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Abstract Contact/impact models are established mainly for the capturing phase of a dock-
ing system. All the interactions between them are supposed as point contacts/impacts. For
contacts, instead of using compliant models, constraint equations are formulated on the thor-
ough investigation of the contour shapes of the docking system. All the contact constraints
are originated from the sufficient and necessary conditions of point contacts. The constraints
and Coulomb’s frictional law are incorporated into the contact dynamic equations of the sys-
tem to obtain the contact forces by Lagrangian multipliers. For impacts, multiple impacts
are considered in the term of the complex configuration of the docking dynamics. Impulsive
equations are deduced, and the distributing law which is also called the LZB method is ap-
plied for multiple impacts. Finally, simulation is realized and the numerical results for one
working condition are presented.

Keywords Docking · Multiple impacts · LZB method · Contact · Constraint

1 Introduction

Space docking activities are becoming quite routine currently. The androgynous periph-
eral docking system (APDS) is one of the docking structures that has been successfully
applied in history [1, 2]. The APDS, manufactured by RSC-Energia in Kaliningrad, Rus-
sia, is designed to achieve the capture, dynamic attenuation, alignment, and hard docking
of spacecraft through the use of essentially identical docking mechanisms attached to each
spacecraft [3]. A docking process has several phases of operation: deployment, capture,
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attenuation, extension, retraction, structural lockup, and separation [4]. The scope of this
paper is only limited to the capture phase. The main target of the capture phase is to re-
move the initial misalignment between the two docking spacecrafts. Due to 6 degrees of
freedom between the two spacecrafts, the interface of an APDS is comparatively complex.
The sophisticated outer contours of APDSes may result in complex impact/contact dynam-
ics in the capturing phase of a docking procedure, which is worth investigating thoroughly
to guarantee the safety and stability of the docking.

Briefly, there are two ways to model docking contacts by multibody system dynamics
[5–9], namely by being rigid or flexible at contact areas. Cyril et al. [10] considered different
impact scenarios and studied the post-impact dynamics associated with manipulator-assisted
docking/berthing. The assumptions of point contacts and the unchanged configuration were
supposed; the energy loss parameter and the friction parameter were employed for post ve-
locities. Lee et al. [11] applied the coefficient of restitution to analyze the impact propagation
of a docking platform for spacecrafts. Several investigators used kinematic constraint equa-
tions to describe contacts [12–14]. Ghofranian et al. [4] used compliant models to simulate
the contact/impact dynamics between the docking interfaces.

A flexible contact model defines a relation between deformations and contact forces,
which is simple and easy to use. But this model needs the relation between the contact forces
and deformation, which is not always fully clear for contact dynamics. If a flexible model is
used, a large motion of a contact system accompanies a small deformation at contact areas,
and a small deformation due to large stiffness leads to big contact forces which drive the
system to move on. So, the time steps adopted by numerical methods have to be very small
to distinguish the small deformation. If they are too big, the unstable phenomena such as
sawtooth appear. Therefore, flexible models lack of efficiency for long-term prediction of
systems. Since the docking dynamics of two APDSes may involve several contact points at
the same time, it is even more inefficient if flexible contact models are considered. Rigid
contact models do not need such force–deformation relations. The contact forces are solved
by the impenetrability between contact bodies (also by friction laws). High efficiency can be
achieved. But, they encounter some challenges such as impacts involving multiple contacts
which couple simultaneously (multiple impacts) [15–17], difficulty obtaining the constraint
equations for general contacts exactly [18, 19], and Painlevé paradoxes [16, 20–22], etc.
All these difficulties are avoided by the flexible models at the cost of efficiency. Essentially,
these two methods should share a great part of similarity of difficulties since all the dynamic
equations for both methods satisfy the basic mechanical laws such as Newton’s laws or the
variational principles. Deformation only decreases the intension of singularities. The limit
of a kind of a flexible method is verified to converge to a rigid one under certain conditions
when the system stiffness goes to infinity [23, 24]. In this article, a rigid model at contact
areas is applied for the contact dynamics of the docking system. Since the contact areas are
relatively small in comparison of the whole docking system, they are simplified as point
contacts for either contact or impact.

Point contacts decrease systems’ freedoms if rigid models are applied. So, introducing
kinetic constraints is a convenient way to describe any two parts keeping contact along their
outer contours. Actually there are two moving contact points on the two bodies, so we call
them a contact couple (Fig. 1). For simple problems, such as a disk contacting a fixed plane,
it is easy to write out the explicit expression of the constraint equation only as the function
of the generalized coordinates via a kinematical analysis. However, it is not always true for
general cases, especially for the contacts of the complex contours of two APDSes. Studies
on the formation of contact constraints can be dated back to Pars [25], who stated that one
degree of freedom would be eliminated by the relative motion of a point contact between
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Fig. 1 Two bodies keeping
contact form of a contact couple

two rigid bodies. Except for the situation of a point moving along a spatial curve where
two degrees of freedom are constrained, Pars’ claim suits the other cases of two bodies con-
tacting at a single point. After that, this problem has been investigated thoroughly in the
robotic community [26–34], among which Montana is the most outstanding representative.
However, although their theories are successful, their drawbacks are obvious. Montana’s
equation is related to the curvatures and the relative velocity at a contact point rather than
the generalized coordinates, velocities and accelerations of contact systems to satisfy the
controlling requirements of dexterous robot systems, which goes against incorporating con-
tact constraints into dynamic equations of systems. Pfeiffer et al. [18, 19] expressed the
contact constraints at the velocity level by generalized coordinates and velocities to fit dy-
namic problems. In the view of the contour parameters included in the expression of the
normal distance between two contacting bodies, they used the fact that the distance vec-
tor between the two potential contact points is the common normal at a contact couple to
eliminate the parameters in the distance expression. Then Jordan’s principle was applied
to incorporate of the constraints into the dynamic equations. But the previous studies only
focused on a couple of scenarios of contact bodies with spatial surfaces or planar curves.
They lack a general description for point contact kinematics between bodies with arbitrary
geometric shapes. Zhen and Caishan [35] recently gave a general method by considering
all the possible patterns of point contacts. They deduced their theory from the basic facts
that the distance of a contact couple is zero and the involved bodies are tangential at it.
Then, they obtained the equations governing the evolution of the contact parameters and
the constraint equations for point contacts. Finally, they employed Jordan’s principle and
d’Alembert–Lagrange principle for comparison to incorporate them via Lagrangian multi-
pliers into the yielded dynamical equations. After the comparison of the formulations, they
made clear the physical meaning of the Lagrange multipliers by Jordan’s principle.

However, using constraints is not suitable for impacts because the normal relative veloci-
ties at contact points are no more consistent with the constraints at the beginning of impacts.
When a point impact happens between two bodies, one body exerts a concentrated impul-
sive force on the other. The configurations of the two bodies are assumed to be held constant
with no significant variation. The normal impulse instead of time becomes the independent
variable to dominate the impact. This approach was first proposed by Keller [36] who re-
visited the Routh’s graphical method [16] and formulated a three-dimensional differential
method that resolved impact with friction. Subsequently, researchers extended this method
to form universal formulations for general rigid body systems subject to one point impact
with friction [37, 38]. But more complexities appear in multiple-impact problems. Impacts
in the docking procedure may involve several contact couples at the same time, which is
referred to multiple impacts, due the complex configuration of the APDS. For example, if
a new impact at a new position appears while the old contacts still hold, multiple impacts
occur. The combination of compliance models with rigid simplification is a fast and proper
approach for solving such multiple-impact problems. However, different dynamic motions
will be achieved if the stiffness ratios between different pairs of contact couples are differ-
ent. Stewart used two examples such as the three masses problem and the rod–table example
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of Chatterjee to illustrate the significant effect of ‘relative stiffness’ among contact couples
on the final impact solutions [17]. In an adequate consideration of the relative stiffness, Liu,
Zhao and Brogliato [7, 39, 40] extended Keller’s approach and presented an LZB method
for multiple-impact problems with friction. This helped them to discover a distributing law
originating from flexible contact models at contact areas. The LZB method establishes the
relationship among the normal impulses as functions of the stiffness and the potential en-
ergy at different contact couples involved in multiple impacts. If contact couples have same
stiffness, the stiffness has no effect on the post velocities after impacts. With the help of the
energy-based coefficient of restitution [41] for each contact couple, the post-impact veloci-
ties of impact systems can be determined uniquely. The existing experiments have verified
the LZB method very well [40, 42, 43]. In this paper, the LZB method for multiple impacts
with friction is applied on the capture phase of the docking dynamics.

