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Abstract Capturing the non-cooperative space debris has gained increasing attention in the
past decades. As an alternative of the rigid robot, the flexible tether-net space robot systems
(TNSRS), like ROGER, are proposed by many research institutes, which can significantly
reduce the risk of capturing process. However, their poor manoeuvrability and the lack of
abilities to keep the net shape may lead to the failure of the capture process. Thus, a ma-
noeuvrable tether-net space robot system (MTNSRS), as a potential approach to improve
TNSRS, is proposed. In order to simplify the dynamics, we introduce the assumption that
the Young’s modulus of the cord in the net is infinite when in tension while it is zero when
being slack. Then, the contact dynamics of rigid robots is employed to solve the unilateral
constraints within the above assumption, and the T3 element is introduced to approximate
the shape of the net. Furthermore, the coordinated controller for MTNSRS is designed by
transferring the inverse dynamics to be a double-level optimization problem. Finally, the
simulation results show that without active control, the net will gradually close in the ap-
proaching phase, and this process will be significantly accelerated even by a small dragging
force in the connecting tether. It is also shown that our controller can ensure MTNSRS to
successfully capture the target and can resist the effects of initial state errors, measurement
noise and kinetic parameter errors.
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1 Introduction

The space debris has been an ever-greater problem since the first Sputnik was launched by
Soviet Union on October 4, 1957 [1]. Significant growth of the orbital debris began with
the explosion of a man-made spacecraft which created more than 300 traceable objects in
1961 [2]. From then on, the steady increasing of the orbital debris population has never
stopped. Studies about the space debris environments have shown that, without effective
debris mitigation measures, the earth orbit will become too dangerous to launch new man-
made spacecraft [3]. Besides, the accumulation of space debris in some orbits which have
certain unique properties, such as the geosynchronous equatorial orbit (GEO), makes the
valuable orbit resource gradually exhausted [4, 5].

With the increasing threat of space debris, the on-orbit non-cooperative target capture
technology has attracted more and more attention in recent years. Compared with tradi-
tional measures, it can be used to clear the space debris completely without creating new
small pieces. The simplest way to fulfil the goal of capturing on-orbit targets is to use a con-
ventional rigid space robot. However, even though using them to capture cooperative targets
has been successfully demonstrated in many space projects, such as Engineering Test Satel-
lite VII [6, 7], Canadarm [8] and Orbital Express [9], applying them to non-cooperative
targets is still a great challenge [10, 11]. Firstly, the dynamical and configuration parame-
ters of targets are known for the cooperative capture, while they are unavailable in the case
of non-cooperative target capture. This leads to extremely high requirements for the sens-
ing and control modules. Besides, typical non-cooperative targets, including malfunctioned
satellites or upper-stages, are usually in an uncontrollable tumbling status. This makes the
approach of rigid robots very dangerous. Furthermore, in these successful flight tests, even
though the cooperative targets are preset into a simple dynamics and suitable configurations,
the whole capture operation is already confronted with great control challenges due to the
dynamical coupling between the manipulator and the platform. Therefore, precisely cap-
turing non-cooperative targets with rigid robots will be very difficult to achieve from the
technical perspective.

Compared with rigid space robots, a tethered space robot is safer and more dexterous,
which is an operational arm as the terminal capturing device connected to the platform satel-
lite via a tether [12–14]. However, the tethered space robot has a small sphere action, which
is an evident drawback of this design. Accordingly, a flexible tether-net space robot system
(TNSRS) is proposed. The TNSRS has many advantages in performing non-cooperative on-
orbit capture [15, 16]. Firstly, the large net converts a point-to-point capture into a surface-to-
point capture, which significantly reduces the requirement on capture precision. Secondly,
the flexible net and the platform are only connected by a tether, which makes the dynamical
coupling between them lower. Thirdly, TNSRS can have large operational distance, which
makes the approaching manoeuvre of the platform unnecessary and effectively avoids the
collision between the target and the rigid parts of the system. Lastly, due to the flexibility and
low density, the tether-net element can be miniaturized and TNSRS can be multi-installed
with capture nets for multiple tasks.

The concept of using TNSRS to clear space debris was first proposed in the ROGER mis-
sion sponsored by European Space Agency [17, 18]. It is designed to capture the malfunc-
tioned satellites in GEO. As the plan of the project, the target is 15 m away from the platform
and will be dragged to the graveyard orbit after being captured. Mankala and Agrawal in-
vestigated the impact in the deployment and retrieval of TNSRS [19, 20]. They discretized
the connecting tether with Ritz Assumed Modes technique and simplified the net as a mass
point. The motion of TNSRS was obtained by solving the dynamical equations, and the
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Fig. 1 Configuration of
MTNSRS

velocity jump caused by the impact was calculated by integrating the equations over an in-
finitesimal period. Williams [21, 22] studied the capture of non-cooperative payloads that are
in inclined orbits relative to the tether system, requiring that capture take place out-of-plane
with respect to the tether system orbit. Optimal control methodology was used to determine
open-loop trajectories for an inextensible tether. Zhai et al. [23, 24] developed the equations
of TNSRS in the orbital frame and studied the relationship between the capture error and
initial capture conditions. Based on the analysis of the dynamical characteristics, they con-
cluded that the effort to damp in-plane liberation of TNSRS only based on tether tension is
impossible due to the instability of liberation. Thus, they introduced thrusters into the sys-
tem as a control force and presented a feed-forward controller. In all the studies mentioned
above, the large flexible net is just assumed to be a mass point. The shape variation of the
net was completely neglected. However, actually, the dragging force in the connecting tether
which is required in the literature to control the position of the net will inevitably lead to
the closing of the net mouth. This may lead to the failure of the capture since the target will
be unable to enter the net if the net mouth is too small. Besides, for the conventional struc-
ture of TNSRS, the flexible net is only dragged by several flying weights. Thus, the thrust
required by the controller designed in [23] is very difficult to get. In order to equip TNSRS
with stronger abilities to keep the net shape and manoeuvre autonomously, we replace the
flying weights with manoeuvrable robots. This new configuration is shown in Fig. 1, and we
called it the manoeuvrable tether-net space robot system (MTNSRS). When the four robots
do not work, MTNSRS will be the same as the conventional TNSRS.

