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Abstract The present work deals with the inverse dynamics simulation of underactuated
mechanical systems relying on servo constraints. The servo-constraint problem of discrete
mechanical systems is governed by differential–algebraic equations (DAEs) with high index.
We propose a new index reduction approach, which makes possible the stable numerical
integration of the DAEs. The new method is developed in the framework of a specific crane
formulation and facilitates a reduction from index five to index three and even to index one.
Particular attention is placed on the special case in which the reduced index-1 formulation
is purely algebraic. In this case the system at hand can be classified as differentially flat
system. Both redundant coordinates and minimal coordinates can be employed within the
newly developed approach. The success of the proposed method is demonstrated with two
representative numerical examples.
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1 Introduction

In this paper we present a new approach to the inverse dynamics simulation of discrete
mechanical systems. The present approach is relying on the use of servo constraints for the
partial specification of the motion of mechanical systems (see, e.g., [4, 14, 18]). In particular,
we focus ourselves on the specification of trajectories of specific points of a multibody
system such as the end effector of a robot.

The partial specification of the motion of a multibody system by means of servo con-
straints typically leads to a problem formulation in terms of differential–algebraic equations
(DAEs). If minimal coordinates are used, then the differential part of the DAEs corresponds
to the equations of motion, whereas the algebraic part is related to the servo constraints. The
servo constraints enforce the desired motion along prescribed trajectories and thus specify
the control outputs of the system. To determine the associated control inputs required to steer
the system such that the prescribed trajectories are tracked, the DAEs need to be solved. By
this a simulation approach to the feedforward control of multibody systems can be realized.

In the special case of fully actuated multibody systems, the simulation approach to the
inverse dynamics problem yields index-3 DAEs that can be integrated in analogy to the
DAEs corresponding to constrained mechanical systems (see, e.g., [21]). However, the sit-
uation changes considerably if underactuated mechanical systems are dealt with. In this
type of systems the number of degrees of freedom exceeds the number of controls. Exam-
ples of underactuated systems are cranes and flexible multibody systems. The use of servo
constraints in the context of underactuated multibody systems leads to a broad diversity of
servo-constraint problems (see, in particular, the recent papers [5, 10, 20]). One indicator of
problem diversity is the (differentiation) index of the underlying DAEs that typically ranges
from three to five and even higher. Consequently, to facilitate a stable numerical integration,
some kind of index reduction approach needs to be applied.

In the present work we newly propose to apply a specific index reduction technique
called minimal extension (see Kunkel and Mehrmann [16]). So far index reduction by mini-
mal extension has been successfully applied to circuit simulation [16, Sect. 4] and multibody
systems [16, Sect. 5]. It was also applied to infinite dimensional systems arising in elasto-
dynamics and flexible multibody systems [1]. To the best of our knowledge, the minimal
extension procedure has not been applied previously to the type of underactuated servo-
constraint problems considered herein.

To develop the new method in a concise way, we confine our presentation to underactu-
ated mechanical systems belonging to a specific class of cranes. The crane formulation un-
der consideration fits into the more general framework presented in [15]. The corresponding
crane model can be often classified as differentially flat system in which the load coordi-
nates play the role of flat outputs. The corresponding servo-constraint problem is governed
by DAEs with index five. We shall show that the index reduction by minimal extension can
be applied easily to reduce the index of the DAEs to three and even to one. An alternative
index reduction approach is the projection method previously developed in [6, 9].

The present work is structured as follows. In Sect. 2 we start with an outline of the
formulation of servo constraint problems. In Sect. 3 we first introduce index reduction by
minimal extension in the context of constrained mechanical systems. Then we develop the
index reduction approach for the servo-constraint problem in the framework of a specific
crane model formulated in terms of redundant coordinates. After that we show in Sect. 4 that
the advocated minimal extension approach can be also applied to crane models formulated
in terms of minimal coordinates. The discretization of the resulting minimally extended
DAEs is dealt with in Sect. 5. In this connection, both alternative formulations in terms
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of redundant and minimal coordinates are considered. The newly developed methodology
is then applied to a planar overhead crane (Sect. 6) and a three-dimensional rotary crane
(Sect. 7). Eventually, conclusions are drawn in Sect. 8.

2 Mechanical systems with servo constraints

Using minimal coordinates, the DAEs governing the inverse dynamics of discrete mechani-
cal systems consist of the equations of motion and the servo constraints [4, 6]. In particular,
the equations of motion have the form

M(μ)μ̈ = f (μ, μ̇) +BT (μ)u (1a)

with minimal coordinates μ ∈ R
f , positive definite mass matrix M ∈ R

f,f , generalized
forces f ∈ R

f , control inputs u ∈ R
a , and input transformation matrix B ∈ R

a,f . Further-
more, t ∈ I denotes the time, and I = [t0, tf ] ⊂ R is the time interval of interest. The equa-
tions of motion are subject to the servo constraints

s(μ) = γ , (1b)

where γ : I →R
a is the desired output function. Note that the number a of control inputs is

assumed to be equal to the number of independent servo constraints. Correspondingly, the
Jacobian of the servo constraints S(μ) := Ds(μ) is assumed to have full (row) rank. We
note at this point that we understand system (1a)–(1b) in the so-called behavior context, that
is, we regard the control inputs as variables [17, Ch. 3.6].

We focus our attention on underactuated mechanical systems in which the number of
controls is lower than the number of degrees of freedom, that is, a < f .

A distinguishing feature of the DAEs (1a)–(1b) is that, in general, B �= S . This is
in sharp contrast to mechanical systems subject to holonomic constraints. The difference
between holonomic and servo constraints is further reflected in the rank of the matrix
P := SM−1BT and in the index of the DAEs (1a)–(1b). For a precise definition of the
differentiation index, which we denote simply by index, we refer to [11].

If the matrix P has full rank (equal to a), then there exists an invertible matrix H ∈R
a,a

such that B = HS . This implies that there exist Lagrange multipliers λ ∈ R
a such that

BT u = ST λ. Accordingly, the DAEs (1a)–(1b) assume the well-known structure of the
equations of motion pertaining to (holonomically) constrained mechanical systems writ-
ten in terms of redundant coordinates. In this special case, the DAEs (1a)–(1b) are known
to have index 3. Using the terminology introduced by Blajer [4], we speak of an orthogonal
realization of the servo constraints.

In general, the matrix P is rank deficient, and the realization of the servo constraints is
either mixed orthogonal–tangential or purely tangential in the sense of Blajer [4]. Then the
so-called controlled and constrained subspaces do not coincide. In particular, the rank of the
matrix P measures the number of directions of the constrained space which can be directly
actuated by the control inputs [6]. For rank(P) < a, the index of the DAEs (1a)–(1b) always
exceeds 3.

We already mentioned that many examples of mechanical systems employing servo con-
straints lead to DAEs of index 5. Nevertheless, there are examples with arbitrarily high
index, see Example 2 in [4]. In the present work we restrict ourselves to crane models that
typically yield DAEs of index 5, see, for example [6, 8, 9]. Similarly, the motion of more
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involved crane-type manipulators such as the wire mechanism dealt with in [13] is governed
by DAEs of index 5.

The simulation of index-5 problems is highly challenging. Even the popular Radau IIa
scheme, a Runge–Kutta method with three stages, which is a method of order 5 for ODEs,
does not converge for general index-5 problems. Thus, index reduction techniques are pre-
ferred to reduce the index of the DAEs to 3 or even lower.

