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Abstract The constraint violation problem of spatial multibody systems is analyzed in
this paper. The mass matrix is singular in the equations of motion when the Euler pa-
rameters with the normalization constraints are used to describe the orientation of the
spatial rigid body. The constrained and weighted least-squares-based geometrical projec-
tion method is implemented to suppress the constraint violation during numerical integra-
tion, and the explicit correction formulation can be obtained by the block matrix inversion
scheme. The mass matrix weighted correction formulation gives the physically consistent
energy norm, but it needs the mass matrix to be positive definite. To extend the physically
consistent correction formulation for solving spatial multibody systems’ constraint viola-
tion problems with a singular mass matrix, a Modified Mass-Orthogonal Projection Method
(MMOPM) and a Generalized Physical Orthogonal Projection Method (GPOPM) are pro-
posed. MMOPM modifies the mass matrix directly by adding a penalty factor matrix which
appears in the mass-orthogonal projection method and leads to a positive definite weight ma-
trix that satisfies the block matrix inversion scheme condition. GPOPM is a generalization
of the physical orthogonal projection method where the constrained least-squares method is
weighted by the positive semi-definite mass matrix and the correction formulation is given
by using the generalized block matrix inversion scheme. Numerical results show the fea-
sibility and accuracy of the presented MMOPM and GPOPM. The constraints in position
and velocity can reach machine precision during numerical integration. The elimination of
violation of position constrains may require few iterations, while the violation of velocity
constraints is removed in one step, and GPOPM is more accurate in velocity correction than
MMOPM.
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1 Introduction

Multibody systems are often modeled as constrained systems. The mathematical models
associated with this type of systems can be derived by various approaches [1]. The widely
used models are typically formulated in terms of index-3 differential algebraic equations
(DAEs), composed of a set of differential equations and a set of algebraic constraint equa-
tions expressing additional relations among the generalized coordinates of the model. To
solve these DAEs, many numerical solution approaches have been proposed in the litera-
ture [1–7]. However, mathematical studies underline the numerical difficulties associated
with the solution of these DAEs, mostly related to the stability of the available integration
schemes. If governing equations are not turned into minimal form and dynamic simulation
is based on the mathematical model expressed via redundant coordinates [8], progressive
drifts of the computed solution from the position, velocity or acceleration constraint mani-
folds are likely to occur during the simulation. Two kinds of popular techniques to solve this
“drift” problem are the constraint violation stabilization (CVS) techniques and the constraint
violation elimination (CVE) techniques [2].

The constraint violation stabilization techniques attempt to minimize or eliminate the
drift by introducing some correction terms consisting of constraint equations into the equa-
tions of motion. One of the most popular methods in engineering practice is Baumgarte’s
constraint stabilization method [9]. But Baumgarte’s method involves selecting parameters
which are problem-dependent, and no general procedure exists for their determination [10].
Park et al. [11, 12] derived the staggered stabilization technique based on penalty formu-
lation which is robust but conditionally stable. Bayo et al. [13] proposed the augmented
Lagrangian formulation which is another constraint violation stabilization technique. The
idea behind this formulation is to choose large penalty factors so as to drive the constraints
to zero. This formulation can also work with redundant constraints and singular config-
urations [14]. In practical applications, the augmented Lagrangian formulation solves the
equations of motion through an iterative process, and a finite value of the penalty factor
must be selected to avoid numerical ill conditioning. Braun and Goldfarb [15] proposed an-
other constraint violation stabilization technique in which the violated position and velocity
constraints are used as correction terms in the modified constraint equations at velocity and
acceleration levels. The method does not require the Lagrange multipliers to be computed or
any iteration. The equation of motion is based on the pseudo-inverse of a constraint matrix
such that it can be used under redundant constraints and kinematic singularities. Blajer [16]
developed the method by Braun and Goldfarb and then compared it with other constraint vi-
olation suppression methods. The developed method assumes a full-rank constraint matrix
which can lead to a more effective formulation using the block matrix inversion scheme.
The results indicate that none of the compared methods for constraint violation suppression
considerably improves accuracy based on a simple case study.

In contrast to the constraint violation stabilization techniques, the constraint violation
elimination techniques are post-stabilization methods without any modification in the mo-
tion equations and result in satisfaction of the constraints within machine accuracy. The
corrected solution is a projection of the approximate solution onto the constraint manifold,
and it is also called a projection method. A projection based on Lagrange multipliers was
first proposed by Lubich [17] to modify the approximation position and velocity of a con-
strained multibody system after each time step, which is solved by the modified Newton
iteration. Eich [18] proposed a constrained least-squares-based method which is similar to
the method by Lubich when the mass matrix is used as a weight [5, 6, 19]. Yoon et al. [20]
developed a geometric elimination method of constraint violations using a gradient-based
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procedure where generalized coordinates were corrected by the geometric constraint equa-
tions and the generalized velocities were corrected by the energy constraint. Instead of cal-
culating the energy of the system, Yu and Chen [21] used the velocity constraint equations
directly to correct the values of the generalized velocity, and the method was developed
based on the theorem of the generalized inverse of matrices with independent constraints.
Based on the pseudo-inverse of the constraint matrix, the geometric elimination method
was also used by Aghili and Piedbœuf [22] in their “constraint inertia matrix” formula-
tion which can deal with the presence of redundant constraints or a singular configuration.
Blajer [23] developed a unified geometric formulation based on the geometric interpreta-
tion of constrained dynamics and pointed out that neglecting the inertial attributes may oc-
casionally lead to physical inconsistency in mathematical formulation. The mass matrix
used as a weight indicates an energy norm in the velocity level for the projection meth-
ods [5, 6, 17, 19]. An improved scheme for one-step elimination of the energy constraint
violation was proposed as well by Blajer [24]. The geometrical projection method was also
utilized by Nikravesh [25] to correct the initial conditions prior to performing kinematic or
forward dynamic analysis of multibody systems. Terze et al. [8, 26, 27] formulated a con-
straint elimination method within the framework of the null space formulation, which can
correct the constraint violation regardless of the actual magnitude of violation. The projec-
tive criterion, defined in [23] and then optimized in [8, 27], was used in the generalized
coordinates (positions or velocities) partitioning to identify a set of independent variables.
Displacement and velocity constraint violations were then iteratively eliminated by succes-
sively adjusting the sole dependent variables to satisfy the constraint equations, where the
independent displacements and velocities were kept unchanged. Bayo and Ledesman [28]
formulated a “mass-orthogonal” projection method to improve the situation where the aug-
mented Lagrangian formulation [13, 14] satisfies the weighted constraint to machine accu-
racy but doesn’t satisfy to the same level of accuracy for individual constraints at position,
velocity and acceleration levels. Cuadrado et al. [29] developed a more efficient implemen-
tation of the mass-orthogonal projection which requires only successive forward reductions
and back-substitutions, and then Blajer [30] gave a correcting formulation which doesn’t
need to update the Lagrange multipliers. The energy consideration with velocity projection
was studied by Orden et al. [31, 32], providing an alternative interpretation of its effect on
the stability and a practical criterion for the mass-orthogonal projection matrix selection.
Blajer [30] also gave a geometrical interpretation to the augmented Lagrangian formulation
which is capable of treating systems with changing topologies, redundant constraints, singu-
lar positions and some singularity of the mass matrix where the mass-orthogonal projection
method can still be applied but the geometric elimination method cannot [20, 21, 23, 24].
Although the mass-orthogonal method had shown good performance in constraint violation
correction, the use of a penalty method requires very large penalty values that adversely af-
fect the numerical conditioning of the algebraic linear system to be solved. It also shows less
physical meaning than the geometrical projection method when the mass matrix is utilized
as the weight, as the position and velocity constraints are introduced approximately based
on the augmented Lagrangian formulation by a large penalty factor.