In this paper, consideration is given to the dynamics modelling and coordinated control
of MTNSRS. Compared with previous studies, our model can reflect the variation of the
net shape and the coupling between the four manoeuvring robots. Meanwhile, the designed
controller has the ability to ensure the net to move along the expected trajectory and keep
the required shape. Firstly, considering that the material of the space net has extremely high
stiffness when in tension and the braided structure will become slack under axial pressure,
we assume that the Young’s modulus is infinite in the former case and zero in the latter case.
Thus, the effects of the net on the motion of manoeuvring robots can be split into two as-
pects: one is the inertia and gravitational force caused by the distributed mass, which will be
transmitted to the robots; the other is unilateral state constraints caused by the inextensible
cord in the net. Secondly, we divide the net into four sections and use the T3 element in the
shell theory to approximate the shape of one section, which makes the distributed mass of
the net equivalent to the lumped mass at the net centre and the four robots. Meanwhile, we
employ the theory about the contact dynamics of the rigid robot [25] to describe the effect
of the unilateral state constraints. Based on the extended Hamilton’s principle, we obtain
the dynamical equations accompanied by a linear complementarity problem which should



118 P. Huang et al.

be solved before getting the solution of dynamical equations. Thirdly, given the fact that the
two ends of an inextensible cord will have the same velocity when it suddenly becomes tent,
we use a similar method as in [19] to obtain the velocity jump of points in the net. Lastly,
referring to the contact control of rigid robots [26, 27], we designed a coordinated controller
which is composed of the classical PD adjuster and the inverse dynamics module. However,
since the shape of the net is not only decided by the four manoeuvring robots, the conven-
tional Jacobian matrix and Moore–Penrose pseudo-inverse are not applicable for the inverse
dynamics of MTNSRS. Therefore, we propose a method to transfer the inverse dynamics
solving problem to a double-level optimization problem.

The rest of paper is organized as follows. The architecture and mission scenarios of
MTNSRS are described in Sect. 2. In Sect. 3, the dynamic model of MTNSRS and its equa-
tions of motion are presented. The coordinated controller is designed in Sect. 4. The simula-
tion results of the uncontrolled and controlled cases are both presented in Sect. 5. Section 6
contains our conclusions and perspectives.

2 Description of MTNSRS

2.1 Architecture

As illustrated in Fig. 1, the MTNSRS comprises a connecting tether, a flexible net, and four
manoeuvring robots at its corners. The tether is used to connect the centre of the net and the
space platform. The net and the tether are both manufactured from light and extremely stiff
fibres, such as Nylon or Kevlar. Compared with the net, the structure of the manoeuvring
robot is far more complicated. It is principally composed of eight subsystems, including
the communication, power supply, thermal control, structure, sensor, propulsion, on-board
computer and net-dragging subsystem. Figure 2 displays the basic configuration of the ma-
noeuvring robot. The functions of each subsystem are described as follows:

(i) The communication subsystem is responsible for the communication between the
robot and the platform, so that the robot can feed back its pose information to and
then get commands from the platform.

(ii) The power supply subsystem consists of several storage batteries. They are charged
when the robot is stored on the platform and responsible for offering electricity to
other subsystems.

(iii) The thermal control subsystem of MTNSRS is used to keep the inner temperature
appropriate. Since the time required to capture a target is not very long, a passive
mechanism is enough to reach the requirement.

(iv) The structure subsystem stands for all the mechanical parts installed on the robot.
They should be light and stable enough to carry and protect other subsystems.

(v) The sensor subsystem consists of the inertial measurement unit, the tension sensor
and other necessary sensors installed on the robot. These sensors are used to acquire
the pose information of the robot and the state of the net.

(vi) The propulsion subsystem consists of the thrusters installed on the robot. They should
be able to offer the required thrust in any direction through combining different
thrusters.

(vii) The on-board computer is the brain of the manoeuvring robot, which is responsible
for functions such as system management, thrust distribution, data processing, and so
on.
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Fig. 2 Structure of the
manoeuvring robot

(viii) The net-dragging mechanism is used to connect the flexible net and the robot. When
the robot is approaching the target, it should be able to drag the net to move forward.
When the target is totally covered by the net, it should be able to help the robot tighten
the net mouth.

2.2 Mission scenarios

MTNSRS is mainly designed for clearing the orbital debris. Before conducting the mission,
it is carried and deployed by the platform. Then, it approaches and captures the target under
the guidance of the platform. Finally, the platform drags the captured debris to the graveyard
orbit or the atmosphere to destroy it. Therefore, the whole mission can be divided into five
phases (see Fig. 3):

(i) Orbit transferring. The platform is launched by the rocket. Under the guidance of
ground stations and the installed detecting instruments, it begins to search for the or-
bital debris and then transfers to the servicing orbit after identifying the target.

(ii) Net ejecting. After the platform reaches the intended orbit, MTNSRS should be reliably
deployed. To fulfil this goal, the mechanism designed in [15] is introduced here. When
the four robots are ejected, the net will be pulled out of the canister.

(iii) Approaching. When the net is fully pulled out of the canister, the thrusters installed on
the four robots will begin to work to keep MTNSRS stable and obtain the intended net
shape. Meanwhile, under the guidance of the platform, MTNSRS will move towards
the target.

(iv) Capturing. At the end of the approaching phase, MTNSRS will rendezvous with the
target. When the net totally covers the target, the cord on the net mouth will be tightened
by the kinetic energy of the robots and the net will be closed behind the target.

(v) Dragging. When the target is captured by MTNSRS, the platform begins to drag the
target to the graveyard orbit or the atmosphere. After the intended orbit is reached, the
connecting tether between MTNSRS and the platform will be cut and the platform will
move towards the next target.
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Fig. 3 Task flow of MTNSRS

According to the description above, the dynamics and control of MTNSRS vary greatly
in different phases. The focus of this paper is on the dynamics modelling and coordinated
control of MTNSRS during the approaching phase. When entering the capturing phase,
the bigger the area of the net mouth, the lower the precision requirements of capturing.
Meanwhile, keeping the net mouth fully opened can avoid the twining of the net as well
as the collision between robots. Therefore, the two goals of designing the controller are to
ensure MTNSRS approaches the target along the intended trajectory and to keep the proper
net shape to make the net mouth area the biggest.