To yield a reduction of the index from 5 to 3, Blajer and Kołodziejczyk [6] have pro-
posed a specific projection technique that has been further refined in [9]. The projection
approach requires the computation of time-dependent projection matrices in order to split
the dynamics of the underactuated system into constrained and unconstrained parts.

In the present work we newly propose an alternative method to reduce the index of the
DAEs under consideration. Our method relies on the index reduction by minimal extension
originally developed by Kunkel and Mehrmann [16] for more general DAEs. Due to the
semiexplicit structure of the DAEs (1a)–(1b), the technique of minimal extension turns out
to be especially attractive for the purpose of index reduction.

3 Index reduction by minimal extension

In this section we provide a short introduction to the index reduction approach by mini-
mal extension. Then we present its application to the servo-constraint problem. A common
approach for the reduction of the index of general nonlinear DAEs

F (t,y, ẏ) = 0, y(t0) = y0,

is given by the derivative array approach [17, Chap. 6.2]. In this equation, y0 ∈ R
n are

prescribed initial conditions, and F : I×R
n ×R

n → R
n. Let the DAEs be of index μ. Then

we have to differentiate all equations (μ− 1) times and compute suitable projections to find
algebraic and differential equations which, together, form an equivalent system of index 1.
We refer to [17] for further details. For large systems of high index, the derivative array
may become very large and cause memory problems. In addition, we have to invest high
computational effort to find the mentioned projection matrices.

The complexity of the index reduction method can be significantly reduced if additional
information about the structure of the system is available. This is the case for the semiex-
plicit DAEs of interest for which the algebraic constraints are explicitly given. Hence, it is
sufficient to add the derivatives of those equations. This then leads to a reduced derivative ar-
ray. In fact, introducing so-called dummy variables [19], we do not even need any projection
matrices. This procedure is then called minimal extension [16].

3.1 Minimal extension for mechanical systems

We apply the index reduction technique of minimal extension to the system of equations
typically governing the motion of a multibody system; see also [16]. To this end, consider
the DAEs

M(q)q̈ = f (q, q̇) − GT (q)λ, g(q) = 0.

The redundant coordinates q ∈ R
n are subject to m holonomic constraints with associ-

ated constraint functions g(q) ∈ R
m, Lagrange multipliers λ ∈ R

m, and constraint Jacobian
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G(q) = Dg(q) ∈ R
m,n, which is assumed to have full rank. Moreover, M(q) ∈ R

n,n is a
symmetric mass matrix, and f ∈ R

n contains the conjugate forces acting on the system,
except for the forces of constraint.

It is well known that the present DAEs have index 3 [17, Ex. 4.22]. Since G(q) has full
rank, there exists an orthogonal matrix Q ∈ R

n,n such that G(q)Q has the block structure

G(q)Q = [
G1 G2

]

with an invertible matrix G2 ∈ R
m,m. The matrix Q then allows us to partition the position

variables q into q1 ∈R
n−m and q2 ∈ R

m by
[
q1

q2

]
:= QT q.

For the reduced derivative array, we add to the original system the two derivatives of the
constraints, that is,

G(q)q̇ = 0 and Ġ(q)q̇ + G(q)q̈ = 0.

To avoid the expensive search for projectors, we introduce two dummy variables q̂2 := q̇2

and q̃2 := q̈2. With the variables q1, q2, q̂2, q̃2, and λ, the extended system is then square.
Replacing every occurrence of q̇2 and q̈2 by the corresponding dummy variables, we obtain
the overall system

M(q)Q

[
q̈1

q̃2

]
= f (q1,q2, q̇1, q̂2) − GT (q)λ,

0 = g(q1,q2),

0 = G(q)Q

[
q̇1

q̂2

]
,

0 = Ġ(q)Q

[
q̇1

q̂2

]
+ G(q)Q

[
q̈1

q̃2

]
.

Note that, to prevent clumsy notation, we write G(q) instead of G(q1,q2) and similarly
M(q) instead of M(q1,q2).

The proof that the resulting DAEs have index 1 is given in [17, Th. 6.12]. Note that the
size of the system has been increased by twice the number of constraints. Thus, for most
applications, the system is still of moderate format.

Remark 1 In general the transformation matrix Q can be found by a Gaussian elimination.
In many applications, however, it is possible to guess a permutation matrix Q that yields the
needed regular block G2. In this case, it is possible to choose Q as the identity matrix if a
suitable reordering of the variables is assumed and all variables keep their physical meaning.

3.2 Application to the inverse dynamics of cranes

The DAEs describing mechanical systems subject to servo constraints (cf. Sect. 2) or, more
generally, systems subject to both servo and holonomic constraints, exhibit a semiexplicit
structure and are thus very similar to the system dealt with in the previous section. Con-
sequently, we can apply a similar procedure to achieve an index reduction for this kind of
problems.



300 R. Altmann et al.

In the present work we focus ourselves on the minimal extension approach for cranes.
In a first step we choose to use specific redundant coordinates for the description of the
inverse dynamics problem. However, our method can also be applied to the corresponding
crane formulation in terms of minimal coordinates. This will be shown subsequently in
Sect. 4.

As has been demonstrated in previous works dealing with the description of crane models
(see, e.g., Fliess et al. [12, Sect. 4.1] for a planar overhead crane, Blajer and Kołodziejczyk
[9] for a three-dimensional rotary crane, and Heyden and Woernle [13] for a parallel wire-
suspended mechanism), it is especially convenient to divide the crane system into two sep-
arate subsystems. The first subsystem belongs to the motor drives, whereas the second sub-
system belongs to the load. Correspondingly we distinguish between crane (or actuated)
coordinates p ∈ Rn−a and load coordinates x ∈ R

a . Using these coordinates, we can write
the DAEs governing the controlled motion of cranes in the form

[
M1(p) 0

0 M2

][
p̈

ẍ

]
=

[
f 1(p, ṗ)

f 2(x, ẋ)

]
+

[
BT

1 (p)

0

]
u −

[
GT

1 (p,x)

GT
2 (p,x)

]
λ, (2a)

0 = g(p,x), (2b)

x = γ . (2c)

Here, the first row block in (2a) corresponds to the actuated subsystem, whereas the second
row block in (2a) corresponds to the load. The redundant coordinates

q =
[
p

x

]
(3)

are subject to the holonomic constraints (2b) with associated constraint functions g ∈ R
m

and constraint Jacobian G = [G1 G2] ∈R
m,n. In this connection, G1 = ∂pg(p,x) ∈ R

m,n−a

denotes the partial derivative w.r.t. the crane coordinates p, and G2 = ∂xg(p,x) ∈ R
m,a

denotes the partial derivative w.r.t. the load coordinates x. The holonomic constraints link
both subsystems at hand and lead to constraint forces with associated Lagrange multipliers
λ ∈R

m in (2a).
The servo constraints (2c) specify the desired trajectory of the load via the prescribed

function γ : I →R
a . The control inputs u ∈R

a regulate the control forces acting on the first
subsystem. In this connection, B1 ∈R

a,n−a denotes the input transformation matrix. Besides
the constraint and control forces, additional forces acting on the system are contained in the
conjugate force vectors f 1 ∈ R

n−a and f 2 ∈ R
a . Similarly, the mass matrix is split into the

submatrices M1 ∈R
n−a,n−a and M2 ∈ R

a,a .
Next, we apply the index reduction technique outlined in Sect. 3.1 to system (2a)–(2c) in

order to obtain an extended but equivalent system of index 3. Since the holonomic con-
straint (2b) only causes an index of 3, we just have to add the derivatives of the servo
constraints (2c). The addition of these two derivatives and the introduction of two dummy
variables x̂ := ẋ and x̃ := ẍ leads to the system

[
M1(p) 0

0 M2

][
p̈

x̃

]
=

[
f 1(p, ṗ)

f 2(x, x̂)

]
+

[
BT

1 (p)

0

]
u −

[
GT

1 (p,x)

GT
2 (p,x)

]
λ, (4a)

0 = g(p,x), (4b)

x = γ , (4c)
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x̂ = γ̇ , (4d)

x̃ = γ̈ . (4e)

As we will show in Proposition 1, under certain assumptions, this system has index 3.