However, as Blajer [30] pointed out, the implementation of the physically consistent
projection requires the mass matrix be invertible which is not always satisfied. For exam-
ple, in the spatial multibody dynamics, the mass matrix could be singular when more than
six coordinates are used to define the position and the attitude of the rigid body [33–35].
This is always the case when Euler parameters or natural coordinates are used, which can
avoid the drawback that the minimal set of orientation coordinates including three inde-
pendent parameters (e.g., Euler angles, Bryan angles, Rodriguez parameters, etc.) have
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a singular position in those locations where these parameters are not defined unequivo-
cally [3–5, 33–37]. In other occasions, it is possible to assign a null mass and inertia tensor
to a body simply because its inertia is very small, e.g., when some massless link members
are present [30, 33, 34]. Vlasenko and Kasper [36] proposed a successive coordinate projec-
tion strategy to eliminate the constraint violations of spatial multibody systems described in
absolute coordinates with Euler parameters. The Euler parameters’ normality constraints vi-
olations are corrected in the first step by the geometric orthogonal projection method, which
has been proved not to change the order of the mistake of joint constraints during the first
step. Then the joint constraints’ violations are corrected in the second step by the geometric
or physical (energy norm) orthogonal projection method, which also does not influence the
Euler parameters’ normality constraints corrected in the first step. In the second step, the
first time derivatives of Euler parameters were translated to angular velocities by a trans-
lation matrix [4, 37], which is also used to translate the equation of constraints, and this
translation is also applied in [26] to avoid the singularity of the mass matrix. To reduce the
computational cost for the translation, rebuilding of the equation of constraints for joints on
the velocity level is needed [36]. It should be mentioned that although the obtained result is
correct, the mass matrix singularity seems to be unnoticed in the energy projection method
in Eqs. (2.18) and (2.19) in [36]. It had been interpreted by Blajer that the mass-orthogonal
projection method can deal with some singularity of the mass matrix [28–32], and it is also
capable of treating systems with changing topologies, redundant constraints and singular
positions which are not considered in this paper. Although we have concluded that large
penalty values adversely affect the numerical conditioning of the algebraic linear system
and the mass-orthogonal method shows less physical meaning than the geometrical projec-
tion method with a mass weight matrix, it had been shown that the leading matrix applied in
the mass-orthogonal projection method, which is derived from the augmented Lagrangian
formulation [13, 14], is always positive definite, i.e., invertible, even in singular positions
and/or with linearly dependent constraints and some singularity of the mass matrix. The
present paper proposes a modified physically consistent projection method with this charac-
teristic, and moreover, the penalty factor can be eliminated by an analytic derivation.

As it is indicated in the comparative study [38], for solving index one multibody DAE
systems of moderate size, optimal performances have been recorded for the methods based
on the least-squares block solution, which could be explained observing that: (i) many linear
algebra operations are applied to small-order matrices; (ii) a reduced number of matrix op-
erations are involved. However, for large matrices with a high percentage of zero-valued
elements, the use of sparse matrix algorithms is recommended which can speed up the
processing and avoid numerical problems and accuracy losses for badly conditioned ma-
trices [8]. Based on the geometrical interpretation provided in [8, 23, 24, 26], the mani-
fold orthogonal directions in the physically consistent (energy norm) orthogonal projection
method are actually found along the ‘near-orthogonal’ direction by using the state vector
approximate numerical values, and this direction is not determined exactly. Also, the projec-
tion method is based on adding additional terms to system’s dynamic equations, which may
turn the correction procedure into more complex and numerically extensive [8]. Neverthe-
less, the recent comparative study with a relatively simple case for Baumgarte’s method, the
physical orthogonal projection method and the upgraded constraint violation stabilization
method (see [15] and [16]) indicated that none of the three methods for constraint stabiliza-
tion/elimination considerably improves the accuracy of the constraint consistent solutions.
The geometric orthogonal projection method also provides a simple procedure to correct the
initial values of the dependent state variables [16, 25]. The geometric orthogonal projection
method has shown the stability for complex mechanical systems in [36], where the Yamaha
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YZF-R1 Motorcycle engine was modeled. Considering the computational efficiency and
accuracy, the block matrix inversion scheme based geometric projection method is devel-
oped in this paper for moderate size problems. The explicit block matrix inversion method
is extended to the mass matrix singular problem which appears in the physically consistent
projection method for the constraint violations elimination of the spatial multibody dynam-
ics with Euler parameters as the orientation coordinates. The proposed formulation allows
the Euler parameters’ normality constraint violations and joint constraint violations to be
eliminated at the same time. Furthermore, the constraints in the position level and the ve-
locity level could reach machine precision during numerical integration. The elimination of
position constraints’ violation may require few iterations, then, having the system position
revised, the velocity correction can be done in one step.

The structure of the rest of the paper is as follows. In Sect. 2, the general form of the equa-
tions of motion in spatial multibody dynamics is presented. In Sect. 3, the constrained and
weighted least-squares method combined with the block matrix inversion based constraint
violations’ elimination projection method is derived. The physical orthogonal projection
method is modified to solve the mass matrix singularity in Sect. 4. In Sect. 5, two bench-
mark examples of spatial multibody dynamics systems are given to verify the performance
of the proposed formulation. Section 6 provides the conclusions.

2 Spatial multibody dynamics equations with quaternions

2.1 Attitude with quaternions and constraint equations

Absolute coordinates are widely used in general purpose multibody simulation software for
the motion description of mechanical systems. In this case, the configuration of a rigid body
is defined by the global position vector of the origin of the body coordinate system and by a
set of orientation coordinates describing the orientation of the body coordinate system with
respect to the global coordinate system.