3 Dynamics modelling of MTNSRS

3.1 Assumptions and coordinate systems

MTNSRS is composed of the connecting tether, the flexible net and four rigid robots. The
dynamics of the rigid-flexible combinative system is too complicated to build an accurate
dynamic model with all details. In order to analyse the dynamics of MTNSRS, we firstly
introduce the following five basic assumptions:

(i) The platform moves along a nearly circular Keplerian orbit. The mass of the platform
is far heavier than the connecting tether, the flexible net and the mass of the manoeu-
vring robots. Its orbit and attitude are not affected by MTNSRS. Therefore, it can be
simplified as a mass point.

(ii) Due to the passive deployment mechanism, there will always be a certain tension in
the connecting tether during the whole approaching phase. In addition, the stiffness of
the tether is very high while its density is very low. Hence, it can be approximated as a
massless rod.
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Fig. 4 Simplified description of
MTNSRS

(iii) Compared with the flexible net, the volume of the manoeuvring robot is so small that it
can be neglected. Therefore, as in Fig. 4, the robot is simplified to a controllable mass
point in building the dynamic model.

(iv) When the flexible net is fully unfolded, the mass distribution is uniform and the mesh
of the net is very small compared with the whole size of the fully expanded net. In
the approaching phase, due to the requirement to keep the net mouth fully opened,
the flexible net will not deform greatly. Therefore, the net can be approximated as a
uniform shell.

(v) The tether connecting point is in the centre of the net. As shown in Fig. 4, the four cords
which connect the net centre and the manoeuvring robots equally divide the whole net
into four sections. In the approaching phase, all sections are approximately flattened by
the manoeuvring robots.

Since the length is far bigger than the diameter of the section, the cord used to braid the
flexible net will become slack when it is under axial pressure. Therefore, the tension–strain
relation can be written as:

N =
{

EA(ε + αε̇) ε ≥ 0,

0 ε < 0,
(1)

where ε is the strain of the tether, α is the damping coefficient, A is the sectional area of
the cord, and E is the Young’s modulus of the cord. Generally speaking, the net is made
of fibres with extremely high stiffness. The Young’s modulus of these fibres can be more
than 130 GPa. In addition, since the movement of the net in the approaching phase is rather
smooth, the tension in the net should not be too big. Therefore, the strain of the tether is so
small that it can be neglected. Hence, in order to further simplify the description of the net,
we introduce the following approximation:

lim
ε→0+ E = +∞. (2)

This means that the net can be arbitrarily folded while it is impossible to be elongated.
Therefore, the elastic potential of the net can be calculated as

Π =
∫ ε

0
N dε → 0. (3)
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Fig. 5 The scenario of becoming
taut

Hence, it can be neglected in the dynamics modelling.
In order to facilitate the description of MTNSRS, we firstly number the tether connecting

point and the four manoeuvring robots as shown in Fig. 4. Then, we introduce the following
two coordinate systems:

(i) The inertial frame OXYZ: the origin O is located in the centre of the Earth; the X

axis is towards the ascending point of the orbit; the Z axis has the same direction as the
normal vector of the orbit plane; the Y axis completes the frame following the right-
hand principle.

(ii) The orbital frame oxyz: the origin o is located in the mass centre of the space platform;
the x axis has the same direction as the tangent vector of the orbit; the z axis is directed
from the origin o to the Earth centre O; the y axis has the same direction as the negative
normal vector of the orbit plane.

3.2 Dynamical equations

According to Assumption (v) in Sect. 3.1, the flexible net is equally divided into four sec-
tions. The section consisting of point 1, point 2 and point 3 is taken out as an example and
shown in Fig. 5. In order to get the best performance of capture, the net mouth is expected
to be fully open in the approaching phase. Meanwhile, due to the friction of the tether-
deploying mechanism, there must be a certain dragging force in the tether connecting the
platform and the net. Therefore, the section will keep nearly flat in the approaching phase,
and it can be approximated as a triangle shell, namely �ABC. Thus, the T3 element in
the shell theory is employed here to describe the shape of this section. Hence, for an arbi-
trary point D in this section, its position vector in the inertial frame can be approximately
calculated as

R ≈ s1R1 + s2R2 + s3R3 (4)

where s1, s2 and s3 stand for the area coordinates of point D. They satisfy:

s1 = S̄�BCD

S̄�ABC
, s2 = S̄�CAD

S̄�ABC
, s3 = S̄�ABD

S̄�ABC

where S̄� stands for the area of the triangle without any deformation. Therefore, the La-
grange function of this section can be written as

L123 =
∫∫

�ABC

1

2
ρṘ

T
Ṙ dΣ −

∫∫
�ABC

(
−ρ

GM

‖R‖
)

dΣ

= mW

4

∫ 1

0
ds1

∫ 1−s1

0

(
1

2
Ṙ

T
Ṙ + ρ

GM

‖R‖
)

ds2 (5)
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where ρ is the areal density of the equivalent shell, mW is the mass of the whole net, G is
the universal gravitational constant, and M is the mass of the Earth. The variation of the
Lagrange function can be written as

δ

∫ t2

t1

L123 dt

=
∫ t2

t1

[
mW

4

∫ 1

0
ds1

∫ 1−s1

0
δRT

(
−R̈ − ρ

GM

‖R‖3
R

)
ds2

]
dt. (6)

Compared with the orbital motion, the relative motion of MTNSRS is trivial. Since the
position vector R involves the orbital motion of the platform, using it directly to describe
the approaching phase will cause computation problems. Hence, we need to transfer Eq. (6)
into the relative orbit coordinate system. According to the C–W equation, the integral term
in Eq. (6) can be calculated as

R̈ + ρ
GM

‖R‖3
R ≈ r̈ + M ṙ ṙ + M rr (7)

where

M ṙ =
⎡
⎣ 0 0 −2ω

0 0 0
2ω 0 0

⎤
⎦ , M r =

⎡
⎣0 0 0

0 ω2 0
0 0 −3ω2

⎤
⎦ .

