for an open-loop system and the transfer functions Θ

Θ̂d
, Ÿ5,6

Θ̂d
for

a closed-loop system with both position control and vibration suppression are shown in
Figs. 15–18, respectively.

Comparing Figs. 15 and 17, the magnitude in Fig. 17 stays at 0 in the low frequency
region. This means that the terminal link can track the angular position according to the
input signal. Moreover, the magnitude in Fig. 18 is significantly reduced compared with that
in Fig. 16. This illustrates that the vibration of the beam tip is well suppressed. The above
simulation results can be validated according to the experimental data and another modeling
method in [32] (see Figs. 8, 9, 14 and 15 in [32]). However, due to copyright concern, those
figures could not be reproduced here. Interested readers can download that paper.

It should be noted that although the example addressed here is in planar configuration,
there are no inherited difficulties in studying its spatial configuration as in [36] by con-
sidering the direction cosine matrices corresponding to the equilibrium orientations of two
adjacent links.
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Fig. 15 Bode plot of Θ
V

for an open-loop system

Fig. 16 Bode plot of
Ÿ5,6
V

for an open-loop system
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Fig. 17 Bode plot of Θ

Θ̂d
for a closed-loop system with both position control and vibration suppression

Fig. 18 Bode plot of
Ÿ5,6

Θ̂d
for a closed-loop system with both position control and vibration suppression
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6 Conclusion

Based on MSTMM, this paper presents a novel approach to model the linear controlled
multibody systems in the frequency domain. The proposed method is fit for general spatial
linear multibody systems under linear control. It maintains the original merits of MSTMM
and makes several breakthroughs in the following aspects:

1. There is no need to augment the state vector by adding “1” or control signal.
2. The transfer equations of the controlled (mechanical) element are derived, while the con-

trol force (or control input signal) is considered separately rather than merged into the
transfer matrix of the element. Meanwhile, control only affects the form of controlled
(mechanical) elements’ transfer equations, and does not influence the transfer equations
of other mechanical elements.

3. Further, the transfer equation of the control subsystem is defined separately rather than
integrated in the transfer equation of the controlled (mechanical) element. This makes
the control subsystem share a parallel position with mechanical elements in the system
modeling process, and ensures the encapsulation as well as modularity of transfer ma-
trices of mechanical elements and the control subsystem, respectively. It also enables a
straightforward representation of the control relations and processing in the dynamics
system.

4. The topology figure of the dynamics model of controlled multibody systems is proposed
by combining the topology figure with block diagrams. It intuitively depicts the process
of measurement, the emerging of error signal, the resolving of the controller, and the
production of the control force (or control input signal to the plant) by an actuator driven
by the control signal.

5. The overall transfer equation of the controlled chain system and tree system are deduced.
No matter how complicated the topology of a system is, the transfer matrix of the control
subsystem has a general form. Moreover, the transfer matrix of a control subsystem is de-
termined by itself and will not be influenced by other control subsystems in the dynamics
system.

A numerical example is given to illustrate the application of the proposed method and to
validate the proposed method compared with the reported literature. The proposed method
greatly reduces the procedures to study the linear controlled multibody systems since it
is stylized. It also lays a potential foundation to automatically deduce the overall transfer
equation of linear controlled multibody systems with a computer.
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