Additionally, friction is usually essential in contact. Since Coulomb’s friction law can
explain the existing experiments very well either with or without impact [40, 44], the tan-
gential friction for contacts/impacts in this article is supposed to be subject to Coulomb’s
friction law. The tangential compliance [41] during impacts is not considered in this paper.

This paper is arranged as follows: Sect. 2 introduces the configuration of the docking
system. The uniform dynamics equations for contact dynamics of the docking system will
be established in Sect. 3. Section 4 gives the parametric equations of the contact areas on
one APDS thoroughly. Section 5 provides a seeking method for contact couples and defines
the contact coordinates at these couples. Section 6 explains how to use the LZB method
for impacts during the capture phase. The formation of contact constraints is introduced
in Sect. 7. Section 8 provides the simulation framework for the docking system. And an
example under a simple working condition is analyzed thoroughly in this section. At end the
is paper, conclusions are drawn.

2 Main characteristics of a spacecraft docking system with two APDSes

2.1 Configuration of a docking system

Figure 2 depicts the configuration of a pair of APDSes equipped on the target and chaser
spacecrafts when they are approaching and prepare to dock. The target spacecraft links with
its APDS via a set of Stewart mechanism. Another APDS is fixed on the chaser spacecraft.
The target spacecraft, the target’s APDS and the chaser spacecraft with its APDS are all
taken as three spatial rigid bodies. Therefore, the docking system consists of three rigid
bodies with 18 degrees of freedom before contact.

Under a global inertia orthogonal frame with three unit vectors (i, j,k), the mass center
position of the target spacecraft and its attitude Euler angles are denoted as q1, q2, q3, q4, q5,
and q6, respectively. The body frame (e1,1, e1,2, e1,3) of the target spacecraft is fixed on its
mass center. The mass center and Euler angles of its APDS relative to the target spacecraft
are denoted as q7, q8, q9, q10, q11, and q12. The initial mass center without any deformation
of the Stewart mechanism is (a, b, c) under the body frame (e1,1, e1,2, e1,3). The body frame
(e2,1, e2,2, e2,3) of the APDS is on the center of the guide ring, which is also supposed as the
mass center of the APDS.

For the chaser spacecraft with its APDS, the corresponding variables are q13, q14, q15,
q16, q17, q18, and its body frame (e3,1, e3,2, e3,3) is also on the mass center. For convenience,
a body frame, (e4,1, e4,2, e1,3), is attached on the center of the chaser’s APDS, which is at
position (a1, b1, c1) under the body frame (e3,1, e3,2, e3,3). All these positional and attitude
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Fig. 2 Two APDSes equipped on the target and chaser spacecrafts are approaching and prepare to dock

variables are set to be the generalized coordinates q for the docking system. The transfer
matrix between these body frames and the inertial one can be expressed by the generalized
coordinates. The transfer matrix from (e1,1, e1,2, e1,3) to (i, j,k) can be expressed by

A1 =
⎡
⎣

cosq4 − sinq4 0
sinq4 cosq4 0

0 0 1

⎤
⎦
⎡
⎣

1 0 0
0 cosq5 − sinq5

0 sinq5 cosq5

⎤
⎦
⎡
⎣

cosq6 − sinq6 0
sinq6 cosq6 0

0 0 1

⎤
⎦ . (1)

The transfer matrix from (e2,1, e2,2, e2,3) to (e1,1, e1,2, e1,3) can be expressed by

A21 =
⎡
⎣

cosq10 − sinq10 0
sinq10 cosq10 0

0 0 1

⎤
⎦
⎡
⎣

1 0 0
0 cosq11 − sinq11

0 sinq11 cosq11

⎤
⎦
⎡
⎣

cosq12 − sinq12 0
sinq12 cosφq12 0

0 0 1

⎤
⎦ .

(2)
The transfer matrix from (e2,1, e2,2, e2,3) to (i, j,k) can be expressed by

A2 = A1A21. (3)

The transfer matrix from (e3,1, e3,2, e3,3) to (i, j,k) can be expressed by

A3 =
⎡
⎣

cosq16 − sinq16 0
sinq16 cosq16 0

0 0 1

⎤
⎦
⎡
⎣

1 0 0
0 cosq17 − sinq17

0 sinq17 cosq17

⎤
⎦
⎡
⎣

cosq18 − sinq18 0
sinq18 cosq18 0

0 0 1

⎤
⎦ . (4)

The transfer matrix from (e4,1, e4,2, e4,3) to (i, j,k) is the same as A3.

2.2 Contact areas

In order to guide the chaser spacecraft to the preset relative position to the target one, each
APDS has three guide petals and one guide ring. Each guide petal has one piece of out-
side guide surface with two segments of tilted guide sides (Fig. 2). The three guide petals
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Fig. 3 The main geometric
characteristics of APDS

are fixed on the APDS. Therefore, an APDS comprises 6 segments of tilted guide sides,
3 pieces of guide surfaces, and 1 inside circle of the guide ring, which restrict the motion
of the other APDS. So, there are 10 patches of contact areas on each APDS. Contacts be-
tween two APDSes actually are the contacts between two patches among the (10+10 =) 20
patches of contours on the two APDSes. These 20 patches of contours on both APDSes de-
termine constraint equations when two of them keep contact at one point. These 20 patches
of contours make 12 pairs of possible contact couples between the two APDSes. Therefore,
their parametric equations need to be provided.

Each APDS has 6 segments of guide sides. Set ni (i = 1, . . . ,6) to be the number of them
(see Fig. 3). The guide sides, n1, n2, n3, n4, n5, and n6, of the target’s APDS correspond to
n5, n4, n3, n2, n1, and n6 of the chaser’s APDS, respectively, which form 6 pairs of possible
contact patches as (n1, n5), (n2, n4), (n3, n3), (n4, n2), (n5, n1), and (n6, n6). Each pair of
the possible contact patches determines one potential contact couple. If a potential contact
couple closes, it makes a curve–curve contact (Type C–C).

Each APDS has 3 pieces of guide surfaces outside the three guide petals and one inside
circle of the guide ring. See Fig. 3 for No. 1, No. 2 and No. 3 of the guide surfaces. One
piece of the guide surface on an APDS may contact the guide circle on the other, which
makes a curve–surface contact (Type C–S). Also 6 pairs of possible contact couples among
the two guide circles and six pieces of guide surfaces exist.

In this paper, only these two types of the 12 pairs of the possible contact couples are
considered and discussed. In addition, at most three pairs of sliding contacts exist at the
same time for the docking system. So, redundant problems, if too many constraints added to
systems, are not considered here.

3 Dynamic equations of the docking systems

Suppose the docking system has s (0 ≤ s ≤ 3) contact couples keeping contacts in the same
time period when the two spacecrafts come to dock. According to the Lagrangian formula-
tion, the dynamic equations can be expressed as

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

= Qi +
s∑

j=1

Qλ
ij (i = 1,2, . . . ,18), (5)
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where L = T − V is the Lagrangian function, Qλ
ij is the ith generalized force for the j th

contact and Qi is the ith generalized force for other non-contact forces.
It is worth noticing that all the dynamic motions including non-contact movement, im-

pacts, and contacts are dominated by Eq. (5). All the contact forces are zero if there is no
contact, namely, Qij = 0 (i = 1, . . . ,18) and (j = 1, . . . , s). The dynamic equations of im-
pacts will be deduced from Eq. (5) later in Sect. 6.

3.1 Kinetic energy, potential energy and non-contact generalized forces

The docking system comprises three rigid bodies, the target spacecraft, the target space-
craft’s APDS, and the chaser spacecraft fixed with its APDS. The target spacecraft’s APDS
is connected to the spacecraft with the Stewart mechanism, which is simplified as six sets
of spring and damping elements. Since the generalized coordinates are the mass centers and
Euler angles of the three bodies, the kinetic energy, the potential energy and the generalized
forces can all be expressed as functions of the generalized coordinates and velocities.

The velocities at the three mass centers under the inertia frame (i, j,k) can be written as

vc1 = [q̇1, q̇2, q̇3]T , vc2 = vc1 + A1[q̇7, q̇8, q̇9]T , vc3 = [q̇13, q̇14, q̇15]T . (6)

The rotational velocities of the three bodies under their body frames can be expressed as

ω1 = B1

⎡
⎣

q̇4

q̇5

q̇6

⎤
⎦ , ω2 = AT

21ω1 + B2

⎡
⎣

q̇10

q̇11

q̇12

⎤
⎦ , ω3 = B3

⎡
⎣

q̇16

q̇17

q̇18

⎤
⎦ ,

where

B1 =
⎡
⎣

sinq5 sinq6 cosq6 0
sinq5 cosq6 sinq6 0

cosq5 0 1

⎤
⎦ ,

B2 =
⎡
⎣

sinq11 sinq12 cosq12 0
sinq11 cosq12 sinq12 0

cosq11 0 1

⎤
⎦ ,

B1 =
⎡
⎣

sinq17 sinq18 cosq18 0
sinq17 cosq18 sinq18 0

cosq17 0 1

⎤
⎦ .