Here ω is the orbital angular velocity of the space platform. In addition, the variation of the
position vector can be calculated as

δR = δ
[
Ro(t) + r

] = δr (8)

where Ro is the position vector of the origin of the orbital coordinate system. Inserting
Eq. (7) and Eq. (8) into Eq. (6) yields∫ t2

t1

δL123 dt

≈
∫ t2

t1

[
mW

4

∫ 1

0
ds1

∫ 1−s1

0
−δrT(r̈ + M ṙ ṙ + M rr)ds2

]
dt

≈
∫ t2

t1

−δrT
N

[
mW

4

(
M123

1 r̈N + M123
2 ṙN + M123

3 rN

)]
dt (9)

where

rN = [
rT

1 , rT
2 , rT

3 , rT
4 , rT

5

]T
, M123

1 = M123 ⊗ I 3×3,

M123
2 = M123 ⊗ M ṙ , M123

3 = M123 ⊗ M r ,

⊗ stands for the direct product of matrixes, and M123 is the characteristic matrix corre-
sponding to the section consisting of point 1, point 2 and point 3. The characteristic matrix
for different sections can be calculated as

M lmn
5×5(i, j) =

⎧⎨
⎩

1/12 i, j ∈ {l,m,n}, i = j,

1/24 i, j ∈ {l,m,n}, i 	= j,

0 otherwise.

Similarly, the Lagrange functions of other three sections and their variations can also be
obtained.

Since we have assumed that the cord connecting two points cannot be elongated, the
distance between two points must conform to the unilateral constraint. For example, the dis-
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Table 1 Number of Connections
Number Connected Points Number Connected Points

1 Point 1 and Point 2 5 Point 2 and Point 3

2 Point 1 and Point 3 6 Point 3 and Point 4

3 Point 1 and Point 4 7 Point 4 and Point 5

4 Point 1 and Point 5 8 Point 5 and Point 2

tance between point 1 and point 2 must satisfy

|r1 − r2| ≤ L12 (10)

where L12 is the undeformed length of the cord connecting point 1 and point 2. Similar
unilateral constraints can also be obtained between other points. In order to involve the
effects of these unilateral constraints in the modelling, we introduce the interval function. It
is defined as

gij
def= Lij − ‖r i − rj‖ ≥ 0 (11)

where Lij is the undeformed cord length between point i and point j . According to the
theory of contact dynamics [25], the corresponding constraint forces must satisfy

⎧⎪⎪⎨
⎪⎪⎩

λij = 0 when gij > 0,

λij = 0 when gij = 0 and ġij > 0,

λij = 0 when gij = 0, ġij = 0 and g̈ij > 0,

λij ≥ 0 when gij = 0, ġij = 0 and g̈ij = 0.

(12)

Generally speaking, when solving the dynamical equations with numerical integration algo-
rithms, we only know the zeroth order and the first order terms, that is, gij and ġij . Therefore,
whether the constraint is in the first two cases can be easily distinguished. If the constraint
is in the first two cases, the constraint force can be decided as zero and points can move
freely. Thus, the solving procedure is the same as for the conventional dynamical systems
without the unilateral constraint. However, if the constraint is not in the first two cases,
the second order term g̈ij and the corresponding constraint force λij need to be solved be-
fore getting the acceleration of points. The method will be discussed in detail when the
dynamical equations of MTNSRS are obtained. Here, in order to facilitate the expression,
we number all the eight unilateral constraints of MTNSRS as shown in Table 1. In the fol-
lowing pages, the subscript of λ and g will be written as the number of the corresponding
constraint.

The Lagrange function of MTNSRS can be calculated as

L = L123 + L134 + L145 + L152 +
5∑

i=2

mM

[
1

2
RT

i Ri − GM

‖Ri‖
]

(13)

where mM is the mass of the manoeuvring robot. The virtual work of unconventional forces
acting on MTNSRS (including the constraint forces) can be calculated as

δ′W = −δrT
1

r1

‖r1‖FT +
5∑

i=2

δRT
i F i + δgT

NλN (14)
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where FT is the dragging force in the connecting tether and F i (i = 2, . . . ,5) is the control
force acting on the manoeuvring robots. According to the extended Hamilton’s principle,
MTNSRS needs to satisfy ∫ t1

t0

(
δL + δ′W

)
dt = 0. (15)

Inserting Eq. (13) and Eq. (14) into Eq. (15) and then simplifying it with the partial integra-
tion method yields

∫ t1

t0

{
−δrT

N

[
mW

4

(
MW

1 r̈N + MW
2 ṙN + MW

3 rN

)]

−
5∑

i=2

δrT
i

[
mM

(
r̈ i + M ṙ ṙ i + M rr i

)]

+ δrT
NF + δrT

N

(
∂gN

∂rN

)T

λN

}
dt = 0 (16)

where

MW
i = M123

i + M134
i + M145

i + M152
i (i = 1,2,3),

F = [−FTrT
1 /‖r1‖,F T

2 ,F T
3 ,F T

4 ,F T
5

]T
.

Considering the property of the variation operation, the dynamical equations of MTNSRS
can be written as

Mr̈N + CṙN + KrN = F +
(

∂gN

∂rN

)T

λN (17)

where

M = mW

4
MW

1 + mM diag(0,1,1,1,1) ⊗ diag(1,1,1),

C = mW

4
MW

2 + mM diag(0,1,1,1,1) ⊗ M ṙ ,

K = mW

4
MW

2 + mM diag(0,1,1,1,1) ⊗ M r .

In order to solve the constraint forces, we take out the numbers of the constraints which
are in the last two cases of Eq. (12), sort them from lowest to highest, and consequently get
the number vector Ī . Sorting the corresponding interval functions and constraint forces in
the same sequence yields the interval function vector ḡN and the constraint force vector λ̄N .
For the constraint whose number is not included in vector Ī , the corresponding constraint
force can be directly decided as zero. For the remaining constraints, the second derivative of
ḡN can be calculated as

¨̄gN = ∂ḡN

∂rN

r̈N + ∂2ḡN

∂r2
N

ṙN · ṙN . (18)

In addition, the relation between λ̄N and λN can be written as

λN = MRλ̄N (19)

where

MR(i, j) =
{

1 i = Ī (j),

0 otherwise.
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Inserting Eq. (17) and Eq. (19) into Eq. (18) yields

¨̄gN = Aλ̄N + b (20)

where

A = ∂ḡN

∂rN

M−1

(
∂gN

∂rN

)T

MR,

b = ∂ḡN

∂rN

M−1(F − CṙN − KrN) + ∂2ḡN

∂r2
N

ṙN · ṙN .