As pointed out in the introduction, a three-parametric description of rotations may lead
to singularities [3–5, 33–37] in the equations of motion. Therefore, a description in terms of
four parameters, so-called quaternions for Euler parameters, is used. Let n be the number of
bodies of the system, and r i = (ri

1, r
i
2, r

i
3)

T be the vector of position coordinates of body i

and Λi = (Λi
0,Λ

i
1,Λ

i
2,Λ

i
3)

T be the vector of orientation coordinates of body i. Then the
vector of absolute coordinates of the ith body q i can be written as

q i = (
r iT,ΛiT

)T
. (1)

Let q = (q1T, . . . ,qnT)T denote the vector of absolute coordinates of a multibody sys-
tem. The equation of additional constraints for the simulated system is assumed bilateral,
holonomic and scleronomic. The position-level constraint equations are

C(q) = 0. (2)

The constraint equations can be expressed as

C(q) = (
CE(q),CJ(q)

)T
(3)

where CE(q) is the constraint equations for Euler parameters, and CJ(q) denotes the other
equations such as the joint constraint equations.
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The Euler parameter generalized coordinates of each body must satisfy the normalization
constraint equations. For Euler parameters, we have

CE(q) = (
C1

E

(
q1

)
, . . . ,Cn

E

(
qn

))T
(4)

where Ci
E(q i ) = ΛiTΛi − 1.

The use of non-minimal coordinate sets implies also the dependencies of the first time
derivative of coordinates, i.e., the constraint equations at the velocity level are

Ċ(q) = Cq(q)q̇ = 0 (5)

where (˙) = d( )/dt , and constraint matrix Cq(q) = ∂C(q)/∂q .
Clearly, for the Euler parameters’ example we have

CEq(q) = diag
(
C1

Eq , . . . ,C
n
Eq

)
(6)

where Ci
Eq = (0,0,0,2Λi

0,2Λi
1,2Λi

2,2Λi
3).

The second differential of the position level’s constraint equations with respect to time,
i.e., the constraint equations at the acceleration level are

C̈(q) = Cq(q)q̈ − γ = 0 (7)

where

γ = −∂(Cqq̇)

∂q
q̇. (8)

For Euler parameters we have

γ E = (
γ 1

E , . . . , γ n
E

)T
(9)

where γ i
E = −2Λ̇

iT
Λ̇

i
.

2.2 Spatial multibody dynamics equations

Using Cartesian dependent coordinates, the Lagrange equations of the first kind take the
form:

Mq̈ + CT
qλ = Q (10)

where M is the mass matrix, and λ is the vector of Lagrange multipliers. The vector of
generalized force Q accounts for the applied force and additional terms (gyroscopic, etc.)
that may appear due to the particular type of generalized coordinates.

The mass matrix for a spatial multibody with quaternions can be expressed as

M = diag
(
M1, . . . ,Mn

)
, (11)

M i =
[

mi 0
0 4LiTJ iLi

]
, (12)

Li =
⎡

⎣
−Λi

1 Λi
0 Λi

3 −Λi
2

−Λi
2 −Λi

3 Λi
0 Λi

1
−Λi

3 Λi
2 −Λi

1 Λi
0

⎤

⎦ (13)

where mi and J i are the 3 × 3 matrices of the translation mass and the rotational inertia,
respectively. We can see that Eq. (12) is a 7 × 7 singular matrix of rank 6 where the attitude
of the multibody is described by the quaternion, making the mass matrix of Eq. (11) also
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singular. Singular inertia matrices may appear when more than six coordinates are used to
define the position of a rigid body in a three-dimensional space. When Euler parameters or
natural coordinates are used, this is always the case [34]. The redundant coordinates can be
determined in accordance with the quaternion constraint Eqs. (2)–(4).

The position, velocity, and acceleration vector in Eq. (10) must satisfy the corresponding
constraint equations of Eqs. (2), (5), and (7). Then a system of index-3 DAEs is constituted
with Eq. (10). If only Eqs. (10) and (7) are considered, the following index-1 DAE system
which is equivalent to an ordinary differential equation (ODE) system is obtained:

[
M CT

q

Cq 0

][
q̈

λ

]
=

[
Q

γ

]
. (14)

To illustrate the conditions for the existence and uniqueness of solutions, the subsystem
where the joint’s constraints are not at first enforced gives

[
M CT

Eq

CEq 0

][
q̈

λE

]
=

[
Q

γ E

]
. (15)

Based on the necessary and sufficient condition proposed in [34], the solution exists and
is unique if any possible movement (i.e., which satisfies the constraint equations) involves
positive kinetic energy,

T̄ = 1

2
q̇TMq̇ =

n∑

i=1

1

2
ṙ iTmi ṙ i +

n∑

i=1

2Λ̇
iT

LiTJ iLiΛ̇
i

=
n∑

i=1

1

2
ṙ iTmi ṙ i +

n∑

i=1

1

2
ωiTJ iωi (16)

with

T̄ > 0 ∀ṙ i �= 0 or ∀ωi �= 0 (17)

where ωi = 2LiΛ̇
i

is the angular velocity of body i in the coordinate systems corresponding
to J i .

As mi and J i for each body are positive definite, Eq. (17) always holds, which is equiv-
alent with the following condition [33, 34]:

rank

[
M

CEq

]
= 7n, (18)

or
[

M

CEq

]
ξ = 0 if and only if ξ = 0. (19)

It should be mentioned that the second row of Eq. (19), CEqξ = 0, is not considered
in [3, 39] which gives a sufficient but not a necessary condition that the mass matrix M be
positive definite [34]. However, the positive definite mass matrix condition is too restric-
tive [34], and it is not always satisfied as shown in Eqs. (11)–(13).

As is indicated in [34], the condition of Eq. (19) gives that the accelerations and constraint
forces are determined, but the Lagrange multipliers’ vector λE is not if matrix CEq does not
have full rank, which means that the coefficient matrix on the left of Eq. (15) is singular. It
can be seen from Eq. (6) that the full rank condition for CEq is always satisfied, and then the
coefficient matrix on the left of Eq. (15) is always nonsingular.
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The necessary and sufficient condition for the existence and uniqueness of the solution
to Eq. (14) remains (see [34])

rank

[
M

Cq

]
= 7n. (20)

It can be seen that Eq. (20) is always satisfied as Eq. (18) is always satisfied, which
means the accelerations and constraint forces are determined. The assumption that redundant
constraints are not considered, i.e., Cq is of full rank, will lead to the Lagrange multipliers’
vector λ being also determined, and then the coefficient matrix on the left of Eq. (14) is
nonsingular.