Therefore, the kinetic energy of the docking systems can be expressed as

T = 1

2
(m1vc1 · vc1 + m2vc2 · vc2 + m3vc3 · vc3) + 1

2

3∑
i=1

(
ωT

i Giωi

)
, (7)

where m1,G1, m2,G2, and m3,G3 are the masses and the inertial matrixes of the target
spacecraft, its APDS, and the chaser spacecraft, respectively. And the inertia matrixes are
taken as

G1 =
⎡
⎣

I11 0 0
0 I12 0
0 0 I12

⎤
⎦ , G2 =

⎡
⎣

I21 0 0
0 I22 0
0 0 I22

⎤
⎦ , G3 =

⎡
⎣

I31 0 0
0 I32 0
0 0 I33

⎤
⎦ . (8)
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In this paper, the Stewart mechanism is simplified as being six sets of spring and damping
elements, the potential energy is produced by the springs. So, a very simple spring and
damping model without considering much physical significance is selected as

V = 1

2
k1(q7 − a)2 + 1

2
k2(q8 − b)2 + 1

2
k3(q9 − c)2

+ 1

2
kt1(q10)

2 + 1

2
kt2(q11)

2 + 1

2
kt3(q12)

2, (9)

where (a, b, c) is the equilibrium position of the APDS relative to its target spacecraft, and
ki and kti , where i = 1,2,3, are the translational and rotational stiffnesses of the Stewart
mechanism.

The damping elements provide the generalized forces. Under the inertial frame, the
damping forces and moments from the target spacecraft to its APDS are expressed as

Fd = −A1[c1q̇10, c2q̇11, c3q̇12]T , Md = −Ct (A2ω2 − A1ω1),

where the damping coefficients are expressed in a matrix form as

Ct =
⎡
⎣

ct1 0 0
0 ct2 0
0 0 ct3

⎤
⎦ . (10)

According to Newton’s action and reaction principle, the damping forces and moments act-
ing from the APDS to its spacecraft are −Fd and −Md . The acting positional vector on the
spacecraft under the inertia frame is [x, y, z]T + A1[a, b, c]T and the corresponding posi-
tional vector on the APDS is supposed on the center [q7, q8, q9]T . Therefore, the generalized
forces of the damping interaction can be obtained as

Qq1 = −FT
d · [1,0,0]T , Qq2 = −FT

d · [0,1,0]T , Qq3 = −FT
d · [0,0,1]T ,

Qq4 = −(A1[a, b, c]T × Fd + Md

)T · [0,0,1]T ,

Qq5 = −(A1[a, b, c]T × Fd + Md

)T · [cosq4, sinq4,0]T ,

Qq6 = −(A1[a, b, c]T × Fd + Md

)T · [sinq5 sinq4,− sinq5 cosq4, cosq5]T ,

Qq7 = FT
d · (A1[1,0,0]T ), Qq8 = FT

d · (A1[0,1,0]T ),
Qq9 = FT

d · (A1[0,0,1]T ), Qq10 = MT
d · (A2[0,0,1]T ),

Qq11 = MT
d · (A2[cosq10, sinq10,0]T ),

Qq12 = MT
d · (A2[sinq11 sinq10,− sinq11 cosq10, cosq11]T

)
.

The other non-contact generalized forces are zeroes. In this paper, driving forces during the
docking procedure are supposed to be zero.

3.2 Generalized contact forces

At the j th contact couple, a contact coordinate frame is established as nj , τ1,j , τ2,j which
will be discussed thoroughly at Sect. 5.2. The point vectors of the contact couple under the
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inertia frame are denoted as r1,j on the chaser’s APDS and r2,j on the target’s APDS. Then,
the generalized forces for j th contact couple can be expressed as

Qλ
ij = W 1

ij λ
1
j + W 2

ij λ
2
j + W 3

ij λ
3
j , (11)

where

W 1
ij = ∂(r1,j − r2,j )

∂qi

· τ j

1,j ,

W 2
ij = ∂(r1,j − r2,j )

∂qi

· τ j

2,j ,

W 3
ij = ∂(r1,j − r2,j )

∂qi

· nj ,

where λi
j , i = 1,2,3, j = 1, . . . , s are the components of the contact force under the contact

frame (τ1,j , τ2,j ,nj ). Contact forces are unknown and are to be determined. In the following
sections, we will show how to obtain the contact vectors r1,j and r2,j , seek contact couples,
and establish the contact frames at the couples.

4 Point vectors from the inertial origin to contact areas

The possible contacts of the docking system are the contacts of the guide sides to the guide
sides or the guide surfaces to the guide rings. In order to obtain the vector functions r1,j

and r2,j in Eq. (11), we focus a point in a contact patch belonging to an APDS. The patch
may be a segment of a spatial curve (a guide side or the ring circle) or a piece of the guide
surface.

Definition 1 A coordinate patch S0 for a contour S ⊂ R
3 is an open, connected subset of

S, namely S0 ⊆ S. There exists an open subset U ⊂ R
β (β = 1 or 2) and an invertible map

f : U → S0 such that the pair (f,U) can be taken as a coordinate system for S0.

4.1 Contact patches on an APDS

4.1.1 The parametric equations of the three pieces of the guide surfaces

The three pieces of the guide surfaces outside three guide petals of the APDS are obtained
by dividing a circle cone standing on the surface of the guide ring via 6 auxiliary planes
parallel to the axis of the APDS. Each auxiliary plane is perpendicular to the upper surface
of the guide ring, and the projection of an auxiliary plane to the upper surface forms a line
on the ring surface. Each line has an angle α2 = 30◦ with the corresponding radius line (see
the left part of Fig. 3). The numbers 1,2,3 in the figure mark the three patches. According
to Definition 1, the map for the three pieces of the guide surfaces can be expressed as

f (i)
(
U(i) → S0(i)

) : ρ = R − ζ cotα1, (i = 1,2,3), (12)

where (i) denotes the ith piece of the three guide surfaces, [θ, ζ ] ∈ U and [ρ, θ, ζ ] ∈ S0.
The parameter α1 is the angle between the generatrix and the bottom plane of the cone and
α1 = 45◦ in Fig. 3. The outside radius of the guide ring of the APDS is R. Since these pieces
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of the guide surfaces belong to the different parts of the cone, their parametric domains U(i)

(i = 1,2,3) are respectively confined in

U(1) : {θ(1) ∈ [θ1, θ2], ζ(1) ∈ [0,H ]},

U(2) :
{
θ(2) ∈

[
θ1 + 2

3
π, θ2 + 2

3
π

]
, ζ(2) ∈ [0,H ]

}
,

U(3) :
{
θ(3) ∈

[
θ1 + 4

3
π, θ2 + 4

3
π

]
, ζ(3) ∈ [0,H ]

}
,

(13)

where (∗) denotes the number of a guide surface and there are three petals for each APDS.
The height of the guide petal is denoted as H . Each guide surface is sandwiched by two
auxiliary planes, so the parameters θ1 and θ2 are defined as

θ1 = arcsin

(
Rk

Rk − ζ cotα1
sinα2

)
− α2,

θ2 =
(

α2 + π

3

)
− arcsin

(
Rk

Rk − ζ cotα1
sinα2

)
.

Therefore, each guide surface can be parameterized by two parameters [θ, ζ ] and
U ⊂ R

2.

4.1.2 Parametric equations of the three pairs of the guide sides

Each guide petal has two guide sides which are just intersections of the outside surface of
the cone with its two auxiliary planes mentioned above. Therefore, under the body frame
fixed on the APDS, the maps for the six guide sides can be written as

f (i)
(
U(i) → S0(i)

) :
⎧⎨
⎩

ρ = R(cos( π
3 (i−1)) tanα(i)−sin( π

3 −1))

cos θ tanα(i)−sin θ

ζ = (R − ρ) tanα1,

(i = 1,2, . . . ,6), (14)

where (i) denotes the ith guide side corresponding to n1, n2, . . . , n6, respectively, in Fig. 3.
According to Definition 1, θ ∈ U and [ρ, θ, ζ ] ∈ S0. The parameters α(i) in (14) are defined
as

α(1) = π − α2; α(2) = π/3 + α2; α(3) = π/3 + α2;
α(4) = α2; α(5) = π/3 − α2; α(6) = 2π/3 + α2.