Considering the constraints conformed by ḡN , the problem to solve the constraint forces can
be written as ⎧⎪⎨

⎪⎩
ḡN = 0, ˙̄gN = 0,

¨̄gN = Aλ̄N + b,

¨̄gT
N λ̄N = 0, ¨̄gN ≥ 0, λ̄N ≥ 0.

(21)

This is a typical linear complementarity problem. It can be solved by using the Lemke
algorithm whose detailed procedures are investigated in [28].

According to the analysis above, when the position vector rN , the velocity vector ṙN and
the control force vector F are known, we can obtain the constraint force vector λN through
solving Eq. (19) and Eq. (21). Then, the acceleration vector r̈N can be obtained by solving
the dynamical equation (17). Thus, the dynamics of MTNSRS is captured.

3.3 Velocity jump

Considering the scenario shown in Fig. 5, at time t−, the distance between point i and point
j reaches the undeformed cord length Lij . Meanwhile, the relative velocity along the cord
between the two points is not zero, and they have a tendency to go away from each other.
Thus, the cord becomes taut at time t and the tightening force is transferred through the
cord, which is similar to the process of impact. Due to the high damping of the braided
structure and the stiff fibre, at time t+, the two points will get the same velocity along the
cord.

In order to describe the instantaneous velocity jump, we integrate the overall dynamical
equation (17) at the time interval [t−, t+ ] and obtain

∫ t+

t−
Mr̈N dt +

∫ t+

t−
CṙN dt +

∫ t+

t−
KrN dt =

∫ t+

t−
F dt +

(
∂gN

∂rN

)T ∫ t+

t−
λN dt. (22)

Since the position vector remains unchanged and the control forces are limited during the
extremely transient period, the last two terms at the left side of Eq. (22) and the first term
at the right side equal to zero. For the constraint which satisfies the conditions of becoming
taut, namely gi = 0 and ġi < 0, the constraint force goes to infinity over an infinitesimal
period and its integral is not zero. However, for the constraint which does not satisfy the
conditions, the constraint force is zero or limited, and therefore the integral remains zero.
In order to facilitate the expression, we take out the numbers of those constraints satisfying
the tightening condition, sort them from the lowest to the highest, and consequently get the
column vector ĪNT . Sorting the corresponding interval functions and constraint forces in the
same sequence yields the interval function vector ḡNT and the constraint force λ̄NT . Further-
more, we write the integrals of λNT and λ̄NT over [t−, t+ ] as ΛNT and Λ̄NT , respectively.
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The relation between them can be written as

ΛNT = MRT Λ̄NT (23)

where

MRT (i, j) =
{

1 i = ĪNT (j),

0 otherwise.

Thus, Eq. (22) can be rewritten as

M(ṙN |t+ − ṙN |t−) =
(

∂gN

∂rN

)T

MRT Λ̄NT . (24)

Besides, the interval function vector ḡNT must satisfy

˙̄gNT |t+ = 0. (25)

Solving Eq. (24) and Eq. (25) together yields the velocity vector at time t+. Thus, the veloc-
ity jump is obtained.

4 Coordinated control of MTNSRS

4.1 Controller structure

When entering the capture phase, as long as the target is in the net mouth, it will be suc-
cessfully captured by MTNSRS regardless of the net shape. Since the position and direction
of the net mouth are completely decided by the position of the four manoeuvring robots,
we only need to require them to move along the expected trajectories when considering the
control of MTNSRS. Thus, the position control vector rc can be written as

rc = [
rT

2 , rT
3 , rT

4 , rT
5

]T
. (26)

Besides, we assume that the space platform employs the simplest passive mechanism to de-
ploy the tether, which is similar as that used in Small Expendable Deployer System mission
[29]. Thus, the dragging force in the connecting force is uncontrollable in the approaching
phase while it cannot be completely eliminated due to the existence of friction. Hence, the
control force vector F c of MTNSRS only includes the control forces acting on the manoeu-
vring robots, that is,

F c = [
F T

2 ,F T
3 ,F T

4 ,F T
5

]T
. (27)

The uncontrollable dragging force FT will cause disturbances to the motion of MTNSRS and
meanwhile can help the flexible net keep stable. Therefore, we split the dynamical equation
(17) into two equations as:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
M1r̈1 + M1cr̈c + C1ṙN + K1rN = r1

‖r1‖FT +
(

∂gN

∂r1

)T

λN,

Mcr̈c + Mc1r̈1 + CcṙN + KcrN = F c +
(

∂gN

∂rc

)T

λN

(28)

where M1, M1c, Mc1 and Mc are the corresponding partitions of M;C1 and Cc are the cor-
responding partitions of C;K1 and Kc are the corresponding partitions of K . They satisfy:

M =
[

M1 ¦M1
¦¦

Mc1 ¦Mc

]
, C =

[
C1

Cc

]
, K =

[
K1

Kc

]
.
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Fig. 6 Structure of the coordinated controller

According to Eq. (17), the four manoeuvring robots will interact with each other. Be-
sides, for constraints which are not in the first two cases of Eq. (12), whether they are in
the third or fourth case is affected by the control forces required by the controller. Different
control forces might lead to different structures of MTNSRS. In other words, the structure
of MTNSRS is coupled with the control forces. This makes the control of MTNSRS re-
markably different from the conventional space robot and the satellite formation. Referring
to the contact control of rigid robots [26, 27], we present a coordinated controller with the
structure as shown in Fig. 6. The PD adjuster is used to generate the acceleration correction
vector according the following equation:

�r̈c = λp
(
r∗

c − rc
) + λd

(
ṙ∗

c − ṙc
)

(29)

where λp and λd are the proportional and differential coefficient, respectively. The expected
acceleration r̈∗∗

c is obtained by adding the ideal acceleration r̈∗
c and the acceleration correc-

tion �r̈c, that is,

r̈∗∗
c = r̈∗

c + �r̈c. (30)

Then, the inverse dynamics is used to generate the required control force according the
expected acceleration. However, the problem faced by MTNSRS is a little different from
the contact control of rigid robots, which makes the conventional Jacobian matrix and
Moore–Penrose pseudo-inverse not applicable for MTNSRS. Specifically, for the rigid
robot, whether the arms will contact with objects can be inferred from the current state
and the expected acceleration. Nevertheless, for MTNSRS, we do not give the expected ac-
celeration of point 1. Even if the expected acceleration is given, requiring point 1 to gain
the required acceleration is also very hard. This is because that there is no active control
force acting on it. Its motion is affected by other points’ motion, its own position and the
uncontrollable dragging force. This situation is similar as when one robot arm gets out of
control. Therefore, we need to get other methods to solve the inverse dynamics.