The Lagrange multipliers involved in Eq. (14) can be eliminated by several ap-
proaches [1, 16], such as Maggi’s formulation, the null space formulation [26], the
Udwadia–Kalaba formulations [40], the Udwadia–Phohomsiri formulation [33], the least-
squares block solution where the Moore–Penrose pseudo-inverse method is used for the
singular mass matrix problem [38, 41], and so on. Based on a comparative study in [38],
optimal performances have been recorded for the methods based on the least-squares block
solution for a moderate size problem which is also considered here. As Lagrange multi-
pliers can be eliminated, the ODEs are obtained, but they still may not be in the minimal
form [1, 16, 23, 24, 26]. These non-minimal form governing equations can be solved by
standard ODE integration schemes (e.g., Runge–Kutta or a multistep method), but they
suffer from a constraint stabilization problem [1–7]. As the constraint equations are not
imposed completely, the positions and/or velocities provided by the integrator suffer from
the “drift” phenomenon. One of the most popular solutions to this problem is the geo-
metrical projection method with physically consistent meaning of position and velocity
vectors [16, 23–25, 36].

3 Geometrical projection method

The geometrical projection method presented here is based on the standard constrained op-
timization procedures [5, 6, 25, 36, 42], which can also be obtained consistently by the
gradient-based procedure [20], the generalized inverse method [21], the orthogonal projec-
tion scheme [23, 24], and so on. This method adjusts all of the estimates of the coordinates
and velocities through a process in such a way that their corresponding sums-of-squares of
the corrections are minimal.

3.1 Constrained and weighted least squares method

A constrained and weighted least squares problem is defined as [5, 6, 25, 36, 42]

‖x − x̃‖2
A → min

x
with Gx − b̄ = 0 (21)

where x̃ and x are the known and to be calculated values, respectively. G is the constraint
matrix, and b̄ is the constant term. The norm ‖ · ‖2

A is given by a weight matrix A,

‖x − x̃‖2
A = (x − x̃)TA(x − x̃). (22)

If A is positive definite and G is of full rank, a solution of Eq. (21) exists and is
unique [5, 6, 42]. In fact, these conditions are sufficient but not necessary, and they are
too restrictive. The solution is also well defined for a semi-definite matrix A as long as the
second order sufficiency condition and the constraint qualification hold [6, 34, 42].
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Equation (21) is equivalent to

‖�x‖2
A → min

�x
with G�x − b = 0 (23)

where �x = x − x̃, b = b̄ − Gx̃.
If we couple the target function and the constraints by introducing Lagrange multipli-

ers μ, then the problem is equivalent to determining the minimum norm solution to a linear
system of equations:

A�x + GTμ = 0, (24)

G�x − b = 0, (25)

or in matrix notation [
A GT

G 0

]{
�x

μ

}
=

{
0
b

}
. (26)

We assume that the matrix A is positive definite, i.e., A is invertible. Using the block
matrix inversion scheme [23, 42, 43],

[
R S

T U

]−1

=
[

R−1 + Y 1X
−1
1 Z1 −Y 1X

−1
1

−X−1
1 Z1 X−1

1

]
(27)

where X1 = U − T R−1S, Y 1 = R−1S, Z1 = T R−1, and this means that the matrix R is
nonsingular.

Applying the scheme Eq. (27) to Eq. (26), one obtains

�x = A−1GT
(
GA−1GT

)−1
b, (28)

μ = −(
GA−1GT

)−1
b. (29)

For a nonlinear system, the constraint can be expressed as

g(x) = 0. (30)

Then it can be linearized as

g(x) ≈ g(x̃) + G(x̃)�x = 0 (31)

where

G(x) = ∂g(x)/∂x. (32)

Then the linearized constrained and weighted least squares problem is obtained from
Eqs. (23) and (30), and the minimum norm solution to the linearized system defined by
Eqs. (24) and (31) can be found iteratively by Eqs. (28) and (29).

For the multibody dynamics systems, after solving Eq. (14) or the form with Lagrange
multipliers eliminated from the acceleration q̈ , the values of the coordinates q̃ and the veloc-
ities ˜̇q on the new time step are calculated. The problem at hand is to translate the violations
into appropriate position and velocity corrections which are given by:

�q = q̄ − q̃, (33)

�q̇ = ¯̇q − ˜̇q (34)

where q̄ and ¯̇q are corrected constraint consistent position and velocity of the system, re-
spectively, and they are required to satisfy the constraints:

C(q̄) = 0, (35)

Ċ(q̄, ¯̇q) = 0. (36)
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This problem can be solved iteratively by the projection method based on the constrained
and weighted least squares method as shown above, and two popular solutions [5, 6, 17–21,
23–25] will be given in the following subsections.

3.2 Geometrical orthogonal projection method (GOPM)

This method is also known as the coordinate projection method that was first proposed
by Eich [18] based on the constrained least squares method. It was also derived by Yoon
et al. [20] who used a gradient-based procedure, and developed by Yu and Chen [21] based
on the theorem of the generalized inverse. In the geometrical orthogonal projection method
(GOPM), the weight matrix A is chosen as

A = I (37)

where I is the identity matrix. It corresponds to performing the projection orthogonally in
the usual Euclidean metric.

The constrained least squares problem for position constraint equation can be expressed
as

[
I CT

q

Cq 0

]{
�q

μ

}
=

{
0

−C̃

}
(38)

where C̃ = C(q̃).
Then, a much more useful formula for the elimination of violation of position equations

is obtained based on Eq. (28):

�q = −CT
q

(
CqC

T
q

)−1
C̃. (39)

After the position constraint violations are corrected, the elimination of violation of ve-
locity constraint equations can be done by using a formula similar to that for the position. It
has the form

[
I CT

q

Cq 0

]{
�q̇

μ

}
=

{
0

− ˜̇C

}

, (40)

or in a resolved form

�q̇ = −CT
q

(
CqC

T
q

)−1 ˜̇C (41)

where ˜̇C = Ċ(q̄, ˜̇q).
Due to the nonlinearity of the constrained equation, the correction based on GOPM can

be solved iteratively by Eqs. (39) and (41).

3.3 Physical orthogonal projection method

This method was proposed by Blajer [23], and he pointed out that GOPM is somewhat
physically inconsistent. As q may in general be translational or rotational coordinates, the
entries of constraint gradients (rows of Cq ) may have different units. Consequently, the
entries of the matrix CqC

T
q may be calculated by summing up terms of different units. In

the physical orthogonal projection method, the weight matrix A is chosen as

A = M. (42)
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This weight matrix has also appeared in Lubich [17]. The constrained least squares prob-
lem for position constraint equation can be expressed as

[
M CT

q

Cq 0

]{
�q

μ

}
=

{
0

−C̃

}
, (43)

or in a resolved form

�q = −M−1CT
q

(
CqM

−1CT
q

)−1
C̃. (44)

The same procedure is adopted as before, and the formula for the elimination of violation
of velocity has the form

�q̇ = −M−1CT
q

(
CqM

−1CT
q

)−1 ˜̇C. (45)

The mass matrix used as a weight indicates an energy norm at the velocity level. Due to
the nonlinearity of the constrained equation, the correction based on the physical orthogonal
projection method can be found iteratively by Eqs. (44) and (45).