The parametric domains of the six guide sides can be obtained by

U(i) : {θ(i) ∈ [(i − 1)π/3 − mod(i − 1,2)θr , (i − 1)π/3 − mod(i − 1,2)θr

]}
, (15)

where mod(a, b) is the function of finding the remainder after division a/b, and

θr = H cotα1 sinα2

R − H cotα1 cosα2
.

Therefore, each guide side can be parameterized by one parameter θ and U ∈R
1.
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4.1.3 The parametric equations for the inside circle of the guide ring

The inside circle of the guide ring on one APDS confines the motions of the guide petal
on the other APDS. The parametric equations of the inside circle of the guide ring can be
written under the body frame as

f (U → S0) : ρ = Rs, ζ = 0, (16)

where θ ∈ U and [ρ, θ, ζ ] ∈ S0 according to Definition 1. The parameter Rs is the inside
radius of the guide ring, and the parametric domain is obviously given as

U : {θ ∈ [0,2π ]}. (17)

Therefore, the guide ring can be parameterized by one parameter θ and U ∈R
1.

4.2 The position vector of any point on a contacting patch under the inertia
frame

The radius vector of the mass center of the concerned APDS is set to be rO(q) which may
be

rO(q) = [q1, q2, q3]T + A1[q7, q8, q9]T , (18)

if the target’s APDS is concerned, or

rO(q) = [q13, q14, q15]T + A3[a1, b1, c1]T , (19)

if the chaser’s APDS is concerned.
The transfer matrix from the inertia frame to the body frame of the APDS is supposed to

be A(q) which is any one of A2 and A3 in (3) and (4). Suppose the body frame of the APDS
is Oe1e2e3 (Fig. 3) and the corresponding coordinate parameters are [ξ, η, ζ ]. If a point
p ∈ S0, an element u ∈ U corresponds to it according to the maps discussed in Eqs. (12),
(14) and (16). The radius vector under the inertia frame can be expressed as

r(q, t,u) = rO(q, t) + A(q)r′(u), (20)

where

r′(u) = [ρ cos θ,ρ sin θ, ζ ]T .

If the patch is a guide side or a guide circle of the APDS, u has one element θ . But if the
patch is a guide surface, u has two elements, [θ, ζ ].

4.3 Point vectors of a contact couple

It is mentioned in Sect. 2.2 that two types of contacts exist. One is the C–C type and the other
is the C–S type. We have also mentioned that there are 12 pairs of possible contact couples.
Among the two types of contacts, one point of a contact couple is defined to be always on a
segment of curve which may be a segment of the guide side or the guide circle. In order to
sort two bodies which contact to form a contact couple and simplify the description in the
following sections, we define the curve to be always on Body 1. Body 2 may have a curve
or a surface. Therefore, suppose there are s contact couples at the current moment on the
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Fig. 4 A 2D circle-to-circle
example to demonstrate the
seeking strategy for the potential
contact couple, (u∗

1,u∗
2), between

Body 1 and Body 2

docking system. Select a curve segment from the two patches which contact to form the j th
contact couple, and the contact point on the curve makes a point vector r1,j by (20). The
other point of the contact couple produces r2,j :

r1,j

(
q,u∗

1,j

)= r1,j

(
q, u∗

1,j

)
,

r2,j

(
q,u∗

2,j

)= r1,j

(
q,
(
u∗

2,j , . . . , u
∗
n,j

))
,

(21)

where u1,j only has one element, u1,j , and u2,j may have one or two elements, namely n = 2
or n = 3. The j th contact couple is parameterized by u∗

j = (u∗
1,j , . . . , u

∗
n,j ).

In the following sections, we will show you how to obtain the j th contact couple at the
beginning of the contact and how the contact couple evolves with the variation of u∗

j if the
contact holds.

5 Seeking (potential) contact couples and defining contact frames at the
beginning of a contact couple

5.1 Fast discrete method to seek (potential) contact couples

At the beginning of a contact, exactly before an impact occurs, the contact couple where the
impact occurs should be sought. For this problem, Flore made a thorough investigation and
the good work [9].

As two bodies transition from being contactless to making contact, the potential contact
couple should be especially important. At each moment t , only one potential contact couple
exists on the relevant pair of two patches. The potential contact couple comprises the two
points between which the distance Lj = |r1,j − r2,j | is minimal. Since there are infinitely
many points on the contours of the two concerning patches, infinitely many point couples
need to be searched for the minimum, which means a great amount of work needs to be done
in a numerical simulation. In this article, we define a hierarchical tree on a discrete grid of
possible contact to seek the potential contact couple at each moment fast and efficiently.

The seeking strategy for the potential contact couple can be sketched by Fig. 4. First,
we select a not so small discrete step unit (for example, about 1/10 scale of concerned
area) to discretize the parameters u1,j and u2,j and find the minimum couple among these
discrete points, denoted as u′

1,j and u′
2,j ; see the step length between ‘·’ in Fig. 4. Second, we

choose a discrete unit an order of magnitude smaller to discretize the fields near the couple
points, u′

1,j and u′
2,j . The areas of the parametric field are set to be two units of the discrete

scale of the first step; see the step length between ‘|’ in Fig. 4. Then we seek this field
for a more accurate parametric values of the minimum couple. Repeating the search again



Docking dynamics between two spacecrafts with APDSes 257

and again for several times, we achieve accurate positions of the potential contact couple,
u∗

j = (u∗
1,j ,u∗

2,j ). Although this method is not the simplest one for two smooth pieces of a
surface, it can be applied to the cases where the contact bodies feature any contour surfaces.

5.2 Define contact frames

At a contact couple, r1,j (q,u∗
1,j ) and r2,j (q,u∗

2,j ), the contact frame can be defined as

Definition 2 Define a contact frame at the j th contact couple as (τ1,j , τ2,j ,nj ). The com-
mon unit normal nj from Body 2 pointing to Body 1 at the contact couple satisfies

nj · ∂r1,j

∂u1,j

∣∣∣∣
u1,j =u∗

1,j

= 0, and nj · ∂r2,j

∂u2,j

∣∣∣∣
u2,j =u∗

2,j

= 0, (j = 2, . . . , n), (22)

accompanied by two orthogonal unit vectors, τ1,j and τ2,j , in the tangential plane which is
perpendicular to nj .

This contact frame can be always established at contact couples due to contact bodies
being tangent at their point contacts.

Define the relative velocity at the j th contact couple as

vr
j

(
q, q̇,u∗

j

)=
18∑

k=1

∂(r1,j − r2,j )

∂qk

∣∣∣∣
u∗
j

q̇k. (23)

Under the j th contact frame defined by Definition 2, we can define the relative velocities at
the corresponding contact couple as

⎧⎪⎨
⎪⎩

vr
1,j (q, q̇,u∗

j ) = vr
j · τ1,j ,

vr
2,j (q, q̇,u∗

j ) = vr
j · τ2,j ,

vr
3,j (q, q̇,u∗

j ) = vr
j · nj ,

(24)

with the tangential relative velocity vector also defined by

vr
τ,j = vr

j − vr
3,j nj . (25)

6 Multiple impacts

6.1 The LZB method for multiple impacts

Impacts involving more than one contact couple at the same time are referred to as multiple
impacts. It is quite possible that several contact couples exit at the same impact period for the
docking system. If some contact couples are active and another potential couple turns active
during a docking procedure, multiple impacts occur. General impact theory assumes that the
involved contact forces are so large that none of the impulse forces can be ignored and the
impact duration is so small that the configuration can hardly change during impacts [7, 10].
Suppose multiple impacts occur in an interval [t−, t+] involving s contact couples. By the
impact assumption, we integrate the dynamic equations (5) in an infinitesimal interval dt
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and eliminate the regular terms at the same time. Then, we change the dynamic equations
from the two-ordered ODEs dependent on time t to the one-ordered ODEs dependent on the
normal impulses at the contact couples as

18∑
k=1

aik dq̇k =
s∑

j=1

(
W 1

ij dP 1
j + W 2

ij dP 2
j + W 3

ij dP 3
j

)
(i = 1,2, . . . ,18), (26)

where aij is an element of the generalized mass matrix which is derived from the kinetic en-
ergy T by the symbolic computation, and dP i

j = λi
j dt for all the contact forces. During the

impacts, Coulomb’s frictional law is supposed to dominate the tangential motion [40, 44].
So the increments of tangential impulses (dP 1

j , dP 2
j ) are dependent on the normal one, dP 3

j ,
and the micro stick–slip motion at contact couples. For the j th contact couple, one has

⎧⎪⎪⎨
⎪⎪⎩

dP k
j

dP 3
j

= −μ
vr
k,j

|vr
τ,j

| , if vr
τ,j 
= 0,

vr
τ,j = 0, if

√(
dP 1

j

dP 3
j

)2

+
(

dP 2
j

dP 3
j

)
≤ μs,

(k = 1,2), (27)

where the dynamic and static coefficients of friction are set to be μ and μs , respectively.
Although the frictional impulses depend on the normal impulses, there are still s normal

impulses, dP 3
j (j = 1,2, . . . , s), all undetermined. The distributional law [7, 39] is applied

here to establish the relationships between the increments of the normal impulses. According
to the LZB method, we suppose that the normal impact model for each impact couple is
satisfied with

λ3
j = Kj(δj )

ηj , (28)

where Kj is the contact stiffness and the exponent ηj > 0 is the power of the normal defor-
mation at the j th contact couple. The contact normal indentation is denoted by δj which is
determined by the system’s configuration and is a function of �q and t .