As for the stability of the closed-loop controller, it is demonstrated in [26, 27] that the
inverse dynamics module does not affect the stability of the whole system. The stability is
mainly decided by the control law of �r̈c, namely the PD adjuster. As long as the parameters
of the PD adjuster are well selected, the closed-loop system will keep stable.
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Table 2 Optimization Problems Corresponding to length(Ī ) = 1

Number 1 2

Problem Formation Objective minJ

Constraint 1 Mr̈N + CṙN + KrN = F + (
∂gN
∂rN

)TMR λ̄N

Constraint 2 λi1 = 0, g̈i1 > 0 λi1 ≥ 0, g̈i1 = 0

4.2 Inverse dynamics

Considering that the original idea of the Moore–Penrose pseudo-inverse is to search the
solution with minimal errors, we also transfer the problem of inverse dynamics into an op-
timization problem. The goal of optimization is to solve for the control force and the ac-
celeration which conform to the dynamical constraints and meanwhile can make the error
between the actual and expected accelerations minimal. However, since the system structure
is affected by the control force, we have to traverse all cases and solve problems with all the
possible structures one by one. The final solution is the best one among all solutions. Thus,
the inverse dynamics is finally transferred to a double-level optimization problem.

No matter what structure MTNSRS is, the performance function J can always be written
as

J = 1

2

(
rc − r̈∗∗

c

)T(
rc − r̈∗∗

c

)
. (31)

As for the dynamical constraints, they depend on the structure of MTNSRS. Hence, we need
to discuss the state of the connecting cords in detail. Corresponding to the different cases
of Eq. (12), the number vector Ī will be different, and there will be different constraints.
Since we assume the controller can get the position vector rN and the velocity vector ṙN

from the sensors, the first two cases can be directly distinguished and the vector Ī can also
be decided. However, which case the remain constraints belong to is decided by the control
force which is waiting to be solved for. Hence, when designing the method to solve the
inverse dynamics, we must discuss all situations corresponding to the different length of
vector Ī :

(i) If length(Ī ) = 0, then λN = 0 and r̈c = r̈∗∗
c . Thus, Eq. (28) can be rewritten as⎧⎨

⎩
M1r̈1 = r1

‖r1‖FT − (
M1cr̈

∗∗
c + C1ṙN + K1rN

)
,

−F c + Mc1r̈1 = −(
Mcr̈

∗∗
c + CcṙN + KcrN

)
.

(32)

The control force F c can be obtained by solving the two equations together.
(ii) If length(Ī ) = 1 and Ī = [i1], then there will be 2 linear programming problems in

the first level as shown in Table 2. The final optimal solution is the best one of these
2 problems.

(iii) If length(Ī ) = 2 and Ī = [i1, i2], then there will be 4 linear programming problems
in the first level as shown in Table 3. The final optimal solution is the best one of
these 4 problems.

· · ·
(n + 1) If length(Ī ) = n (1 ≤ n ≤ 8) and Ī = [i1, i2, . . . , in], then there will be 2n linear

programming problems in the first level as shown in Table 4. The final optimal
solution is the best one of these 2n problems.
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Table 3 Optimization Problems Corresponding to length(Ī ) = 2

Number 1 2 3 4

Problem Formation Objective minJ

Constraint 1 Mr̈N + CṙN + KrN = F + (
∂gN
∂rN

)TMR λ̄N

Constraint 2 λi1 = 0,
g̈i1 > 0

λi1 ≥ 0,
g̈i1 = 0

λi1 = 0,
g̈i1 > 0

λi1 ≥ 0,
g̈i1 = 0

Constraint 3 λi2 = 0,
g̈i2 > 0

λi2 = 0,
g̈i2 > 0

λi2 ≥ 0,
g̈i2 = 0

λi2 ≥ 0,
g̈i2 = 0

Table 4 Optimization Problems Corresponding to length(Ī ) = n

Number 1 2 . . . 2n − 1 2n

Problem Formation Objective minJ

Constraints 1 Mr̈N + CṙN + KrN = F + (
∂gN
∂rN

)TMR λ̄N

Constraint 2 λi1 = 0,
g̈i1 > 0

λi1 ≥ 0,
g̈i1 = 0

· · · λi1 = 0,
g̈i1 > 0

λi1 ≥ 0,
g̈i1 = 0

Constraint 3 λi2 = 0,
g̈i2 > 0

λi2 = 0,
g̈i2 > 0

· · · λi2 ≥ 0,
g̈i2 = 0

λi2 ≥ 0,
g̈i2 = 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Constraint n + 1 λin = 0,
g̈in > 0

λin = 0,
g̈in > 0

· · · λin ≥ 0,
g̈in = 0

λin ≥ 0,
g̈in = 0

Table 5 Parameters of
MTNSRS Parameter Value

Orbital angle velocity ω 0.0011 rad/s

Mass of the manoeuvring robot mM 10 kg

Mass of the flexible net mW 8 kg

Undeformed cord length between any connecting
points Lij

10
√

2 m

5 Numerical simulation

A representative system has been selected to analyse the dynamical characteristics of
MTNSRS and demonstrate the performance of the proposed coordinated controller. The
basic parameters of the selected system are shown in Table 5. The detailed dimension of the
flexible net is shown in Fig. 7. The target orbital debris is assumed to be in the +V-bar direc-
tion, namely the +x axis of the orbital coordinate system. Hence, similar as the rendezvous
and docking of conventional spacecrafts, the approaching process is mainly conducted in
the orbital plane, that is the xoz plane of the orbital frame. In order to facilitate the analysis,
we assume the approaching process begins when point 1 is 1 m away from the platform, as
shown in Fig. 8. If the ejecting process is ideal, the net is fully unfolded and all points have
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Fig. 7 Dimension of the undeformed net: (a) front view; (b) side view