It can be found from

Ċ = Cq
¯̇q = Cq( ˜̇q + �q̇) = Cq

˜̇q − CqA
−1CT

q

(
CqA

−1CT
q

)−1 ˜̇C = ˜̇C − ˜̇C = 0. (46)

As Blajer [23] pointed out, usually two or at most three iterations are needed to achieve
C(q̄) = 0 with reasonable numerical accuracy. Then, having the system position revised,
the velocity correction can be done in one step as shown in Eq. (46). It can be observed
that an invertible mass matrix A = M must be taken in Eqs. (44) and (45). However, as
Eqs. (11)–(13) show, for the spatial multibody system where attitude is described by the
quaternion, the mass matrix is singular. This means that the physical orthogonal projection
method, Eqs. (44) and (45), cannot be used directly for a spatial multibody system with the
dynamic control equations like Eqs. (10)–(13), which is also indicated in [30] arguing that
the physical orthogonal projection method cannot applied for singular mass matrix prob-
lems. As the mass matrix does not appear in GOPM, GOPM can still be used for a spatial
multibody system. However, the potential drawback of GOPM is the necessity of keeping
constraint violation small during integration [8], moreover, the physical inconsistencies still
exist. In order to develop a physical orthogonal projection type method for a spatial multi-
body system, the mass matrix singularity problem must be solved in advance.

4 Modified physical orthogonal projection method

4.1 Modified mass-orthogonal projection method (MMOPM)

As Blajer [23] concluded, the matrix CT
qCq introduced in the zero-eigenvalue theorem [44]

may also be formed by summing terms, although they have different units. In fact, the matrix
CT

qCq had appeared as a penalty term in the mass-orthogonal projection method proposed by
Bayo and Ledesman based on the augmented Lagrangian formulation [28]. Then Cuadrado
et al. [29] and Blajer [30] developed a more efficient implementation of the mass-orthogonal
projection which doesn’t need to update the Lagrange multipliers. The mass-orthogonal
projection method correcting the position constraint violation is also used by solving the
constrained minimization problem with the mass matrix as the weight matrix

‖�q‖2
M → min

�q
with C = 0. (47)
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In order to solve the problem posed by Eq. (47), the mass-orthogonal projection method
uses the augmented Lagrangian formulation [13, 14] based method which chooses large
penalty factors so as to drive the constraints to zero and minimize the following function:

V = 1

2
�qTM�q + 1

2
CTαC + CTσq (48)

where a non-negative matrix α is the penalty factor, usually assumed identical for all the
constraints (although the constraints may be scaled so that each one has a different penalty
value), i.e., α = αI and σq is the auxiliary vector of Lagrange multipliers for the position
correction.

Differentiating Eq. (48) with respect to q and equating to zero yields

∂V

∂q
= M�q + CT

qαC + CT
qσ

q = 0. (49)

To solve the nonlinear algebraic Eq. (49), the constraint can be linearized as

C ≈ C̃ + Cq�q. (50)

Substituting Eq. (50) into Eq. (49), the following iteration formulation is given:

M�q + CT
qαCq�q + CT

qαC̃ + CT
qσ

q = 0 (51)

where the linearization of Cq is omitted as the terms involving Cqq are smaller than
CT

qαCq [28]. As an iterative procedure for the Lagrange multipliers σq is needed, a more
efficient implementation of the projection eliminating the Lagrange multipliers’ updating
in the iteration is proposed by Cuadrado et al. [29] and explicitly given by Blajer [30] as
follows:

�q = −A−1
α CT

qαC̃ (52)

where

Aα = M + CT
qαCq . (53)

Based on the same concept, i.e., the constrained minimization problem with the aug-
mented Lagrangian formulation, the mass-orthogonal projection method corrects the veloc-
ity constraint violation by minimizing the following function:

V = 1

2
�q̇TM�q̇ + 1

2
Ċ

T
αĊ + Ċ

T
σ q̇ (54)

where σ q̇ is the auxiliary vector of Lagrange multipliers.
With the same procedure adopted as before, an efficient formula for the elimination of

violation of velocity has the following explicit form [29, 30]:

�q̇ = −A−1
α CT

qα
˜̇C. (55)

As Blajer [30] concluded, the leading matrix Aα shown in Eqs. (52) and (55) remains pos-
itive definite even in the presence of changing topologies (varying number of constraints),
redundant constraints, singular positions, and possibly singular M . As we know, the con-
dition number of the leading matrix of Aα increases as α becomes larger, with singularity
occurring in the limit, and the ill-conditioning displays itself. As mentioned in [28], a good
choice for α when working in double precision arithmetic is 107.

Although the mass-orthogonal projection formulation contains a mass matrix, it remains
less physically consistent than the physical orthogonal method, as the position and velocity
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constraints are introduced approximately based on the augmented Lagrangian formulation
in Eqs. (48) and (54) by a large penalty factor with mathematical but without apparent phys-
ical meaning. Moreover, the violated velocity correction Eq. (55) needs an iterative process
because it can’t lead to a correction like Eq. (46).

As it can be seen, the leading matrix Aα can deal with some singularity of M , and we
can choose the leading matrix as the weight matrix,

A = Aα. (56)

Then constrained least squares problem with the weight matrix in Eq. (56) for the position
constraint equations can be expressed as

‖�q‖2
Aα

= �qTAα�q = �qTM�q + �qTCT
qαCq�q (57)

with

C ≈ C̃ + Cq�q = 0, (58)

or
[

Aα CT
q

Cq 0

]{
�q

μ

}
=

{
0

−C̃

}
. (59)

As leading matrix Aα is positive definite, the resolved form can still be obtained by using
the block matrix inversion scheme and Eq. (28) as

�q = −A−1
α CT

q

(
CqA

−1
α CT

q

)−1
C̃. (60)

Due to the nonlinearity of the constrained equation, the correction based on Eq. (60) must
be found iteratively.

With the same procedures mentioned as before, the formula for the elimination of veloc-
ity violation has the form

�q̇ = −A−1
α CT

q

(
CqA

−1
α CT

q

)−1 ˜̇C. (61)

This is the so-called Modified Mass-Orthogonal Projection Method (MMOPM). As can
be seen, the obtained Eqs. (60) and (61) are similar to Eqs. (44) and (45), although the phys-
ical consistency had been weakened by inconsistent units between the mass matrix M and
the penalty term CT

qαCq . Substituting the mass matrix M in the physical orthogonal projec-
tion method with the leading matrix Aα will not increase the complexity in the correction
procedure. On the other hand, the modified correction formulation, Eqs. (60) and (61), is
better than Eqs. (52) and (55) of the mass-orthogonal projection method from the viewpoint
of physical consistency. At the same time, the violated velocity can be corrected by only
one step based on Eq. (46). However, one should be aware that the formulation depends
on det(CqA

−1
α CT

q ) �= 0, or that Cq is of full rank. This means that the correction formu-
lation cannot deal with the cases of changing topologies (varying number of constraints),
redundant constraints and singular positions which are not considered here.