It is obvious that (28) defines the relationships between contact normal forces. But
they will not be used directly because of the large contact forces, λn

j , which depend on
small indentation δj , that may induce numerical singularities [5]. We use simple deduc-

tion, namely, we put (28) into the normal potential energy Ej = ∫ δj (t)

0 λ3
j dδj to obtain δj =

((ηj + 1)/KjEj )
1/(ηj +1), which is input into (28) again, and remember that dPj = λ3

j dt , so
the normal impulse ratios are established as follows:

dP 3
j

dP 3
i

= (ηj + 1)

ηj
ηj +1

(ηi + 1)
ηi

ηi+1

K

1
ηj +1

j

K
1

ηi+1

i

E

ηj
ηj +1

j

E

ηi
ηi+1

i

, (29)

where i, j = 1,2, . . . , s and i 
= j . We also refer to [7] for this deduction. The normal im-
pulse ratios are related to the ratios of the contact stiffnesses and the potential energy accu-
mulated at contact couples. The parameter Ej denotes the accumulated potential energy at
the j th contact couple, which can be written as

Ej =
∫ δj (t)

0
λ3

j dδj = Ej

(
t−
)+
∫ P 3

j

0
δ̇j dP 3

j , (30)



Docking dynamics between two spacecrafts with APDSes 259

where Ei(t
−) is the initial potential energy due to the contact force at the initial impact

moment t− and

δ̇j

(
q, q̇,u∗

j

)= −vr
3,j

(
q, q̇,u∗

j

)
. (31)

If the contact models (28) at the ith and j th contact couples are the same, namely
Ki = Kj and ηi = ηj = η, we have the simple impulse ratios as

(
dP 3

j

dP 3
i

)
=
(

Ej

Ei

)ηj /(ηj +1)

,

which are only determined by the ratios of the accumulated potential energy.
Equations (29) establish the normal impulse ratios among different contact couples at

each moment during multiple impact. Now the biggest normal impulse increment denoted
by dP � is selected as an independent variable instead of time t in multiple impact. Using
this biggest normal impulse increment dP �, the impulse ratios (29) are rewritten as

dP 3
j

dP �
j

= (ηj + 1)

ηj
ηj +1

(η�
j + 1)

η�
j

η�
j
+1

K

1
ηj +1

j

(K�)

1
η�
j
+1

E

ηj
ηj +1

j

(E�
j )

η�
j

η�
j
+1

. (32)

Such a definition can avoid singularity if the denominator dP 3
j = 0 in (29). Usually,

the dP �
j is just at the contact couple with the biggest potential energy if stiffness Kj and the

power ηj in the contact couples do not vary too much. Notice that the contact couple with the
biggest potential energy varies among the contact couples involving multiple impacts. Now
that P �

j is defined as the independent variable, the step increment of dP �
j is proposed the

same during multiple impacts. It is really interesting to find that since the biggest impulse
increment occurs at the contact couple where the accumulated normal potential energy is
the biggest, such a definition also discovers the discipline for the transfer and exchange of
mechanical energy during multiple impacts: The multiple impact dynamics are dominated
by the contact couple which possesses the biggest potential energy.

Another issue to be mentioned here is that all Ej may be zero at the beginning of a
multiple impact time, t−. Therefore, (32) cannot be used directly because E�

j is zero at this
moment. At the beginning of a multiple impact, the ratios of potential energy will be valued
by the limit from the right as

E

ηj
ηj +1

j

(E�
j )

η�
j

η�
j
+1

∣∣∣∣∣
t−

= (δ̇j (t
−) dP 3

j )

ηj
ηj +1

(δ̇�
j (t

−) dP �
j )

η�
j

η�
j
+1

, (33)

where � denotes the contact couple whose normal relative velocity δ̇ is the maximum.
Putting (33) into (29), we have

(dP 3
j )

1
ηj +1

(dP �
j )

1
η�
j
+1

∣∣∣∣∣
t−0

= (ηj + 1)

ηj
ηj +1

(η�
j + 1)

η�
j

η�
j
+1

K

1
ηj +1

j

(K�)
1

η�+1

(δ̇j (t0))

ηj
ηj +1

(δ̇�
j (t0))

η�
j

η�
j
+1

. (34)

Although (34) is not the ratio between dP 3
j /dP �

j , it is sufficient because dP �
j is independent.

If dP �
j is assigned a value, a determined value of dP 3

j can be obtained.
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In the end, the differential impact equations (26) can be rewritten by dividing dP �
j on

both sides of the equation:

n∑
j=1

ai,j

dq̇j

dP �
j

=
s∑

j=1

(
W 1

ij

dP 1
j

dP �
j

+ W 2
ij

dP 2
j

dP �
j

+ W 3
ij

dP 3
j

dP �
j

)
, (35)

which depends on the independent variable P �
j .

However, the impact differential equations (35) only provide the routine of multiple-
impact procedure and they do not tell when impacts end. In consideration of mechanical
energy dissipation which is represented by energetic coefficients of the restitution [41] ej at
each contact couple, one has

e2
j = −Wr

j

Wc
j

= −
∫ P 3

j
(t+)

P 3
j
(tc)

δ̇j dP 3
j

∫ Ej (t−)+P 3
j
(tc)

0 δ̇j dP 3
j

, (36)

where Wr
j ≥ 0 and Wc

j 
= 0 are the work done by the normal contact force at the j th contact
couple during compression phase [t−, tc] and expansion phase [tc, t+], respectively.

When the potential energy satisfies the coefficient of restitution at a certain contact cou-
ple, the impact at this contact couple ends temporally. But the whole multiple-impact may
not end. In some cases, certain contact couples may turn to impact again after they are in-
active, which are called as repeating impacts. When all the multiple impacts end, namely
when for each contact couple the part of the reserved potential energy has restituted in
accordance to its coefficient of restitution, the multiple-impact procedure finally comes to
an end. A detailed description of how to use the LZB method with friction can be found
in [40].

7 Contact constraints for point contacts

When the two APDSes of a docking system contact at two patches of their contours, the
number of degrees of freedom varies. Therefore, increasing or decreasing constraints is an
effective way to investigate the contact problem. We use contact constraints to determine the
contact forces. At the same time, contact constraints generally contain contact parameters
u∗ and these parameters are varying due to the variation of contact couples. So, another task
of this section is to determine the parameters at each moment of contact. A more general
method than in this section can be found in [35].

7.1 Characteristics of contacts

Define two patches U1,j and U2,j attached to Body 1 (referred to as an APDS, and we defined
a segment of a curve to be always on Body 1 in Sect. 4.3) and Body 2 (the other APDS),
respectively. When the two patches keep contact at a point, actually two contact points on
the two patches occupy a same position in space and form a contact couple. Let u1,j ∈ U1,j

and u2,j ∈ U2,j . When the two patches keep contact at the contact couple and the positions
of the couple are denoted as u∗

1,j ∈ U1,j and u∗
2,j ∈ U2,j , the distance between the two points
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are zero, namely r1 − r2 = 0, and the two patches are tangential at the contact point, namely

f1,j

(
q,u∗

j

)= (r1,j

(
q,u∗

1,j

)− r2,j

(
q,u∗

2,j

)) · i = 0,

f2,j

(
q,u∗

j

)= (r1,j

(
q,u∗

1,j

)− r2,j

(
q,u∗

2,j

)) · j = 0,

f3,j

(
q,u∗

j

)= (r1,j

(
q,u∗

1,j

)− r2,j

(
q,u∗

2,j

)) · k = 0,

(37)

where i, j and k are the unit vectors of the inertial Cartesian frame and

– If the contact belongs to a C–S type, where u1,j has one element u1,j , u2,j has two ele-
ments u2,j = [u2,j , u3,j ]T and uj = [u1,j , u2,j , u3,j ]T , the tangential condition at the con-
tact couple results in

f4,j

(
q,u∗

j

)= ∂r1,j

∂u1,j

·
(

∂r2,j

∂u2,j

× ∂r2,j

∂u3,j

)∣∣∣∣
u∗
j

= 0. (38)

– If the contact belongs to a C–C type and

∂r1,j

∂u1,j

× ∂r2,j

∂u2,j

∣∣∣∣
u∗
j


= 0, (39)

no tangential equation needs to be added, where u1,j and u2 both include only one ele-
ment, u1,j and u2,j , respectively.