Fig. 8 Initial state of MTNSRS: (a) front view; (b) top view

the same velocity when the approaching process begins. Therefore, he ideal initial states of
MTNSRS can be written as:

r1 = M IS

⎡
⎣1

0
0

⎤
⎦ , r2 = M IS

⎡
⎣11

0
10

⎤
⎦ , r3 = M IS

⎡
⎣11

10
0

⎤
⎦ ,

r4 = M IS

⎡
⎣ 11

0
−10

⎤
⎦ , r5 = M IS

⎡
⎣ 11

−10
0

⎤
⎦ ,

v1 = v2 = v3 = v4 = v5 = M IS

⎡
⎣1

0
0

⎤
⎦

where M IS is the rotating matrix. It can be calculated as

M IS =
⎡
⎣cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦ .
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Fig. 9 Ideal uncontrolled motion of MTNSRS: (a) front view; (b) top view

Here, θ is the ejecting angle. Besides, in Fig. 8, vc stands for the velocity of the centre of
the net mouth. It can be calculated as

vc = 1

4
(v2 + v3 + v4 + v5).

5.1 Non-control capture

If MTNSRS is without active control, it is the same as the conventional TNSRS, and its
ideal motion should be like the fishing net thrown by the fisherman. However, due to the
low damping property of the space environment, the dragging force in the connecting tether
can cause great disturbances to the motion of MTNSRS. Therefore, we discuss the ideal
case without the dragging force at first. Then, we will investigate the effects of the dragging
force.
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Fig. 10 The optimal capturing distance vs. ejecting angle

5.1.1 Case 1: ideal uncontrolled motion

Different ejecting angles will lead to different trajectories of MTNSRS. In Fig. 9, we show
the motion of MTNSRS corresponding to the case θ = 15◦. From the figure we can conclude
that if there is no external non-conservative force, the flexible net will not experience signif-
icant deformation. On the other hand, Fig. 9(b) reveals that the net mouth has the tendency
to shrink along the y axis. This is because of the ω2 term of Mr in Eq. (7) which causes
negative force when the point is in the +y axis, positive force in the −y axis.

When capturing the orbital debris, we hope the target can be at the centre of the net
mouth and the velocity of the net is perpendicular to the net mouth. Hence, as shown in
Fig. 9, we define the intersection of the x axis and the trajectory of the mouth centre as the
optimal capturing point. The distance between the optimal capturing point and the origin is
defined as the optimal capturing distance dc. Besides, we introduce the effective net mouth
area Ac to evaluate the ability of MTNSRS to capture the target. It stands for the projected
area of the net mouth on the plane which is perpendicular to the velocity vector vc. When
the net is fully unfolded, Ac reaches the maximum value, namely 200 m2. When Ac is lower
than a certain threshold, it shows the net has deformed significantly or the direction of the
net mouth has greatly deviated from the direction of vc. In both cases, MTNSRS might be
unable to capture the target. Therefore, such cases should be avoided. In this paper, we set
the threshold as the half of the maximum value, namely 100 m2.

Figure 10 shows the link between the ejecting angle θ and the optimal capturing dis-
tance dc. The linear fitting demonstrates that dc will increase about 17 m for every 1 degree
increase in θ . This reveals that in the case of uncontrolled capture, the optimal capturing dis-
tance is very sensitive to the ejecting angle, which requires the ejecting mechanism to have
very high precision. Figure 11 shows that as the ejecting angle increases, the effective area
Ac at the optimal capturing point will decrease remarkably. When the ejecting angle reaches
about 36.4◦ and the optimal capturing distance reaches 633 m, the effective capturing area
at the optimal capturing point will decrease to 100 m2. Therefore, even if all external distur-
bances are neglected, when the ejecting velocity is 1 m/s, the maximum operating distance
of the uncontrolled MTNSRS is only 633 m.
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Fig. 11 The effective net mouth area at the optimal capturing point vs. ejecting angle

5.1.2 Case 2: uncontrolled motion with dragging force

As shown in Fig. 12, when the dragging force is 200 mN and the ejecting angle is 30◦,
the net mouth will close rapidly after the ejection, and the uncontrolled MTNSRS cannot
fulfil the objective of capturing the orbital debris in the +V-bar direction. This is because
the dragging force in the connecting tether will be transferred to the manoeuvring robots
through the cord between point 1 and these robots. The component of the tensile force in the
cord will drive the manoeuvring robots to approach each other. Since the motion damping
of the space environment is extremely small, the accumulative effect of the dragging force
will be very significant. In order to analyse the effect of the dragging force more clearly, we
demonstrate the variation of the effective net mouth area Ac with different dragging forces
in Fig. 13. From the figure, we know that even though the dragging force is very small,
the effect will also be very obvious. Since the ejecting velocity is 1 m/s, the target cannot
be more than 60 m away from the space platform when the dragging force is more than
100 mN. If the dragging force is more than 500 mN, the operating range of uncontrolled
MTNSRS is further narrowed to be less than 30 m. Thus, we can conclude that the conven-
tional uncontrolled MTNSRS can only be used to capture targets which are extremely close
to the space platform. This will bring great limitations for the application of MTNSRS.

5.2 Controlled capture

Since the uncontrolled motion of MTNSRS is very sensitive to the ejecting angle and the
dragging force, it is of great necessity to introduce the closed-loop controller. In this section,
we will demonstrate the effectiveness of the proposed coordinated controller and its abilities
to resist the effects of various disturbances and errors. In order to simplify the analysis, we
assume the target debris is at [250,0,0] and the dragging force in the connecting tether is
200 mN. Besides, in order to get the optimal capture performance, we expect the centre of
the net mouth to move along the x axis, and the net mouth can be perpendicular to the x

axis. Thus, we require the four manoeuvring robots to move along straight lines which are
parallel to the x axis, and the ideal ejecting angle is 0◦. Furthermore, we set the expected
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Fig. 12 Uncontrolled motion of MTNSRS with dragging force: (a) front view; (b) top view

Fig. 13 The effective net mouth area vs. time
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Fig. 14 Ideal controlled motion of MTNSRS: (a) front view; (b) top view

velocity and acceleration of the four robots to be [1,0,0] and [0,0,0], respectively. The
parameters of PD adjuster, λp and λd, are both set to be 1.