3.2.1 Proof of index 3

In the following we state several assumptions that are typically satisfied for crane models. In
particular, these assumptions hold for the examples investigated in Sects. 6 and 7. We em-
phasize that we do not analyze the most general case but restrict ourselves to a model that
ensures that the underlying DAEs (2a)–(2c) have index 5. The assumptions serve the pur-
pose to minimize technical issues in the subsequent analysis. Furthermore, the assumptions
guarantee that the procedure of minimal extension can be applied twice in order to obtain
an equivalent system of index 1, as shall be shown subsequently in Sect. 3.3.

Assumption 1 Consider system (2a)–(2c) with m ≤ a ≤ n − a. Let M1 ∈ R
n−a,n−a be

positive definite, and G2 ∈ R
m,a have full rank. This implies that there exists a matrix

P 2 ∈R
a,a−m whose columns span the null space of G2. Thus,

G2(p,γ )P 2(p,γ ) = 0. (5)

Define z ∈R
a−m by

z(t,p) := P T
2 (p,γ )

(
f 2(γ , γ̇ ) − M2γ̈

)
(6)

and introduce h ∈R
a by

h(t,p) :=
[
g(p,γ )

z(t,p)

]
. (7)

Let H ∈R
a,n−a given by

H (t,p) := ∂ph(t,p) (8)

have full rank, and let P ∈ R
a,a defined by

P (t,p) := H (t,p)M−1
1 (p)BT

1 (p) (9)

be invertible.

Proposition 1 Given Assumption 1, the DAEs (4a)–(4e) are of index 3.

Proof The idea of the proof is to reduce system (4a)–(4e) to a system that has the structure
of a constrained multibody system for which the index is known to be 3. As a first step, we
eliminate the variables x, x̂, and x̃ since they are directly given by γ and its derivatives.
Then, we use the second part of Eq. (4a), namely

M2γ̈ = f 2(γ , γ̇ ) − GT
2 (p,γ )λ, (10)

to extract an equation for λ. Since G2 ∈ R
m,a is assumed to have full rank, the last equation

yields

λ = (
G2(p,γ )GT

2 (p,γ )
)−1

G2(p,γ )
(
f 2(γ , γ̇ ) − M2γ̈

) =: λ(t,p).
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In addition to that, premultiplying (10) by P T
2 (p,γ ) and taking into account (5) give

z(t,p) = 0, (11)

where z(t,p) has been defined in (6). Accordingly, the a equations in (10) yield m equations
for the determination of λ(t,p) along with a − m equations z(t,p) = 0, which can be
viewed as additional algebraic constraints. To summarize, we eventually obtain the system

M1(p)p̈ = f 1(t,p, ṗ) + BT
1 (p)u, (12a)

0 = h(t,p), (12b)

where

f 1(t,p, ṗ) := f 1(p, ṗ) − GT
1 (p,γ )λ(t,p),

and h(t,p) has been defined in (7). The DAEs (12a)–(12b) consist of n − a differential
equations (12a) and m + (a − m) = a algebraic equations (12b) for the determination of
p ∈R

n−a and u ∈ R
a . In particular, the DAEs (12a)–(12b) assume the semiexplicit structure

known from multibody dynamics. More precisely, the DAEs (12a)–(12b) are Hessenberg
index-3 (see, e.g., Ascher and Petzold [2, Sect. 9.1.1]). Provided that Assumption 1 holds,
the DAEs (12a)–(12b) have index 3. To see this, we can argue along the lines of Sect. 2.
In particular, the argument hinges on the full rank assumption for the matrix P defined
in (9). �

Remark 2 Proposition 1 implies that the original DAEs (2a)–(2c) have index 5 at most.
This follows from the fact that two differentiation steps were sufficient to obtain DAEs of
index 3.

3.3 Reduction to index 1

Next, we show that the procedure of minimal extension can be applied a second time
to eventually reach DAEs of index 1. However, due to the fact that the extended system
(4a)–(4e) does not exhibit the desired Hessenberg form anymore, we cannot directly apply
our index reduction method to the DAEs (4a)–(4e). First, we have to find the equations that
have to be differentiated.

Here we benefit from the proof of Proposition 1, in which these equations were already
identified. Accordingly, to apply index reduction by minimal extension a second time, we
have to add the derivatives of the constraints (12b). In this way, the original system is ex-
tended by 2a algebraic constraints. Correspondingly, 2a additional dummy variables have
to be introduced to reach a square system. For this purpose, we have available the first and
second time derivative of the crane coordinates p ∈ R

n−a . That is, we have 2(n − a) vari-
ables at our disposal. Note that this complies with the relation a ≤ n − a in Assumption 1.
Although the second index reduction can be performed for the general case a ≤ n − a, we
focus in what follows on the special case a = n − a.

3.3.1 The special case of purely algebraic equations

In the sequel we shall focus on the special case a = n − a, which applies to the numerical
examples dealt with in Sects. 6 and 7. In this case the introduction of dummy derivatives
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implies that all differential variables in (12a)–(12b) are converted to algebraic ones. Thus,
after the second index reduction, no differential variables are present anymore, and the re-
sulting system of equations is purely algebraic. This indicates that the specific systems under
consideration are differentially flat.

Provided that a = n − a, we introduce p̂ := ṗ and p̃ := p̈ as additional dummy variables.
We eventually arrive at the system

M1(p)p̃ = f 1(t,p, p̂) + BT
1 (p)u, (13a)

0 = h(t,p), (13b)

0 = H (t,p)p̂ + ∂th(t,p), (13c)

0 = H (t,p)p̃ + η(t,p, p̂), (13d)

where the ith component of the vector-valued function η(t,p, p̂) is given by

ηi(t,p, p̂) = p̂T ∂2
pphi(t,p)p̂ + 2∂2

tphi(t,p)p̂ + ∂2
t t hi(t,p) (14)

for i = 1, . . . , a. Since system (13a)–(13d) is purely algebraic, it is easy to see that the
DAEs have index 1. In particular, system (13a)–(13d) constitutes 4a algebraic equations for
the determination of the 4a variables p, p̂, p̃ and u.

Remark 3 The assumptions made in Assumption 1 guarantee the unique solvability of the
algebraic system (13a)–(13d).

Remark 4 Alternatively, the above extension procedure can also be applied directly to sys-
tem (4a)–(4e). In this case the new constraints (13c) and (13d) have to be appended to the
DAEs (4a)–(4e). In addition to that, the dummy variables p̂ := ṗ and p̃ := p̈ have to be
introduced. Again, we arrive at a purely algebraic system of equations that is equivalent to
system (13a)–(13d).