7.2 Determining contact parameters u∗
j

Equations (37) and (38) comprise the constraint equations for the contact. It is worth noting
that the equations only eliminate one degree of freedom of the docking system if the contact
holds. For a C–S type of contact, there are (3 + 1) equations, but three parameters (uj =
[u1,j , u2,j , u3,j ]T ) are included in the equations. And for a C–C type, only three equations,
namely Eq. (37), exist without any complementary condition like Eq. (38). But the equations
include merely 2 parameters uj = [u1,j , u2,j ]T . Therefore, for the two cases described in
this paper, only one independent constraint of the system can be generally solved for as the
parameters are eliminated from the constraint equation.

Set m to be the number of equations fi,j = 0 (i = 1,2, . . . ,m) where r(= m − 1) equa-
tions are chosen. Without losing generality, select the former r equations among the m and
suppose |Jj | 
= 0 where

Jj =

⎡
⎢⎢⎢⎣

∂f1,j

∂u∗
1,j

· · · ∂f1,j

∂u∗
r,j

...
. . .

...
∂fr,j

∂u∗
1,j

· · · ∂fr,j

∂u∗
r,j

⎤
⎥⎥⎥⎦

r×r

. (40)

Since |Jj | 
= 0, in theory, the parameters u∗
j ≡ (u∗

1,j , . . . , u
∗
r,j ) at contact points can be solved

for explicitly from fi,j = 0, where i = 1, . . . , r , as

u∗
j = u∗

j

(
q(t)
)
. (41)

It is known by the implicit function theorem that u∗ can be obtained theoretically from
fi,j = 0 where i = 1, . . . , r near the contact area if |Jj | 
= 0. But the explicit expression
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of (41) only exists in theory, and it is not easy to write it out in the given domain due to
the nonlinearity of the equations, fi,j = 0. In order to find the explicit and unique solution
of the contact parameters u∗

j , a numerical method is provided in the following. Taking the
derivative of both sides of Eq. (41), one obtains

u̇∗
j (t) =

n∑
j=1

∂u∗
j

∂qj

q̇j , (42)

where the coefficients, ∂u∗
j /∂qj and ∂u∗

j /∂t , are all unknown and need to be calculated from
fi,j = 0.

Differentiate the r equations fi,j (q(t),u∗
j (q(t))) ≡ 0 with respect to a generalized coor-

dinate qk . From the chain rule, one immediately has

r∑
l=1

∂fi

∂u∗
l,j

∂u∗
l,j

∂qk

+ ∂fi,j

∂qk

= 0, i = 1, . . . , r. (43)

Define

u∗′qk,j =
[

∂u∗
1,j

∂qk

, . . . ,
∂u∗

r,j

∂qk

]T

, f′qk,j =
[

∂f1,J

∂qk

, . . . ,
∂fr,j

∂qk

]T

.

Using matrix notation, Eq. (43) becomes

Jj u∗′q,j
+ f′qk,j = 0. (44)

Since |Jj | 
= 0, we have

u∗′qk,j = −J−1
j f′qk,j . (45)

Aggregate [u∗′q1,j
, . . . ,u∗′qn,j

] = u∗′q,j
and [f′q1,j , . . . , f′qn,j ] = f′q,j . Then, for all k, Eq. (45)

is correct. Thus

u∗′q,j = −J−1
j f′q,j . (46)

Now, Eq. (42) in matrix notation can be explicitly expressed by

u̇∗
j (t) = −J−1

j f′q,j q̇. (47)

From Eq. (47) we know that the contact position u∗
j (t) can be predicted at the next step

if the velocity u̇∗
j (t) is clear at the current step.

7.3 Contact constraints on the velocity level

Taking the derivative of both sides of Eq. (37), namely of r1,j − r2,j = 0, with respective to
time t , we obtain

d(r1,j − r2,j )

dt
=

r∑
i=1

∂(r1,j − r2,j )

∂u∗
i

u̇∗
i + vr

j

(
q, q̇,u∗

j

)= 0. (48)

Dot-multiplying both sides of (48) by nc and using Definition 2, one has

vr
3,j (q, q̇,u∗

j ) = vr
j · nj = 0. (49)
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Putting the contact parameters predicted by Eq. (47) into Eq. (49), the j th contact constraint
can be fully obtained at each moment. Although Eq. (49) means that the normal velocity
at the contact couple is zero, one cannot obtain that the normal acceleration of it is zero
because u∗

j is variable, too.

7.4 Coulomb’s friction

With respect to the tangential direction of a contact, Coulomb’s friction law is considered
because of its validity and precision either with or without impact [40, 44]. If the tangential
relative velocity is not zero, the contact is called a slide. But if the velocity is zero, we call
it a stiction. For a slide, the tangential contact force is linear with the normal force and the
direction is opposite to the tangential relative velocity. In terms of stiction, the contact force
should be located within the friction cone. Therefore, according to Coulomb’s frictional law,
the contact forces at the j th contact couple satisfy

λ3
j ≥ 0 and

⎧⎨
⎩

λk
j = −μλ3

j

vr
k,j

|vr
τ,j

| , if vr
τ,j 
= 0,

vr
τ,j = 0, if

√(
λ1

j

)2 + (λ2
j

)2 ≤ μsλ
3
j ,

(k = 1,2), (50)

where λ1
j , λ2

j and λ3
j are the components of contact force under the contact frame

(τ1,j , τ2,j ,nj ). The dynamic and static coefficients of friction are set to be μ and μs , re-
spectively.

But if the contact force is not located within the friction cone under stiction, or if the
normal contact force is less than zero under the assumption of either stiction or sliding,
the current assumption such as stiction, slide or keeping contact is no longer true. All the
possible motions such as slide, stiction and detachment except the current assumption should
be checked for a rational consequent motion. An event-driving strategy led by unilateral
contact and Coulomb’s frictional law will be introduced in Sect. 8.

8 Simulation

8.1 A numerical framework for the docking system

Now, we conclude the docking dynamic model established above and give a numerical
framework for the docking system.

The non-contact and contact dynamic equations for the docking system are expressed by
Eq. (5). The Lagrangian multipliers can be solved for from s sets of the contact constraints
of (49) for λ3

j plus the complementary conditions (50) originating from Coulomb’s frictional
law for λ1

j and λ2
j , where j = 1, . . . , s. The contact parameters, u∗

j , in the contact constraints
can be obtained via integrating the parametric velocities of Eq. (47) at each step.

In the framework, the contact constraints (49) and Coulomb’s friction law (50) form an
event-driving strategy as
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

if vr
τ,j (t) 
= 0, then λ3

j (t) ≥ 0, λk
j (t) = −μλ3

j (t)
vr

k,j (t)

|vr
τ,j (t)|

,

if v(
τ,j t) = 0, then vr

k,j (t) = 0, λ3
j (t) ≥ 0,

√(
λ1

j (t)
)2 + (λ2

j (t)
)2 ≤ μsλ

3
j (t),

otherwise λk
j (t) = 0,

(51)
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where t ∈ [t, t + �t] and k = 1,2. The current time is t and the time step is �t . The actual
motion at s sets of contact couples should be sought among the possible motions of (51) as
j = 1, . . . , s.

Equations (5), (49), (51), and (47) make up the contact-dynamics module in the frame-
work of the docking system.

Remark The constraint equations vr
k,j = 0 where k = 1,2,3 may be differentiated with

respect to t when they are incorporated into the dynamic equations. The derivatives are

dvr
k,j

dt
=

18∑
i

∂vr
k,j

∂q̇i

q̈i +
(

18∑
i

∂vr
k,j

∂qi

q̇i +
n∑

k=1

∂vr
k,j

∂u∗
k,j

u̇∗
k,j

)
, (52)

where u̇∗
k,j can be obtained by Eq. (47).