4.2 Generalized physical orthogonal projection method (GPOPM)

As we can see, all the previous correction formulae and the projection schemes for the
constraint violation problem are based on Eq. (28). If we go further, we will find that they
are based on the block matrix inversion scheme Eq. (27) where the weight matrix A must
be positive definite, i.e., A is invertible. However, for the constrained and weighted least
squares problem, the solution remains well defined for a semi-definite A as long as the



100 J. Zhang et al.

second order sufficiency condition and the constraint qualification hold [6, 34, 42]. When
the weight matrix A is taken as the singular mass matrix M , the Moore–Penrose pseudo-
inverse of the coefficients matrix in Eq. (43) can be expressed in the following form [38, 41]:

[
M CT

q

Cq 0

]+
=

[
0 C+

q

(C+
q )T −(C+

q )TR

]
+

[
I

−RT

]
P

[
I −R

]
(62)

where P = D+, D = EME, E = I − C+
q Cq , R = MC+

q . D+ and C+
q imply that the left

pseudo-inverse of D and the right pseudo-inverse of Cq , respectively, are given by

D+ = (
DTD

)−1
DT for D+D = I , (63)

C+
q = CT

q

(
CqC

T
q

)−1
for CqC

+
q = I . (64)

Equation (62) maintains its validity also in the case of a rank-deficient constraint matrix,
i.e., in the cases of changing topologies and redundant constraints. Moreover, as illustrated
before, the coefficients matrix of Eq. (14) is invertible, then the inverse of the coefficients’
matrix is identical to the right hand side of Eq. (62). Hence, the constrained and weighted
least squares problem for position constraint correction can be expressed as

�q = −(
C+

q − PMC+
q

)
C̃. (65)

With the same procedure applied as before, the formula for the elimination of velocity
violation has the form

�q̇ = −(
C+

q − PMC+
q

) ˜̇C. (66)

Substituting the pseudo-inverses of Eqs. (63) and (64) into Eqs. (65) and (66), an explicit
expression can be obtained. Although in the least-squares block solution based scheme the
block matrix is found by using the concept of a Moore–Penrose generalized inverse, it shows
that the solution is effective as implied in [38], leading to a more complex expression. If
the constraint matrix is not of full rank, i.e., the coefficients’ matrix is singular, then the
Moore–Penrose inverse scheme may be appropriate. As the coefficients matrix of Eq. (14)
or Eq. (43) is invertible, a more effective block inversion method is utilized in the following.

Choi and Cheong [45] proposed a block inversion method for the invertible matrix with
all singular diagonal entries of the block matrix. And the matrices of coefficients in Eq. (14)
satisfy the Type I model in [45]. The Type I matrix is described as a 2 × 2 block matrix,
where R and U on the diagonal are singular while S and T off the diagonal have full ranks.
Then the block matrix inverse for this case can be obtained in the following form:

[
R S

T U

]−1

=
[

X−1
2 − (X−1

2 S + T +
X2

Z−1
2 U)S+

X2
T +

X2
Z−1

2

(I − (I − Y−1
2 )Z−1

2 U)S+
X2

(I − Y −1
2 )Z−1

2

]
(67)

where X2 = R + ST , Y 2 = T X−1
2 S, Z2 = I + U(I − Y−1

2 ), X2, Y 2 and Z2 are invertible.
In other words, |X2| �= 0, |Y 2| �= 0 and |Z2| �= 0 need to hold for the existence of the block
matrix inverse. S+

X2
and T +

X2
denote the left weighted pseudo-inverse of S and the right

weighted pseudo-inverse of T , respectively, and they are given by

S+
X2

= Y −1
2 T X−1

2 for S+
X2

S = I , (68)

T +
X2

= X−1
2 SY −1

2 for T T +
X2

= I . (69)

Applying the scheme Eq. (67) to Eq. (43), we have the inverse of the coefficient matrix
of Eq. (43),

[
M CT

q

Cq 0

]−1

=
[

F 11 F 12

F 21 F 22

]
(70)
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where

F 12 = A−1
1 CT

q

(
CqA

−1
1 CT

q

)−1
(71)

with

A1 = M + CT
qCq . (72)

The constrained and weighted least squares problem for the position constraint equation
based on Eq. (43) can be expressed as

�q = −F 12C̃ = −A−1
1 CT

q

(
CqA

−1
1 CT

q

)−1
C̃. (73)

With the same procedure applied as before, the formula for the elimination of the velocity
violation has a similar form, namely

�q̇ = −A−1
1 CT

q

(
CqA

−1
1 CT

q

)−1 ˜̇C. (74)

This is the so-called Generalized Physical Orthogonal Projection Method (GPOPM).
Comparing Eq. (73) and Eq. (74) with Eq. (44) and Eq. (45), it can be found that the mod-
ified mass matrix A1 takes the place of the mass matrix M , which will not increase the
complexity in the correction procedure. It is noted that the modified mass matrix A1 in
Eq. (73) and Eq. (74) is as same as the leading matrix Aα in Eq. (60) and Eq. (61) when
α = I . CT

qαCq is simply added to the mass matrix without any physical basis to eliminate
the singularity of the mass matrix in Eq. (53), while A1 in Eq. (73) and Eq. (74) is derived
from Eq. (43) directly to meet the request of minimal energy error norm, and the penalty
factor is not needed, so GPOPM is physically consistent.

4.3 Discussion of modified physical orthogonal project method

It can be found that the Type I block matrix inversion method [45] can also be utilized to
the diagonal entries of the block matrix with one invertible sub-block matrix. Combining
Eq. (27) and Eq. (67), when M is positive definite, it can be found that

M−1CT
q

(
CqM

−1CT
q

)−1 = A−1
1 CT

q

(
CqA

−1
1 CT

q

)−1
. (75)

This means that the correction formulae, Eqs. (44) and (45), for the invertible M can be
unified by the formulae Eqs. (73) and (74) for the singular M .