Remark 5 A careful inspection of the present index-1 formulation shows that all unknowns
(redundant coordinates, Lagrange multipliers, and control inputs) can be expressed in terms
of the output functions γ (t) along with the derivatives thereof up to fourth order. This corre-
sponds to the fact that the crane models under consideration can be classified as differentially
flat systems.

Remark 6 As mentioned before, the second index reduction can be also performed for
n − a > a. In this case the introduction of dummy derivatives still leaves differential vari-
ables in the resulting index-1 DAEs. This is indicative for systems with internal dynamics (or
zero dynamics). In this case additional issues may arise such as the stability of the internal
dynamics.

4 Minimal coordinates

In this section we show that the minimal extension procedure can also be applied to crane
formulations in terms of minimal coordinates. We start with the minimally extended index-3
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formulation (4a)–(4e) and express the redundant coordinates (3) in terms of minimal coor-
dinates μ ∈ R

f , where f = n − m denotes the number of degrees of freedom. Thus,

q = ϕ(μ) or

[
p

x

]
=

[
ϕ1(μ)

ϕ2(μ)

]
. (15)

Note that by definition the coordinate mapping (15) satisfies identically the holonomic con-
straints (4b), that is, g ◦ ϕ(μ) = 0 for all μ ∈ R

f . We refer to Sects. 6.3 and 7.3, where the
coordinate mapping (15) is detailed in the context of specific examples.

Using the redundant coordinates (3), it is natural to select the derivatives of the
load coordinates x ∈ R

a as dummy variables (cf. Sect. 3.2). Similarly, differentiating
the minimal coordinates twice with respect to time, we get the corresponding velocities
μ̇ ∈ R

f and accelerations μ̈ ∈ R
f , from which we need to select appropriate dummy vari-

ables. To this end, we split the minimal coordinates into μ1 ∈ R
f −a and μ2 ∈ R

a such
that

D2ϕ2(μ1,μ2) ∈R
a,a is nonsingular. (16)

With a slight abuse of notation, we use ϕ(μ1,μ2) to write the mapping (15) after the coordi-
nate partition has been performed. Furthermore, in (16) and in the sequel, Dαϕ(μ1,μ2) with
α = 1 or α = 2 denotes the partial derivative with respect to the first or second argument,
respectively. Now we choose the dummy variables

μ̂2 = μ̇2, (17a)

μ̃2 = μ̈2. (17b)

Differentiating the mapping (15) with respect to time, we obtain

ṗ = D1ϕ1(μ1,μ2)μ̇1 + D2ϕ1(μ1,μ2)μ̂2, (18a)

p̈ = D1ϕ1(μ1,μ2)μ̈1 + D2ϕ1(μ1,μ2)μ̃2 + g1(μ1,μ2, μ̇1, μ̂2) (18b)

and

x̂ = D1ϕ2(μ1,μ2)μ̇1 + D2ϕ2(μ1,μ2)μ̂2, (19a)

x̃ = D1ϕ2(μ1,μ2)μ̈1 + D2ϕ2(μ1,μ2)μ̃2 + g2(μ1,μ2, μ̇1, μ̂2), (19b)

where

gα(μ1,μ2, μ̇1, μ̂2) = d

dt

(
D1ϕα(μ1,μ2)

)
μ̇1 + d

dt

(
D2ϕα(μ1,μ2)

)
μ̂2. (20)

These relationships can now be inserted into the minimally extended index-3 DAEs
(4a)–(4e). In addition to that, in order to eliminate the Lagrange multipliers λ from
(4a), we multiply (4a) from the left by Dϕ(μ)T . A straightforward calculation yields
the minimally extended index-3 formulation in terms of minimal coordinates given
by

M11(μ)μ̈1 = h1(μ, μ̇1, μ̂2) −M12(μ)μ̃2 −BT
1 (μ)u, (21a)

M21(μ)μ̈1 = h2(μ, μ̇1, μ̂2) −M22(μ)μ̃2 −BT
2 (μ)u, (21b)

D1ϕ2(μ1,μ2)μ̈1 = γ̈ − g2(μ, μ̇1, μ̂2) − D2ϕ2(μ1,μ2)μ̃2, (21c)
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0 = D1ϕ2(μ1,μ2)μ̇1 + D2ϕ2(μ1,μ2)μ̂2 − γ̇ , (21d)

0 = ϕ2(μ) − γ (21e)

Here,

Mαβ(μ) =
2∑

γ=1

Dαϕ
T
γ (μ1,μ2)Mγ Dβϕγ (μ1,μ2), (22a)

hα(μ, μ̇1, μ̂2) =
2∑

γ=1

Dαϕ
T
γ (μ1,μ2)(f γ − Mγ gγ ), (22b)

BT
α (μ) = Dαϕ

T
1 (μ1,μ2)B

T
1 . (22c)

Note that, to simplify the notation, (μ1,μ2) has often been replaced by μ as an argument of
the functions considered. Similarly, the arguments of functions pertaining to the underlying
formulation in terms of redundant coordinates have been suppressed.

System (21a)–(21e) constitutes a set of f + 3a index-3 DAEs for the determination of
the differential variables μ1 ∈R

f −a and the algebraic variables u, μ2, μ̂2, μ̃2 ∈R
a .

4.1 Commutative process

We finally show that minimal coordinates can also be employed from the outset, prior to
the index reduction approach. Indeed, we may also start from the formulation in terms of
minimal coordinates given by system (1a)–(1b).

1. In a first step the coordinate mapping (15) is employed to convert the index-5 formulation
in terms of redundant coordinates (2a)–(2c) to the corresponding index-5 formulation in
terms of minimal coordinates (1a)–(1b). This conversion is a standard procedure relying
on the projection matrix Dϕ(μ). Thus, we get the index-5 DAEs

M(μ)μ̈ = h(μ, μ̇) −BT (μ)u, (23a)

0 = ϕ2(μ) − γ , (23b)

where the reduced mass matrix M(μ) = DϕT (μ)MDϕ(μ) assumes the partitioned
form

M(μ) =
[
M11(μ) M12(μ)

M21(μ) M22(μ)

]
. (24)

Here, the submatrices are given by (22a). Similarly, h and B in (23a) can be assembled
from (22b) and (22c), respectively. Note that comparing the servo constraints (23b) with
(1b) shows that ϕ2(μ) = s(μ).

2. Now index reduction by minimal extension can be applied to system (23a)–(23b). To
this end, partition the minimal coordinates subject to condition (16), differentiate the
servo constraints (23b) twice with respect to time, and introduce the dummy variables
(17a)–(17b). It is easy to see that this procedure yields again the index-3 DAEs (21a)–
(21e).

Obviously, the two steps to arrive at the minimally extended set of index-3 DAEs in terms of
minimal coordinates (21a)–(21e) do commute. That is, the final result is independent of the
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Fig. 1 Commutative diagram for index reduction and the introduction of minimal coordinates

order of the steps (i) minimal extension and (ii) introduction of minimal coordinates. This is
summarized in the commutative diagram in Fig. 1.

Remark 7 An alternative way of reducing the index from 5 to 3 is the projection method
originally proposed by Blajer and Kołodziejczyk [6]. This approach requires the design of
a suitable projection matrix and eventually yields f + a index-3 DAEs. Whereas in the
present approach the servo constraints are enforced on position, velocity, and acceleration
level (see (21e), (21d), and (21c)), the projection method enforces the servo constraints only
on position and acceleration level. Correspondingly, the present approach is characterized
by f + 3a index-3 DAEs.