At the beginning of a docking procedure, no contact exists. The contact forces, λk
j (j =

1, . . . , s, k = 1,2,3) are all zeros. The fast seeking method introduced in Sect. 5.1 searches
potential contact couples ceaselessly between pairs of possible contact patches. A guide
side on one APDS and another guide side on the other APDS comprise a possible pair of
potential contact patches. The corresponding relations between the guide sides are (n1, n5),
(n2, n4), (n3, n3), (n4, n2), (n5, n1), and (n6, n6), respectively, which belong to Type C–C.
Each guide surface on one APDS and the inside guide ring on the other APDS make a pair
of possible contact patches, which belong to Type C–S. Therefore, there are 12 pairs of
potential contact patches for the docking system described in this paper, and each pair has
only one potential contact couple.

Generally, impacts occur when potential contact couples found by the seeking method
turn from being inactive to being active since the velocities at the contact couples are
usually inconsistent. The LZB method is employed to solve the impacts. The multiple-
impact procedure is controlled by the impact dynamic equations (35) with the distri-
butional law (32). The energetic coefficients of restitution are introduced to estimate
the dissipation at each couple in multiple impacts; see (36). The distributional law and
Coulomb’s frictional law in consideration of the energetic coefficients of restitution at the
impact couples form an event-driving strategy in the numerical framework for multiple im-
pacts as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if vr
τ,j 
= 0 then

dP k
j

dP 3
j

= −μ
(vr

k,j )

|vr
τj

| , E′
j > 0,

if vr
τ,j = 0 then vr

k,j = 0 if
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(

dP 1
j

dP 3
j

)2

+
(

dP 2
j

dP 3
j

)
≤ μs, E′

j > 0,

otherwise E′
j = 0,

dP k
j

dP 3
j

= 0,

(53)

where k = 1,2 and

{
E′

j = Ej during compressional phrase and non-contact;
E′

j = Ej − (1 − e2
j

)
Wc,j during restitutional phrase,

(54)
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Fig. 5 The flow chart of the programme for the capture-phase dynamics of the docking system

where the main difference of Eq. (53) from Eq. (51) is that detachment in Eq. (53) is only
determined by the coefficient of restitution. Some detailed applications of the LZB method
can be found in [39, 40, 43]. Equations (32), (53) and (36) constitute the impact-dynamics
module in the framework of the docking system.

On the basis of the contact-dynamics and impact-dynamics modules, a programme for
the capture phase of the docking system has been written. A symbolic computation soft-
ware had to be used to form the mass matrix and the generalized forces in the programme
due to the sophisticated configuration of the system. At each step, the generalized accelera-
tions and the contact forces are linear. So the Eulerian method is employed to integrate the
dynamic equation for the generalized accelerations and the contact forces, then for the gen-
eralized velocities and configuration of the system. When the Eulerian method is employed
for contact steps, the constraint equations should be differentiated with respect to time t to
the acceleration level by Eq. (52). Then the constraints are incorporated into the dynamic
equations to obtain the generalized accelerations of the system and the contact forces. At
impact steps, we select the normal impulse P � of which the potential energy is maximum
to be the independent variable instead of time t . An equal increment, δP �, is supposed for
the impact integration. The simplified flow chart of the programme is sketched in Fig. 5.
Then, numerical simulation can be carried out. A simulation example under a special work-
ing condition is discussed thoroughly in what follows. A movie of this example is attached
to this paper.

8.2 A simulation example

The two APDSes are the same. It is shown in Fig. 3 that the passage diameter is D = 800 mm
and the external diameter of an APDSes is R = 1200 mm. Other geometric parameters of
an APDS are set as α1 = 45◦, α2 = 30◦, H = 200 mm, and L = 305 mm. The equilibrium
position of the mass center (the center of the circle ring) of the target’s APDS is installed at
point [a, b, c]T = [0,0,5.03]T (m) under the body frame (e2,1, e2,2, e2,3). The mass center
of the chaser’s APDS is fixed at point [a1, b1, c1]T = [0,0,1.9]T (m) under the body frame
(e3,1, e3,2, e2,3).

The mass of an APDS is m = 150 kg, and the principle moments of inertia about the x, y

and z axes in the body frame are all the same, namely I = 68 kg m2. The masses and the
principle moments of inertia of the chaser spacecraft with the APDS fixed on it, the target
spacecraft and its APDS are presented in Table 1.

The APDS on the target spacecraft is assembled with a Stewart mechanism. Six elements
of spring and damper are used to imitate the motions of a Stewart mechanism. The six
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Table 1 Mass and moments of inertia

m (kg) I1 (kg m2) I2 (kg m2) I3 (kg m2)

Target m1 = 1000 I11 = 782 I11 = 774 I11 = 829

APDS m2 = 150 I21 = 68 I21 = 68 I21 = 68

Chaser m3 = 7600 I31 = 40211 I31 = 6402 I31 = 40242

Table 2 The stiffness and damping coefficients of the equivalent element of spring and damper for a Stewart
mechanism

k (N/m) c (Ns/m) kt (Nm/rad) ct (Ns/rad)

1 k1 = 9.38 × 102 c1 = 520 kt1 = 105 ct1 = 10

2 k2 = 7.14 × 104 c2 = 0 kt2 = 105 ct2 = 10

3 k2 = 9.47 × 102 c3 = 532 kt3 = 938 ct3 = 520

Fig. 6 History of rotational velocities during docking: (a) rotational velocity of APDS on the target space-
craft, φ̇; (b) rotational velocity of the chaser spacecraft about the axis of its APDS, β̇3

pairs of stiffness and damping coefficients for the three relative displacements and rotations
between the target spacecraft and its APDS are given in Table 2.

In order to explain the simulation example, first we put the two APDSes to be coaxial
and the six petals of the two APDSes as just matched very well. For the initial condition
of this example, the target spacecraft with its APDS rotates 5◦ (degrees) about the common
axis. Then the two spacecrafts are separated for a small distance (0.01 m) from each other
along the co-axis. The target spacecraft stays silent and the chaser spacecraft moves toward
the target spacecraft with a 1 m/s speed along the co-axis.

While the two spacecrafts are approaching, three pairs of guide petals impact on their
guide sides simultaneously. The system’s velocities vary suddenly due to the multiple im-
pacts. After several impacts, the APDSes slide at three contact couples along the three pairs
of guide petal sides. The two APDSes are rotating relatively and continuously to adjust their
postures towards their matching positions. While the petals are sliding along their sides,
the centers of the two guide rings are approaching. Finally, the centers of the two APDSes’
guide rings come together and the capture locks turn on, which means the capture phase
comes to the end.
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Fig. 7 History of translational velocities during docking: (a) velocity of APDS on the target spacecraft along
the axis, ẋ3; (b) velocity of the chaser spacecraft along the axis, ẏ3

Fig. 8 (a) Displacement between the centers of the two guide rings; (b) Contact force for one of the three
pairs of guide petal sides during their slide along each other

Figure 6 shows the history of the rotational velocities, from which we can see the ve-
locities jump due to the multiple impacts. Since the inertial moment of the APDS on the
target spacecraft is comparatively small, the rotational velocity φ̇ turns to be very large after
several impacts. But the other APDS is fixed on the chaser spacecraft and its inertial mo-
ment is big, so the rotational velocity β̇3 is not very big after the impacts. Figure 7 shows
the translational velocities of the two spacecrafts along the axis during the docking motion.
Their velocities do not vary much due to their large inertias.

Figure 8(a) shows that the displacement of the guide rings’ center is approximately zero
at the end of the capture phase. Figure 8(b) presents the contact force (including friction
but not the impact force) at one of the three contact couples on the guide petal sides during
sliding, which appears very smooth without sawtooth in comparison with [1]. There are
three the same contact forces at the three contact couples due to symmetry of the system
and its initial state. After the capture phase, the relative velocities of two spacecrafts are
not zero. This part of kinematic energy will be dissipated by the Stewart mechanism by the
subsequent buffing phase.
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Fig. 9 The momentum and the moment of momentum of the docking system along the axis are conserved

In order to verify the validity of the numerical results, Fig. 9 shows the components of the
momentum and the moment of momentum of the system along the axis during the capture
phase—they are all conserved.

Additionally, a movie of this example is also presented as an attachment.

9 Conclusions

In this article, a complete rigid-body dynamic model has been established for contact/impact
problems for the capture phase of a docking system with two the same APDSes. The La-
grangian formulations are adopted, which govern either the contacts or the impacts of the
capture dynamics of the docking system. Impacts and contacts are dealt with respectively in
different ways. Contacts are taken as constraints acting on the system. A general approach
for contacts of the C–C type and the C–S type has been provided for the automatical for-
mulation of contact constraints from a set of sufficient and necessary conditions of point
contacts for the docking system. This method makes it possible to formulate the constraints
for the point contact of two sophisticated contour shapes and shows a way of how to incor-
porate them into the dynamic equations of systems. The LZB method has been applied for
the multiple impacts; and it was the first time that the LZB method was used to solve an ac-
tual engineering problem. Then, the framework was presented and the numerical simulation
was described for the capture phase of the docking system. A docking simulation in the cap-
ture phase under a simple working condition was analyzed thoroughly. In comparison with
flexible methods, the method presented in this paper is more complicated in the modeling
procedure than flexible methods, but it is more efficient in simulation.