When M is positive semi-definite, as Aα is invertible when α �= 0, it can be found that

A−1
α CT

q

(
CqA

−1
α CT

q

)−1 = A−1
α+1C

T
q

(
CqA

−1
α+1C

T
q

)−1
(76)

with

Aα+1 = M + CT
q (α + I )Cq . (77)

Taking α = I ,2I , . . . , kI , we can obtain

A−1
1 CT

q

(
CqA

−1
1 CT

q

)−1 = A−1
k CT

q

(
CqA

−1
k CT

q

)−1
(78)

with

Ak = M + kCT
qCq . (79)

This means that a large penalty factor of α introduced by Bayo [28] with 107 is consis-
tent with α = I by Eq. (78), although a relatively large factor leading to a proper condition
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is shown in the mass-orthogonal projection method. And for the singular M by the quater-
nion used in spatial multibody system, the penalty factor of α can be very small, such as
α = I , then from the mathematic point of view, the correction formulae Eqs. (60) and (61)
are consistent with Eqs. (73) and (74), but the penalty factors are eliminated and the physi-
cal consistency is better. However, the position and velocity correction formulae consistent
relations with different α may not be satisfied for the other variants, such as the auxiliary
vector Lagrange multipliers μ which need not be calculated in the projection methods shown
above.

It can also be found that the correction formulae could be used not only for the spatial
system but also for the planar system by Eq. (75). The attitude of the planar system can
be expressed as an angular parameter and a positive definite M can be taken. Similar to
Eq. (46), after the revision of the system’s position, the velocity correction can be done in
one step. In practical operation, the position and velocity corrections can be applied after
each step of integration or after a sequence of steps when the constraint violations surpass
accepted values [23].

Based on the block matrix inversion scheme Eq. (67), an explicit form of ODEs which
eliminates the Lagrange multipliers in Eq. (14) with a singular mass matrix can also be given
as follows:

q̈ = [
A−1

1 − A−1
1 CT

q

(
CqA

−1
1 CT

q

)−1
CqA

−1
1

]
Q + A−1

1 CT
q

(
CqA

−1
1 CT

q

)−1
γ (80)

and

λ = (
CqA

−1
1 CT

q

)−1
CqA

−1
1 Q + [

I − (
CqA

−1
1 CT

q

)−1]
γ . (81)

A generalized Udwadia–Kalaba type formulation [38, 40, 41] may also be obtained by a
transformation of Eq. (80) as the mass matrix singularity is avoided.

It should be mentioned that from the numerical point of view [41], the matrices
CqA

−1CT
q in the previous correction formulations and ODEs Eqs. (80) and (81) could be ill

conditioned and their direct inversion is then prone to round-off errors. The evaluation of this
term related inverse through matrix decomposition, such as Gram–Schmidt orthogonaliza-
tion, singular value decomposition, Householder QR factorization, and so on, is considered
numerically more robust [41].

5 Numerical examples

To verify the feasibility and accuracy of the developed constraint violation suppressing for-
mulation, two benchmark problems are presented in this section, a five-bar pendulum sys-
tem [4, 28, 31] and a spatial slider–crank mechanism [3, 46, 47]. The degrees of freedom are
described by means of seven generalized coordinates for each body (three for describing the
position of the center of mass and four Euler parameters for describing the attitude), which
leads to a singular mass matrix. Of course, since the four Euler parameters are constrained
by the relationship that the sum of their squared values has to be equal to one, each body has
six degrees of freedom. The magnitude of gravity is g = 9.8 m/s2. The equation of motion
is integrated using the Runge–Kutta method [6].

In order to control the constraint violations during the time integration process, vari-
ous projection methods are used here to perform numerical simulation, such as GOPM,
MMOPM and GPOPM, where each time step requires several iterations with a tolerance
in the position of �qTM�q = 10−12, and only one step of iteration in the velocity. The
Baumgarte’s constraint stabilization method is also performed for comparison. As high-
lighted in [9, 10], a suitable choice of the two parameters involved in this method is found
by numerical experiments.
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Fig. 1 Initial configuration of a
five-bar pendulum

Fig. 2 Time history of the tip
position of a five-bar pendulum
based on GPOPM

5.1 Five-bar pendulum

This system is composed of five prismatic bars having unit length, cross-section 0.1×0.1 m2

and unit masses, linked by revolute joints, one of them being fixed. The system is released
from rest under the action of gravity from the configuration shown in Fig. 1.

The spatial multibody system has a total of 35 dependent coordinates with seven for each
bar. These coordinates are related by a set of 30 constraint equations, where five equations
correspond to the quaternion constraints with one for each bar. There are 25 more equations
related to the five revolute joints, with five constraints for each joint. Based on these consid-
erations, the system has a total number of five degrees of freedom. The motion is integrated
for 10 s with a time step �t = 0.01 s.

The position and the velocity results of the tip are displayed in Figs. 2 and 3, and the
violation is eliminated by the proposed GPOPM. The details of the tip motion show that a
dramatic change happened during 5–6 s, after that stable motion was obtained, thus indicat-
ing good convergence characteristics of the method even under very strong motions.

The corresponding violation suppressing results for the position and the velocity are
shown in Figs. 4 and 5, respectively. The two related parameters of the Baumgarte’ method
are selected to be 25 based on the numerical experiments involving a trial-and-error pro-
cedure, which gives relatively small constraint errors. It is apparent that the violation is
serious and may be unlimited when applying the direct integration method without violation
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Fig. 3 Time history of the tip
velocity of a five-bar pendulum
based on GPOPM

Fig. 4 Position constraint errors
of a five-bar pendulum

Fig. 5 Velocity constraint errors
of a five-bar pendulum

control. Baumgarte’s method is better, but it can’t control the violation within the given error
tolerance and parameters’ selection is needed here.

It can also be seen that, when various constraint projection methods are utilized, con-
straint satisfaction within machine precision can be obtained. In this example, for the po-
sition constraints’ violation elimination, the MMOPM with a penalty factor α = 107, the
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Fig. 6 Spatial slider–crank
mechanism [3, 46]

GPOPM with a positive semi-definite mass matrix and the GOPM with the identity ma-
trix show almost the same performances. Meanwhile, for the velocity constraints’ violation
elimination, MMOPM shows a higher error as the large penalty factor introduces a nu-
merical error into the constraint correction process, whereas GOPM and GPOPM perform
better. Although the same error control characteristic can be reached by the GOPM and the
GPOPM, Blajer [23] had pointed out that GOPM may occasionally lead to inconsistencies
in the mathematical modeling. From this example, we can find that the present GPOPM not
only has good physical consistency but also shows excellent performances in position and
velocity constraints’ violation elimination.