5 Discretization

Having reduced the index of the equations of motion to three, we need to discuss the tem-
poral discretization for the numerical simulation. For general DAEs of index 3, we have to
take care of the stability of the used numerical integration method. However, the semiex-
plicit form allows us to apply the Euler backward scheme. Here we profit from the simple
structure of the system obtained by the minimal extension procedure.

5.1 Index-3 formulation in terms of redundant coordinates

The minimally extended index-3 formulation in terms of redundant coordinates (4a)–(4e)
can be recast in the form

M1(p)p̈ = f 1(p, ṗ) + BT
1 (p)u − GT

1 (p,γ )λ, (25a)

0 = M2γ̈ − f 2(γ , γ̇ ) + GT
2 (p,γ )λ, (25b)

0 = g(p,γ ). (25c)

The DAEs (25a)–(25c) provide n − a differential equations (25a) along with a + m alge-
braic equations (25b) and (25c) for the determination of p ∈ R

n−a , u ∈ R
a , and λ ∈ R

m. In
particular, the DAEs (25a)–(25c) are in semiexplicit form, so that we can expect the sim-
ple Euler backward discretization to work well (see Ascher and Petzold [2, Sect. 10.1.1]).
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Accordingly, we consider the scheme

pn+1 − pn = �tvn+1, (26a)

M1(pn+1)(vn+1 − vn)

= �t
(
f 1(pn+1,vn+1) + BT

1 (pn+1)un+1 − GT
1

(
pn+1,γ (tn+1)

)
λn+1

)
, (26b)

0 = M2γ̈ (tn+1) − f 2

(
γ (tn+1), γ̇ (tn+1)

) + GT
2

(
pn+1,γ (tn+1)

)
λn+1, (26c)

0 = g
(
pn+1,γ (tn+1)

)
. (26d)

In a typical step of size �t = tn+1 − tn we seek approximations (·)n+1 to (·)(tn+1) given
the corresponding quantities (·)n as the result of the previous step. For the initial step, we
require consistent initial values p0 and v0 that have to satisfy g(p0,γ (t0)) = 0 along with

G1

(
p0,γ (t0)

)
v0 + G2

(
p0,γ (t0)

)
γ̇ (t0) = 0.

The scheme (26a)–(26d) provides 2n + m − a algebraic equations for the determination of
pn+1, vn+1 ∈R

n−a , un+1 ∈R
a , and λn+1 ∈R

m.

5.2 Index-3 formulation in terms of minimal coordinates

For the minimally extended index-3 formulation in terms of minimal coordinates (21a)–
(21e), we apply an Euler backward discretization as well. The corresponding scheme is
given by

μ1n+1
− μ1n

= �tν1n+1 , (27a)

M11(μn+1)(ν1n+1 − ν1n )

= �t
(
h1(μn+1,ν1n+1 , μ̂2n+1

) −M12(μn+1)μ̃2n+1
−BT

1 (μn+1)un+1

)
, (27b)

M21(μn+1)(ν1n+1 − ν1n )

= �t
(
h2(μn+1,ν1n+1 , μ̂2n+1

) −M22(μn+1)μ̃2n+1
−BT

2 (μn+1)un+1

)
, (27c)

D1ϕ2(μ1n+1
,μ2n+1

)(ν1n+1 − ν1n )

= �t
(
γ̈ (tn+1) − g2(μn+1,ν1n+1 , μ̂2n+1

) − D2ϕ2(μ1n+1
,μ2n+1

)μ̃2n+1

)
, (27d)

0 = D1ϕ2(μ1n+1
,μ2n+1

)ν1n+1 + D2ϕ2(μ1n+1
,μ2n+1

)μ̂2n+1
− γ̇ (tn+1), (27e)

0 = ϕ2(μn+1) − γ (tn+1). (27f)

The scheme (27a)–(27f) provides 2(f + a) algebraic equations for the determination of
μ1n+1

, ν1n+1 ∈R
f −a and μ2n+1

, μ̂2n+1
, μ̃2n+1

, un+1 ∈R
a .

6 Planar overhead crane

As a first example, we consider a planar overhead crane that allows traveling and hoisting
motions (see Fig. 2). This servo-constraint problem was originally formulated in terms of
minimal coordinates in [6] and was recast in redundant coordinates in [3, 8].
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Fig. 2 Planar model of the overhead crane

The description of the overhead crane is based on n = 4 redundant coordinates, m = 1
holonomic constraint, and a = 2 controls. In particular, the crane coordinates p ∈ R

2 and
the load coordinates x ∈R

2 are given by

p =
[
s

l

]
, x =

[
x

z

]
.

Here, s measures the horizontal position of the trolley, l is the cable length, and (x, z) de-
note the coordinates of the load. The redundant coordinates have to satisfy the holonomic
constraint

g(p,x) = 1

2

(
(x − s)2 + z2 − l2

) = 0.

The holonomic constraint gives rise to the associated constraint Jacobian, which can be
decomposed into

G1(p,x) = [−(x − s) −l
]
,

G2(p,x) = [
x − s z

]
.

In addition to that, the underlying index-5 DAEs (2a)–(2c) employ the mass matrices

M1 =
[
mt 0
0 J

r2

]
, M2 =

[
m 0
0 m

]
,

where mt is the mass of the trolley, J is the moment of inertia of the winch of radius r , and
m is the mass of the load. Further, the quantities needed in (2a)–(2c) are given by

f 1 =
[

0
0

]
, f 2 =

[
0

−mg

]
, B1 =

[
1 0
0 1

r

]
.

The servo constraints (2c) are used to prescribe the trajectory of the load. Accordingly,

γ =
[
xd

zd

]
,
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where xd and zd are prescribed functions of time. The corresponding control inputs assume
the form

u =
[

Ft

Mw

]
,

where Ft is the force acting on the trolley, and Mw is the torque acting on the winch.

6.1 Verification of Assumption 1

To verify Assumption 1, we first choose

P 2(p,γ ) =
[ −zd

xd − s

]

such that condition (5) is satisfied. Now (6) yields

z(t,p) = m
(
zd ẍd − (xd − s)(g + z̈d )

)
.

Furthermore, the constraint function (7) reads

h(t,p) =
[

1
2 ((xd − s)2 + z2

d − l2)

m(zd ẍd − (xd − s)(g + z̈d ))

]
,

so that (8) yields

H (t,p) =
[
G1(p,γ )

∂pz(t,p)

]
=

[−(xd − s) −l

m(g + z̈d ) 0

]
.

Eventually, (9) gives

P (t,p) =
[ − xd−s

mt
− lr

J

m
mt

(g + z̈d ) 0

]

.

Note that in practical applications we have l > 0 and g + z̈d > 0. The last inequality holds
due to the fact that the cable (which in the present model is assumed to be inextensible
and massless) connecting the load with the winch can only sustain tensile (and no compres-
sive) forces. This can be easily verified by applying Newton’s second law of motion. Thus,
H (t,p) has full rank, and P (t,p) is invertible. Consequently, Assumption 1 is satisfied,
and Proposition 1 holds.

We further remark that the minimally extended index-3 DAEs (12a)–(12b) can now be
set up for the overhead crane. It only remains to calculate

f 1(t,p) = m

l2

(
(xd − s)ẍd + zd(g + z̈d )

)
[−(xd − s)

−l

]

to complete the description of the DAEs (12a)–(12b).