References

1. Schultz, K.P.: Loads analysis for space shuttle docking to MIR. In: 38th Structures, Structural Dynamics,
and Materials Conference. AIAA, Washington (1997). doi:10.2514/6.1997-1167

2. Goodman, J.L.: History of Space Shuttle rendezvous and proximity operations. J. Spacecr. Rockets 43(5),
944–961 (2006)

3. Zimpfer, D.: Autonomous rendezvous, capture and in-space assembly: Past, present and future. In: 1st
Space Exploration Conferences: Continuing the Voyage of Discovery, Orlando, Florida (2005)

http://dx.doi.org/10.2514/6.1997-1167


Docking dynamics between two spacecrafts with APDSes 269

4. Ghofranian, S., Schmidt, M., Briscoe, T., et al.: Simulation of Shuttle/MIR docking. In: 36th Struc-
tures, Structural Dynamics, and Materials Conference and Adaptive Structures Forum. AIAA/ASME/
ASCE/AHS/ASC, New Orleans (1995)

5. Klisch, T.: Contact mechanics in multibody systems. Mech. Mach. Theory 34, 665–675 (1999)
6. Ambrósio, J.A.C.: Rigid and flexible multibody dynamics tools for the simulation of systems subjected

to contact and impact conditions. Eur. J. Mech. A, Solids 19, S23–S44 (2000) (special issue)
7. Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems: Part I. Theoretical

framework. Proc. R. Soc. A 464, 3193–3211 (2100). 2008
8. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with transla-

tional clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23(2), 165–
190 (2010)

9. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems.
Multibody Syst. Dyn. 24, 103–122 (2010)

10. Cyril, X., Kim, S.-W., Ingham, M., Misra, A.: Dynamics and control of two flexible multi-body sys-
tems attempting docking/berthing. In: 45th Congress of the International Astronautical Federation, Israel
(1994)

11. Lee, S.H., et al.: Analysis on impact propagation of docking platform for spacecraft. In: Proceedings of
the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea (2001)

12. Syromyatnikov, V.S.: Mathematical models of the dynamics of docking. Kosm. Issled. 20(3) (1982)
(in Russian)

13. Qingrui, Z., et al.: Docking dynamics of a spacecraft. J. Chin. Soc. Astronaut. 3, 15–24 (1991) (in Chi-
nese)

14. Wang, X.-g., et al.: Docking dynamics simulation of spacecraft with peripheral docking mechanism. Part
I: Equation of kinematics constrained. J. Syst. Simul. 13(3), 284–287 (2001) (in Chinese)

15. Ivanov, A.P.: On multiple impact. J. Appl. Math. Mech. 59(6), 887–902 (1995)
16. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control. Communications and Control

Engineering, 2nd edn. Springer, London (1999)
17. Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42(1), 3–39 (2000)
18. Pfeiffer, F.: Unilateral problems of dynamics. Arch. Appl. Mech. 69(1999), 503–527 (1999)
19. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts, vol. 421. Springer, Berlin (2000)
20. Zhao, Z., Liu, C., Chen, B.: The Painlevé Paradox studied at a 3D slender rod. Multibody Syst. Dyn. 19,

323–343 (2008)
21. Zhao, Z., Liu, C., Ma, W., Chen, B.: Experimental investigation of the Painlevé paradox in a robotic

system. J. Appl. Mech. 75(4), 041006 (2008)
22. Zhao, Z., Chen, B., liu, C., Jin, H.: Impact model resolution on Painvelé’s paradox. Acta Mech. Sin.

20(6), 51–62 (2004)
23. Dupont, P.E., Yamajako, S.P.: Stability of frictional contact in constrained rigid-body dynamics. IEEE

Trans. Robot. Autom. 13(2), 230–236 (1997)
24. Song, P., et al.: Analysis of rigid-body dynamic models for simulation of systems with frictional contacts.

J. Appl. Mech. 68, 119–128 (2001)
25. Pars, L.A.: A Treatise on Analytical Dynamics. Wiley, New York (1968)
26. Cai, C., Roth, B.: On the planar motion of rigid bodies with point contact. Mech. Mach. Theory 21(6),

453–466 (1986)
27. Montana, D.J.: The kinematics of contact and grasp. Int. J. Robot. Res. 7(3), 17–31 (1988)
28. Montana, D.J.: The kinematics of multi-fingered manipulation. Robotics and automation. IEEE Trans.

11(4), 491–503 (1995)
29. Jia, Y.-B., Erdmann, M.: Pose and motion from contact. Int. J. Robot. Res. 18(5), 466–487 (1996)
30. Li, Z., Canny, J.: Motion of two rigid bodies with rolling constraint. IEEE Trans. Robot. Autom. 6(1),

62–72 (1990)
31. Bicchi, A., Kumma, V.: Robotic grasping and contact: A review. IEEE Int. Conf. Robot. Autom. 1,

348–353 (2000)
32. Sarkar, N., Kuma, V., Yun, X.: Velocity and acceleration analysis of contact between three-dimensional

rigid bodies. J. Appl. Mech. 63, 974–984 (1996)
33. Marigo, A., Bicch, A.: Rolling bodies with regular surface: controllability theory and applications. IEEE

Trans. Autom. Control 45(9), 1586–1599 (2000)
34. Cui, L., Dai, J.S.: A Darboux-frame-based formulation of spin-rolling motion of rigid objects with point

contact. IEEE Trans. Robot. 26(2), 383–388 (2010)
35. Zhen Zhao, Liu, C.: Contact constraints and dynamical equations in Lagrangian systems. Multibody

Syst. Dyn. (2015, submitted)
36. Keller, J.B.: Impact with friction. J. Appl. Mech. 53, 1–4 (1986)



270 Z. Zhao et al.

37. Marghitu, D.B., Hurmuzlu, Y.: Three-dimensional rigid-body collisions with multiple contact points.
J. Appl. Mech. 62, 725–732 (1995)

38. Zhen, Z., Caishan, L., Bin, C.: The numerical method for three-dimensional impact with friction of
multi-rigid-body system. Sci. China, Ser. G, Phys. Mech. Astron. 49(1), 102–118 (2006)

39. Liu, C., Zhao, Z., Bernard, B.: Frictionless multiple impacts in multibody systems: Part II. Numerical
algorithm and simulation results. Proc. R. Soc. A 465(2101), 1–23 (2009)

40. Zhao, Z., Liu, C., Brogliato, B.: Planar dynamics of a rigid body system with frictional impacts. II. Qual-
itative analysis and numerical simulations. Proc. R. Soc. A 465(2107), 2267–2292 (2009)

41. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)
42. Zhao, Z., Liu, C., Brogliato, B.: Energy dissipation and dispersion effects in granular media. Phys. Rev.

E 78, 031307 (2008)
43. Nguyen, N.S., Brogliato, B.: Multiple Impacts in Dissipative Granular Chains. Springer, Berlin (2014)
44. Liu, C., Zhang, H., Zhao, Z., Brogliato, B.: Impact–contact dynamics in a disc-ball system. Proc. R. Soc.

A 469, 20120741 (2013)


	Docking dynamics between two spacecrafts with APDSes
	Abstract
	Introduction
	Main characteristics of a spacecraft docking system with two APDSes
	Conﬁguration of a docking system
	Contact areas

	Dynamic equations of the docking systems
	Kinetic energy, potential energy and non-contact generalized forces
	Generalized contact forces

	Point vectors from the inertial origin to contact areas
	Contact patches on an APDS
	The parametric equations of the three pieces of the guide surfaces
	Parametric equations of the three pairs of the guide sides
	The parametric equations for the inside circle of the guide ring

	The position vector of any point on a contacting patch under the inertia frame
	Point vectors of a contact couple

	Seeking (potential) contact couples and deﬁning contact frames at the beginning of a contact couple
	Fast discrete method to seek (potential) contact couples
	Deﬁne contact frames

	Multiple impacts
	The LZB method for multiple impacts

	Contact constraints for point contacts
	Characteristics of contacts
	Determining contact parameters u*j
	Contact constraints on the velocity level
	Coulomb's friction

	Simulation
	A numerical framework for the docking system
	A simulation example

	Conclusions
	References