5.2.1 Case 1: ideal controlled motion

When all initial states are precisely equal to the expected values and all states can be accu-
rately measured, the proposed coordinated controller should be able to ensure that MTNSRS
moves along the expected trajectory. In Figs. 14 and 15, we show the controlled motion of
MTNSRS and the control commands corresponding to this case, respectively. According to
Fig. 14, we can conclude that the proposed coordinated controller has the ability to help
MTNSRS fulfil the goal of capturing the target when there are no external disturbances and
parameter errors. Besides, from Fig. 15, we find that the control commands constantly fluc-
tuate at two levels. One is at about 50 mN and the other is at about 200 mN. This is mainly
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Fig. 15 Control commands of the coordinated controller

caused by the structure change of MTNSRS. When the connecting cord with point 1 is slack,
the manoeuvring robot will only need to overcome the effect of the Coriolis force and the
gravitational force. Nevertheless, when the connecting cord with point 1 is tent, thrusters
will also need to counterbalance the effect of the dragging force.

5.2.2 Case 2: controlled motion with initial state errors

In this case, we want to discuss the performance of the coordinated controller when the
actual ejecting angle significantly deviates from the expected value. As mentioned before,
the expected ejecting angle is 0◦. However, we set the actual ejecting angle as 30◦, and the
motion of MTNSRS is shown in Fig. 16. From the figure, we find that the flexible net will
experience remarkable deformation: at first, the centre of the net is behind the net mouth;
then, since the mouth net needs to adjust its direction, the four manoeuvring robots obtain
different velocities, and the net centre gradually goes ahead of the net mouth; finally, the
robots follow the ideal trajectories steadily, and the net gradually returns to the ideal shape
due to the dragging force in the connecting tether. Through the analysis of the whole process,
we can conclude that the proposed coordinated controller has the ability to eliminate a large
ejecting angle error and the dragging force is helpful for the net to keep the ideal net shape.

5.2.3 Case 3: controlled motion with measurement noise

In order to demonstrate the coordinated controller’s ability to resist the effect of measure-
ment noise, we add Gaussian white noise with zero mean to all measurements. The standard
deviation of the added term to the position vector rN , the velocity vector ṙN and the drag-
ging force FT is set as 1 m, 0.2 m/s and 50 mN, respectively. Figures 17 and 18 show the
position deviation of point 2 and point 3, respectively. (Due to the kinetic symmetry, the
deviation of point 4 and point 5 is similar as that of point 2 and point 3, respectively.) From
these two figures, we can conclude that the proposed controller is able to effectively weaken
the effect of the measurement noise. This reflects the stability of the closed-loop system and
validates the statement about the stability at the end of Sect. 4.1.



138 P. Huang et al.

Fig. 16 Controlled motion of MTNSRS with initial state errors: (a) front view; (b) top view. (The figure
only shows the motion from 0 to 25 s since errors are basically eliminated during this period and the motion
after 25 s is similar as that in Fig. 14)

5.2.4 Case 4: controlled motion with kinetic parameter errors

In the ideal case, the parameters in the inverse dynamics module are equal to those in the
dynamics module. However, in order to test the sensitivity of the coordinated controller
to the error of kinetic parameters, we introduce a parameter error of 30 % and set those
used in the former to be different from those used in the latter. Specifically, the mass of
the flexible net and the manoeuvring robot when calculating the dynamics is 8 and 10 kg,
respectively. However, when calculating the inverse dynamics, they are set as 10.4 and
7 kg. Comparisons between the ideal case and the case with parameter errors are shown
in Fig. 19. From the figure, we can conclude that the parameter error of 30 % causes an
increase of about 30 % in the position deviation of all four robots. However, the devia-
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Fig. 17 Position deviation of point 2: (a) the x component; (b) the y component; (c) the z component

Fig. 18 Position deviation of point 3: (a) the x component; (b) the y component; (c) the z component

tions of the four points are still very small and the stability of the whole system can be
ensured.

6 Conclusions

This paper enhances the conventional TNSRS to be MTNSRS by replacing the uncontrol-
lable dragging weights with manoeuvrable robots at first. Then, based on the contact dy-
namics of rigid robots and the extended Hamilton’s principle, we present a novel dynamics
modelling method for this new rigid–flexible coupling system with unilateral constraints.
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Fig. 19 Position deviation comparisons between the ideal case and the case with structure parameter errors:
(a) point 1; (b) point 2; (c) point 3; (d) point 4

Compared with those used in previous studies, it is more accurate and comprehensive in
describing the motion of MTNSRS. Furthermore, based on the dynamics model, we convert
the inverse dynamics of MTNSRS into a double-level optimization problem and propose a
new coordinated controller for MTNSRS which is composed of the classical PD adjuster
and the inverse dynamics module.

The simulation results of the uncontrolled cases show that due to the gravitational force,
the large flexible net of MTNSRS will gradually close during the approaching phase when
there is no active control. Moreover, even if the dragging force in the connecting tether is
very small, it will still significantly accelerate the closing process because of the low damp-
ing property of the space environment. If the target is not extremely close to the platform,
the closing motion may lead to the failure of the capture, which is neglected in previous
dynamical models and offers the best motivation to introduce manoeuvrable robots. The
simulation results of the controlled cases show that the proposed controller can coordinate
the four robots to ensure MTNSRS to move along the expected trajectory and keep the re-
quired net shape. Its abilities to resist the effects of initial state errors, measurement noise
and kinetic parameter errors are also verified in the simulation.

Some important developments are scheduled for the future. Firstly, some improvements
of the dynamic model will be taken into account. For example, the distributed mass and the
elasticity of the connecting tether should be involved in the model. Secondly, more complex
controller which can predict the event that cords become tent should be introduced to re-
place the simple PD adjuster, which can make the control command smoother. Thirdly, the
situation that the target is moving should be considered, and proper guidance laws can be
introduced.
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