6.2 Index-1 formulation (13a)–(13d)

As explained in Sect. 3.3, the index-1 formulation (13a)–(13d) yields a purely algebraic
system of equations that facilitates an analytical solution of the inverse dynamics problem
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under consideration. The additional quantities needed in (13c) and (13d) read

∂th(t,p) =
[

(xd − s)ẋd + zd żd

m(żd ẍd − ẋd (g + z̈d ) + zdx
(3)
d − (xd − s)z

(3)
d )

]

and

∂2
pph1(t,p) =

[
1 0
0 −1

]
, ∂2

pph2(t,p) =
[

0 0
0 0

]
,

∂2
tph(t,p) =

[ −ẋd 0
mz

(3)
d 0

]
,

∂2
t th(t,p) =

[
ẋ2

d + ż2
d + (xd − s)ẍd + zd z̈d

m(−ẍdg + 2żdx
(3)
d − 2ẋdz

(3)
d + zdx

(4)
d − (xd − s)z

(4)
d )

]

.

In the present case it is possible to get a closed-form analytical solution of (13a)–(13d),
which serves as a reference solution in the numerical example presented further.

6.3 Minimal coordinates

We next aim at the minimally extended index-3 system (21a)–(21e) for the overhead crane in
terms of minimal coordinates. Since the planar overhead crane has f = n − m = 3 degrees
of freedom, we choose

μ = [
s l ϕ

]T

as minimal coordinates. These coordinates have been also used in the original description
of the present servo-constraint problem in [6]. The coordinate mappings in (15) assume the
form

ϕ1(μ) =
[
s

l

]
and ϕ2(μ) =

[
s + l sinϕ

−l cosϕ

]
.

For the minimal extension procedure, we split the minimal coordinates into

μ1 = [
s
]

and μ2 = [
l ϕ

]T

such that the Jacobian

D2ϕ2(μ1,μ2) =
[

sinϕ l cosϕ

− cosϕ l sinϕ

]

is guaranteed to be nonsingular. Thus, condition (16) is met. We further get

D1ϕ1(μ1,μ2) =
[

1
0

]
, D2ϕ1(μ1,μ2) =

[
0 0
1 0

]
, D1ϕ2(μ1,μ2) =

[
1
0

]
.

Now, (20) gives rise to

g1 =
[

0
0

]
and g2 =

[
2ϕ̂l̂ cosϕ − lϕ̂2 sinϕ

2ϕ̂l̂ sinϕ + lϕ̂2 cosϕ

]
.
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Note that the minimal extension procedure implies the equalities l̂ = l̇ and ϕ̂ = ϕ̇. Further-
more, (22a)–(22c) yields

M11(μ) = [
mt + m

]
, M12(μ) = [

m sinϕ ml cosϕ
]
,

M21(μ) =MT
12(μ), M22(μ) =

[
J

r2 + m 0
0 ml2

]

and

h1(μ, μ̇1, μ̂2) = [
mlϕ̂2 sinϕ − 2mϕ̂l̂ cosϕ

]
,

h2(μ, μ̇1, μ̂2) =
[

mlϕ̂2 + mg cosϕ

−ml(g sinϕ + 2ϕ̂l̂)

]
,

BT
1 (μ) = [

1 0
]
,

BT
2 (μ) =

[
0 1

r

0 0

]
.

This completes the index-3 DAEs (21a)–(21e) for the overhead crane in terms of minimal
coordinates.

6.4 Numerical example

The data for the present numerical example have been taken from [6]. Accordingly, the
prescribed trajectory of load m is defined by

γ (t) = γ 0 + (γ f − γ 0)s(τ ) (28)

with

γ 0 =
[
xd(t0)

zd(t0)

]
=

[
0

−4

]
at t0 = 0

and

γ f =
[
xd(tf )

zd(tf )

]
=

[
5

−1

]
at tf = 3.

The interpolating polynomial s(τ ) takes the form

s(τ ) = 70τ 9 − 315τ 8 + 540τ 7 − 420τ 6 + 126τ 5 with τ = t

tf − t0
. (29)

Accordingly, the motion of load m is subjected to a rest-to-rest maneuver on a straight-line
trajectory. Starting at rest, the initial configuration of the system is given by

q0 = [s0 l0 x0 z0]T = [0 4 0 −4]T . (30)

The remaining parameters are given by mt = 10, m = 100, J = 0.1, g = 9.81, and
r = 0.1.



312 R. Altmann et al.

Fig. 3 Planar overhead crane:
Comparison between the
numerical results (NUM)
obtained with �t = 0.1 and the
analytical reference solution
(REF)

The simulation results for different time step sizes are depicted in Figs. 3 and 4. In each
diagram, the numerical solution (NUM) is compared to the analytical reference solution
(REF). It can be observed that the numerical solution converges to the analytical reference
solution when the time step size is reduced. We do not distinguish between the use of re-
dundant and minimal coordinates since both formulations yield very similar results. This
also applies for our implementation of the projection method proposed in [6]. The motion
of the overhead crane is illustrated in Fig. 5 with some snapshots at consecutive points in
time.

7 Three-dimensional rotary crane

In the second example we deal with the three-dimensional rotary crane depicted in Fig. 6.
This servo-constraint problem has originally been dealt with in [9]. It can be viewed as a
3d extension of the planer crane treated in the previous section. The 3d crane makes use of
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Fig. 4 Planar overhead crane:
Comparison between the
numerical results (NUM)
obtained with �t = 0.01 and the
analytical reference solution
(REF)

Fig. 5 Planar overhead crane:
Snapshots at specific points in
time

n = 6 redundant coordinates that are subjected to m = 1 holonomic constraint. Moreover,
a = 3 servo constraints are used to prescribe the trajectory of the load. The crane coordinates
p ∈R

3 and the load coordinates x ∈R
3 are given by

p =
⎡

⎣
ϕ

s

l

⎤

⎦ , x =
⎡

⎣
x

y

z

⎤

⎦ .

The position of the load (mass m) is specified by the Cartesian coordinates (x, y, z) relative
to an inertial reference frame. In addition to the location s of the trolley and the length l of
the hoisting rope, the angle ϕ measures the rotation of the bridge (or girder) about the z-axis
relative to the x-axis. Accordingly, the motion of the suspension point is described by polar
coordinates (s, ϕ) relative to the origin of the reference frame. The redundant coordinates
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Fig. 6 Model of the three-dimensional rotary crane

have to satisfy the holonomic constraint

g(p,x) = 1

2

(
(x − s cosϕ)2 + (y − s sinϕ)2 + z2 − l2

) = 0.

The associated constraint Jacobian assumes the partitioned form

G1(p,x) = [
(x sinϕ − y cosϕ)s (s − x cosϕ − y sinϕ) −l

]
,

G2(p,x) = [
(x − s cosϕ) (y − s sinϕ) z

]
.

In the underlying index-5 DAEs (2a)–(2c), the mass matrices are given by

M1 =
⎡

⎣
Jb + mts

2 0 0
0 mt 0
0 0 Jw/r2

w

⎤

⎦ , M2 =
⎡

⎣
m 0 0
0 m 0
0 0 m

⎤

⎦ ,

where Jb is the moment of inertia of the bridge relative to the z-axis, Jw is the moment of
inertia of the winch (of radius rw), and mt is the mass of the trolley. Further, the quantities
needed in (2a)–(2c) are given by

f 1 =
⎡

⎣
2mtsṡϕ̇

−mtsϕ̇
2

0

⎤

⎦ , f 2 =
⎡

⎣
0
0

−mg

⎤

⎦ , B1 =
⎡

⎣
1 0 0
0 1 0
0 0 1

rw

⎤

⎦ .