5.2 Spatial slider–crank mechanism

In this example, the dynamic response of the spatial slider–crank mechanism shown in Fig. 6
is simulated. The mechanism consists of a crank of length 0.08 m, a connecting rod of length
0.3 m, and a sliding block. The crank is connected to the ground at A by a revolute joint.
A spherical joint at B connects the crank to the connecting rod, which in turn is connected
to the sliding body by a universal joint at C. The block is constrained to the ground by a
prismatic joint D with the sliding displacement s. The masses of the crank, connecting rod
and sliding block are respectively mc = 0.12 kg, mr = 0.5 kg, and ms = 2.0 kg. The mass
moments of inertia for the three bodies are:

J c =
⎡

⎣
0.0001 0 0

0 0.00001 0
0 0 0.0001

⎤

⎦ kg m2, J r =
⎡

⎣
0.004 0 0

0 0.0004 0
0 0 0.004

⎤

⎦ kg m2,

J s =
⎡

⎣
0.0001 0 0

0 0.0001 0
0 0 0.0001

⎤

⎦ kg m2.

Gravity is acting in the negative Z-direction. The forward dynamic response of the multi-
body system is studied, given that the crank is driven from the initial position θ = 0 rad with
initial angular speed of 6 rad/s.

The mechanism is described by 21 generalized coordinates, constrained by three Euler
parameter normalization constraints and 17 joint constraints. Based on these considerations,
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Fig. 7 Time history of the slider
position based on GPOPM

Fig. 8 Time history of the slider
velocity based on GPOPM

the system has only one degree of freedom. The numerical experiment is performed with a
time step �t = 0.01 s for 10 s.

The computed position and velocity of the slider are plotted versus time in Figs. 7 and 8,
respectively, where the violation is eliminated by the proposed GPOPM. Since the system
is conservative, plots are periodic, and they are in good agreement with the results shown in
Haug [3].

The corresponding violation suppressing results for the position and the velocity are
shown in Figs. 9 and 10, respectively. The two related parameters of the Baumgarte’ method
are also selected to be 25 as in the previous example based on the numerical experiments,
which gives relatively small constraint errors. It is also apparent that the violation is serious
and may be unlimited when applying the direct integration method without violation con-
trol. Baumgarte’s method is better, but it can’t control the violation within the given error
tolerance and parameters’ selection is needed. It can also be seen that, when various con-
straint projection methods are utilized, constraint satisfaction within machine precision and
almost the same performances as in the first example of the GOPM, MMOPM and GPOPM
can be obtained. The MMOPM shows more obvious and periodic errors than the other two
methods for the velocity correction, due to the introduction of a large penalty factor. From
this example, we can still find that the presented GPOPM not only has good physical consis-
tency but also shows excellent performances in position and velocity constraints’ violation
elimination for a periodic multibody dynamical system.
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Fig. 9 Position constraint errors
of a spatial slider–crank
mechanism

Fig. 10 Velocity constraint
errors of a spatial slider–crank
mechanism

6 Conclusions

In this paper, we proposed a physically consistent (energy norm) constraint violation sup-
pressing formulation for solving the spatial multibody systems dynamics governed by DAEs
with a singular mass matrix. The constraint violation suppressing formulation is one of the
geometrical projection methods which project the constraint violated solution back onto the
acceptable constraint manifolds. The projection method is implemented based on the con-
strained least squares optimization procedures, where the sum-of-squares of the corrections
are minimal for a given weight matrix. The physical orthogonal projection method is rec-
ommended, as the mass matrix weight implies the minimal energy errors norm, which gives
the consistent inertial attributes for translational and rotational coordinates, i.e., is physi-
cally consistent. For solving moderate size multibody systems, optimal performances have
been recorded by the block solution based scheme [38] as: (i) many linear algebra oper-
ations are applied to small-order matrices; (ii) a reduced number of matrix operations are
involved. The block matrix inversion scheme is utilized to obtain the correction formula-
tion. However, the positive definite weighted matrix block inversion scheme based physical
orthogonal projection formulation cannot handle the mass matrix singular problem well,
which occurs in spatial multibody systems dynamics when the body attitude is described
by the quaternion (or Euler parameters) with the normalization constraint equation. The
present paper developed the block inversion solution based physical projection method and
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proposed two explicit modified physical orthogonal projection formulations, MMOPM and
GPOPM.

MMOPM modifies the mass matrix directly by adding a penalty factor matrix, which
appears in the mass-orthogonal projection method based on the augmented Lagrangian for-
mulation and leads to a positive definite weight matrix satisfying the block matrix inversion
scheme condition. Comparing with the existing mass-orthogonal projection method where
the constraints are introduced approximately by a large penalty factor with mathematical
meaning, MMOPM is more physically consistent, while a penalty factor is still involved.
GPOPM is a generalization of the physical orthogonal projection method, where the con-
strained least squares method is implemented based on the positive semi-definite mass ma-
trix which is the necessary condition for the projection method. The correction formulation
is obtained by using a more general expression of the block matrix inversion method for the
invertible matrix with all singular diagonal entries of the block matrix. The block matrix in-
version can also be implemented by the concept of Moore–Penrose generalized inverse, but
this leads to a more complex expression than for GPOPM as the coefficients matrix, where
the full constraint matrix is considered here, is invertible. It has been shown that MMOPM
and GPOPM are consistent with each other in the mathematical meaning, while the penalty
factor disappears in GPOPM.

Benchmark numerical examples of spatial multibody systems with a singular mass matrix
have verified the feasibility and accuracy of the proposed approaches. The constraints in the
position and the velocity could reach machine precision during the numerical integration.
The elimination of violation of the position constraints may require few iterations, while the
violation of the velocity constraints is removed in one step. Numerical results also show that
MMOPM is less accurate in the velocity correction than GPOPM, which may be caused
by the numerical ill-conditioning problem resulting from the large penalty factor. GOPM
can also obtain almost the same precision as GPOPM based on the numerical examples, but
GOPM neglects the inertial attributes and may occasionally lead to physical inconsistencies
in mathematical modeling.

We can conclude that GPOPM not only has good physical consistency but also shows ex-
cellent performances in position and velocity constraints’ violation elimination for a spatial
multibody dynamic system. The normalization constraint for Euler parameters can be cor-
rected with the joint constraints at the same time. Furthermore, the requirement of coordinate
partition has also been avoided during the numerical integration. Additionally, the proposed
methods can be treated as a generalization to the original projection method, and they can
also be applied to the constraint violation suppression of the planar multibody dynamics.
The modified projection method can also be extended directly for solving mass matrix sin-
gularity problems caused by massless members which satisfy the condition discussed by
Blajer [30]. As for large matrices with a high percentage of zero-valued elements, the use
of sparse matrix algorithms can speed up the processing and avoid the numerical problems
and accuracy losses. The proposed correction formulation based on the block matrix inver-
sion scheme is recommended for solving multibody systems of moderate size as indicated
in [38]. For complex mechanical systems, the geometric projection method based correction
formulation retains the stability as shown in [36], where the Yamaha YZF-R1 Motorcycle
engine is modeled. Future work may concentrate on the applications of the presented viola-
tion correction formulation in complex systems.
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