The servo constraints (2c) are used to prescribe the trajectory of the load. Accordingly,

γ =
⎡

⎣
xd

yd

zd

⎤

⎦ ,
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where xd , yd , and zd are prescribed functions of time. The control inputs assume the form

u =
⎡

⎣
Mb

Ft

Mw

⎤

⎦ .

Here, Mb is the torque acting about the z-axis on the bridge, Ft is the force acting along the
girder on the trolley, and Mw is the torque acting on the winch.

7.1 Verification of Assumption 1

To verify Assumption 1, we first choose

P 2(p,γ ) =
⎡

⎣
−zd 0

0 −zd

xd − s cosϕ yd − s sinϕ

⎤

⎦

such that condition (5) is satisfied. Now (6) yields

z(t,p) =
[
m(zd ẍd − (xd − s cosϕ)(g + z̈d ))

m(zd ÿd − (yd − s sinϕ)(g + z̈d ))

]
.

Furthermore, the constraint function (7) reads

h(t,p) =
⎡

⎢
⎣

1
2 ((xd − s cosϕ)2 + (yd − s sinϕ)2 + z2

d − l2)

m(zd ẍd − (xd − s cosϕ)(g + z̈d ))

m(zd ÿd − (yd − s sinϕ)(g + z̈d ))

⎤

⎥
⎦ ,

so that (8) yields

H (t,p) =
[
G1(p,γ )

∂pz(t,p)

]
=

⎡

⎢
⎣

(xd sinϕ − yd cosϕ)s (s − xd cosϕ − yd sinϕ) −l

−ms(g + z̈d ) sinϕ m(g + z̈d ) cosϕ 0

ms(g + z̈d ) cosϕ m(g + z̈d ) sinϕ 0

⎤

⎥
⎦ .

Eventually, (9) gives

P (t,p) =

⎡

⎢
⎢⎢
⎣

(xd sinϕ−yd cosϕ)s

Jb+mt s2
s−xd cosϕ−yd sinϕ

mt
− lrw

Jw

−ms(g+z̈d ) sinϕ

Jb+mt s2
m(g+z̈d ) cosϕ

mt
0

ms(g+z̈d ) cosϕ

Jb+mt s2
m(g+z̈d ) sinϕ

mt
0

⎤

⎥
⎥⎥
⎦

.

As in the case of the planar overhead crane, the hoisting rope can only sustain tensile forces
such that g + z̈d > 0. Moreover, in practical applications, l > 0. This implies that H (t,p)

has full rank and P (t,p) is invertible. Consequently, Assumption 1 is satisfied, and Propo-
sition 1 holds.

We further remark that the minimally extended index-3 DAEs (12b) can now be set up
for the rotary crane. To complete the description of the DAEs (12a)–(12b), it only remains
to calculate

f 1(t,p) =
⎡

⎣
2mtsṡϕ̇

−mtsϕ̇
2

0

⎤

⎦ + m

l2

(
(xd − s cosϕ)ẍd + (yd − s sinϕ)ÿd + zd(g + z̈d )

)
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×
⎡

⎣
(xd sinϕ − y cosϕ)s

s − x cosϕ − y sinϕ

−l

⎤

⎦ .

7.2 Index-1 formulation (13a)–(13d)

As explained in Sect. 3.3, the index-1 formulation (13a)–(13d) yields a purely algebraic
system of equations, which facilitates an analytical solution of the inverse dynamics problem
under consideration. The additional quantities needed in (13c) and (13d) read

∂th(t,p) =
⎡

⎢
⎣

(xd − s cosϕ)ẋd + (yd − s sinϕ)ẏd + zd żd

m(zdx
(3)
d + żd ẍd − (xd − s cosϕ)z

(3)
d − ẋd (g + z̈d ))

m(żd ÿd + zdy
(3)
d − (yd − s sinϕ)z

(3)
d − ẏd (g + z̈d ))

⎤

⎥
⎦

and

∂2
pph1(t,p) =

⎡

⎣
(xd cosϕ + yd sinϕ)s xd sinϕ − yd cosϕ 0
xd sinϕ − yd cosϕ 1 0

0 0 −1

⎤

⎦ ,

∂2
pph2(t,p) =

⎡

⎣
−ms(g + z̈d ) cosϕ −m(g + z̈d ) sinϕ 0
−m(g + z̈d ) sinϕ 0 0

0 0 0

⎤

⎦

∂2
pph3(t,p) =

⎡

⎣
−ms(g + z̈d ) sinϕ m(g + z̈d ) cosϕ 0
m(g + z̈d ) cosϕ 0 0

0 0 0

⎤

⎦ ,

∂2
tph(t,p) =

⎡

⎢
⎣

s(ẋd sinϕ − ẏd cosϕ) −(ẋd cosϕ + ẏd sinϕ) 0

−msz
(3)
d sinϕ mz

(3)
d cosϕ 0

msz
(3)
d cosϕ mz

(3)
d sinϕ 0

⎤

⎥
⎦ ,

∂2
t th(t,p) =

⎡

⎢
⎣

(xd − s cosϕ)ẍd + ẋ2
d + (yd − s sinϕ)ÿd + ẏ2

d + ż2
d + zd z̈d

m(x
(4)
d zd + 2żdx

(3)
d + ẍd z̈d − ẍd (g + z̈d ) − (xd − s cosϕ)z

(4)
d − 2ẋdz

(3)
d )

m(y
(4)
d zd + 2żdy

(3)
d + ÿd z̈d − ÿd (g + z̈d ) − (yd − s sinϕ)z

(4)
d − 2ẏdz

(3)
d )

⎤

⎥
⎦ .

As in the case of the planar overhead crane, it is possible to get a closed-form analytical solu-
tion of (13a)–(13d), which serves as a reference solution in the numerical example presented
below.

7.3 Minimal coordinates

We next aim at the minimally extended index-3 system (21a)–(21e) for the rotary crane
in terms of minimal coordinates. To this end, we express the load position relative to the
suspension point by means of the cable length l and three angles (ϕ, θ1, θ2); cf. Fig. 6. That
is,

⎡

⎣
xd − s cosϕ

yd − s sinϕ

zd

⎤

⎦ = −lt(ϕ, θ1, θ2).
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Here, t(ϕ, θ1, θ2) = R(ϕ, θ1, θ2)e3 is a unit vector that points from the load to the suspension
point and follows from the canonical base vector e3 = [0 0 1]T by applying successive
elementary rotations with angles (θ2, θ1, ϕ) about fixed axes (−e2,−e1, e3). This procedure
leads to the associated rotation matrix R(ϕ, θ1, θ2) and eventually yields

t(ϕ, θ1, θ2) =
⎡

⎣
−(sin θ2 cosϕ + cos θ2 sin θ1 sinϕ)

cos θ2 sin θ1 cosϕ − sin θ2 sinϕ

cos θ2 cos θ1

⎤

⎦ .

Then the coordinate mappings in (15) can be written in the form

ϕ1(μ) =
⎡

⎣
ϕ

s

l

⎤

⎦ and ϕ2(μ) =
⎡

⎣
(s + l sin θ2) cosϕ + l cos θ2 sin θ1 sinϕ

(s + l sin θ2) sinϕ − l cos θ2 sin θ1 cosϕ

−l cos θ2 cos θ1

⎤

⎦

such that f = n − m = 5 minimal coordinates

μ = [
ϕ s l θ1 θ2

]T
(31)

are used. The same set of coordinates has been also employed in [7]. For the minimal exten-
sion procedure, we split the minimal coordinates into

μ1 = [
ϕ s

]T
and μ2 = [

l θ1 θ2
]T

.

We obtain

D2ϕ2(μ1,μ2)

=
⎡

⎣
sin θ2 cosϕ + cos θ2 sin θ1 sinϕ l cos θ2 cos θ1 sinϕ l cos θ2 cosϕ − l sin θ2 sin θ1 sinϕ

sin θ2 sinϕ − cos θ2 sin θ1 cosϕ −l cos θ2 cos θ1 cosϕ l cos θ2 sinϕ + l sin θ2 sin θ1 cosϕ

− cos θ2 cos θ1 l cos θ2 sin θ1 l sin θ2 cos θ1

⎤

⎦.

This matrix is nonsingular for realistic parameter values (l > 0 and |θ2| < π/2). Accord-
ingly, condition (16) is satisfied. We further get

D1ϕ1(μ1,μ2) =
⎡

⎣
1 0
0 1
0 0

⎤

⎦ , D2ϕ1(μ1,μ2) =
⎡

⎣
0 0 0
0 0 0
1 0 0

⎤

⎦ ,

D1ϕ2(μ1,μ2) =
⎡

⎣
−(s + l sin θ2) sinϕ + l cos θ2 sin θ1 cosϕ cosϕ

(s + l sin θ2) cosϕ + l cos θ2 sin θ1 sinϕ sinϕ

0 0

⎤

⎦ .

Now, (20) gives rise to g1 = 0. Furthermore, g2(μ, μ̇1, μ̂2) and hα(μ, μ̇1, μ̂2) can be calcu-
lated straightforwardly from (20) and (22b), respectively. In this connection we remark that
the minimal extension procedure implies the equalities l̂ = l̇, θ̂1 = θ̇1, and θ̂2 = θ̇2. Eventu-
ally, (22a)–(22c) yields

M11(μ) =
[
Jb + mts

2 + m((s + l sin θ2)
2 + (l cos θ2 sin θ1)

2) ml cos θ2 sin θ1

ml cos θ2 sin θ1 m + mt

]
,

M12(μ) =
[−ms cos θ2 sin θ1 −ml(s + l sin θ2) cos θ2 cos θ1 ml sin θ1(l + s sin θ2)

m sin θ2 0 ml cos θ2

]
,



318 R. Altmann et al.

M21(μ) = MT
12(μ),

M22(μ) =
⎡

⎣
m + Jw

r2
w

0 0

0 ml2 cos2 θ2 0
0 0 ml2

⎤

⎦

and

BT
1 (μ) =

[
1 0 0
0 1 0

]
, BT

2 (μ) =
⎡

⎣
0 0 1

rw

0 0 0
0 0 0

⎤

⎦ .

7.4 Numerical example

In the numerical example we make use of the data provided in [7]. In particular, the inertia
parameters are given by m = 100, mt = 10, Jw = 0.1, rw = 0.1, and Jb = 480. The servo
constraints are used to prescribe a rest-to-rest maneuver of the load specified by γ (t) =
γ 0 + (γ f − γ 0)s(t) with γ 0 = [5 0 −5] at t0 = 0 and γ f = [−2 2 −2] at tf = 20. The
function s(t) is composed of three phases,

s(t) =

⎧
⎪⎨

⎪⎩

sI (t) for 0 ≤ t < 5,

sII(t) for 5 ≤ t < 15,

sIII(t) for 15 ≤ t ≤ 20

with

sI (t) = 1

τ − τ0

(
− 5t8

2τ0
7

+ 10t7

τ0
6

− 14t6

2τ0
5

+ 7t5

2τ0
4

)
,

sII(t) = 1

τ − τ0

(
t − τ0

2

)
,

sIII(t) = 1 + 1

τ − τ0

(
−5(τ − t)8

2τ0
7

+ 10(τ − t)7

τ0
6

− 14(τ − t)6

2τ0
5

+ 7(τ − t)5

2τ0
4

)
.

Using the minimal coordinates (31), the initial configuration of the rotary crane at t0 = 0 is
defined by μ0 = [0 5 5 0 0]T . The motion of the crane is starting at rest such that μ̇0 = 0.

The simulation results for different time step sizes are depicted in Figs. 7 and 8. In each
diagram, the numerical solution (NUM) is compared to the analytical reference solution
(REF). It can be observed that the numerical solution converges to the analytical refer-
ence solution when the time step size is reduced. Both alternative formulations in terms
of redundant and minimal coordinates yield practically the same results. Similar observa-
tions can be made for our implementation of the projection method due to [9]. The motion
of the rotary crane is illustrated in Fig. 9 with some snapshots at consecutive points in
time.

8 Conclusions

We showed that index reduction by minimal extension can be applied successfully to the
index-5 DAEs governing the servo-constraint problem of cranes. It was demonstrated that
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Fig. 7 Rotary crane:
Comparison between the
numerical results (NUM)
obtained with �t = 1 and the
analytical reference solution
(REF)

the present approach is applicable to alternative problem formulations relying on either re-
dundant or minimal coordinates. The use of redundant coordinates proved to be especially
beneficial to the newly proposed index reduction procedure. They lead to a striking simplic-
ity of the minimally extended index-3 formulation. On the other hand, minimal coordinates
can be also applied. They may either be used from the outset or introduced after the minimal
extension procedure has been applied. The connection between the alternative descriptions
is well illustrated with the commutative diagram in Fig. 1.

The minimally extended index-3 DAEs formulated in terms of either redundant or min-
imal coordinates were directly discretized by means of the Euler backward scheme. The
newly developed time-stepping schemes can be viewed as an alternative to the schemes
previously proposed by Blajer and Kołodziejczyk [6, 9]. Their schemes rely on a direct dis-
cretization of the index-3 DAEs that emanate from a specific projection method applied to
the underlying index-5 system. In contrast to the projection method, the minimal extension
approach advocated in the present work does not require the introduction of projection ma-
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Fig. 8 Rotary crane:
Comparison between the
numerical results (NUM)
obtained with �t = 0.1 and the
analytical reference solution
(REF)

Fig. 9 Rotary crane: Snapshots
at specific points in time

trices. The numerical investigations documented in Sects. 6 and 7 indicate that the present
method is clearly competitive.

We further demonstrated that a second application of the minimal extension approach
makes possible the ultimate reduction to index one. In this connection we focused on inverse
dynamics problems whose index-1 DAEs assume the form of purely algebraic equations. As
was shown in Sect. 3.3.1, this situation arises for the specific case n − a = a. The purely
algebraic system of equations can be used to determine the complete solution to the inverse
dynamics problem in terms of the control outputs and time derivatives thereof up to and
including fourth order. This result confirms the well-known fact that cranes often belong to
the class of differentially flat systems (see [15] and the references therein).

Although the detailed investigations of the index reduction method presented herein are
confined to mechanical models belonging to a specific class of cranes, the proposed method-
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ology can be also applied to the broad diversity of underactuated mechanical systems. For
example, in some applications the underlying DAEs of the servo-constraint problem may
have index greater than five; in others the system might be nonflat and exhibit internal dy-
namics (see the recent papers [5, 10, 20] for investigations in this direction).
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