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Abstract The paper develops a new type of geometrically exact beam element featuring
large displacements and rotations together with small warping. The dimension reduction
approach based on variational asymptotic method has been explored, and a linear two-
dimensional finite element procedure has been implemented to predict the cross-sectional
stiffness and recover the cross-sectional strain fields of the beam. The total and incremen-
tal variables mixed formula of governing equations of motion is presented, in which the
Wiener–Milenković parameters are selected to vectorize the finite rotation. The dynamic
problem of geometrically exact beam has been solved by the implicit Radau IIA algorithms,
the time histories of large translations and rotations with small three-dimensional warping
have been integrated. Numerical simulations have been performed and the results have been
compared to those of commercial software LS-DYNA. It can be concluded that the current
modeling approach features high accuracy and that the new geometrically exact beam with
warping is robust enough to predict large deformations with small strain.

Keywords Geometrically exact beam · Warping · Nonlinear dynamics · Isoparameteric
finite element

1 Introduction

In the field of aerospace and aeronautical industry, many engineering structures are typically
flexible and are subjected to large overall motions. Numerical models used to represent these
structures must allow for large displacements and rotations of arbitrary magnitude. Geo-
metrically exact beam that has been well developed over the decades is the most suitable
model that can describe large motions accurately. The concept of geometrically exact [1, 2]
stems from the identification of the analytical models which states that, once the kinetic
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assumptions have been made, the ensuing developments are strictly kept within the frame-
work of these assumptions and no further kinematic assumptions are introduced. In general,
the assumption of small strain is used, but the strain–displacement relationship is exactly
described.

Beginning with the work of Reissner [3], the exact intrinsic equations for beam static
equilibrium are derived under the limitation of unrestrained warping. Following with the
work of Simo and Vu-Quoc [4, 5], the research of geometrically exact beam theories and
numerical implementations has yielded significant advances. For example, Bauchau and
Hong [6] developed a naturally curved and twisted beam model, in which the strain level
remains low under arbitrarily large deflections and rotations. The governing equations of
motion were discretized in the time domain and the incremental formula was assembled
to fit the energy decay and energy saving integration schemes [7], improving the stabil-
ity and efficiency of the simulation. However, both the Wiener–Milenković and Rodrigues
parameters were used to vectorize the total and incremental rotation tensors, respectively,
which increased the complexity of rotation vectorization. It is also inconvenient for finite
element modeling to define the cross-sectional mass and stiffness properties as user inputs.
Hodges and his co-workers [8, 9] developed a geometrically exact intrinsic dynamics model
of beams that can be initially curved and twisted. The beam constitutive law is based on a
separate finite element analysis and is valid for anisotropic beams with nonhomogeneous
cross-sections. Currently, an Euler–Bernoulli beam [10] has been developed, and the large
deformation is taken into account. Four Euler parameters, not a minimal set representation
of rotation, are used to describe the rotation which increases the size of the discretized sys-
tem. Jelenić [11] pointed out that establishing the relationships between the large rotations
and strains appears to be the biggest problem in which the interpolation of rotation becomes
a key issue. Many refinements [12, 13] as to the interpolation of finite rotation have been
made, and the interpolation algorithms were carefully designed.

Even though the geometrically exact beam model has been well developed, there still ex-
ist difficulties that hinder wide application of this model in the industry. First, the identifica-
tion of cross-sectional stiffness properties becomes difficult, especially when the beam-like
structures are made of inhomogeneous materials with complex cross-sectional configura-
tions. Second, the finite rotations do not form a linear space, an application of the linear
interpolation technique to a finite rotation directly will lose objectivity, which increases the
complexity of rotation interpolation. Third, the general one-dimensional beam theory cannot
predict the warping of cross-section due to the rigid plane assumption of the cross-section.
But the details of the cross-sectional strain field are necessary inputs for the fatigue analysis
during the post process.

This paper aims to develop a new type of a beam dynamic model, solving the model-
ing difficulties mentioned above. The dimension reduction approach based on variational
asymptotic method has been combined with the one-dimensional dynamic model. Current
approach can predict the cross-sectional stiffness properties automatically and use them as
inputs for one-dimensional beam analysis. Only the Wiener–Milenković parameters, a min-
imal set of representation, are used to vectorize a finite rotation. The total translation and
the incremental conformal rotation vector become the unknowns, leading to the total and in-
cremental variables mixed formula of governing equations of motion. The rotation tensor is
determined through the composition of initial and incremental rotations to avoid the singu-
larity of conformal rotation vector. Algorithm 1 developed by Jelenić and his co-worker [11]
has been applied in this paper to interpolate rotations without loss of objectivity. Finally, the
three-dimensional strain field can be recovered once the time histories of one-dimensional
strains are integrated from the one-dimensional beam problem.
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Fig. 1 Curved beam
configurations

The outline of the paper is as follows. Section 2 describes the related details of the non-
linear beam theory, especially the strain–displacement relations and the theory of dimension
reduction. Then special attention is paid to the vectorization and interpolation of finite ro-
tation. Section 3 presents three numerical examples to validate the new geometrically exact
beam element developed in this paper.

2 Nonlinear beam theory

2.1 Kinematics of deformation

A beam with a cross-section of arbitrary shape is depicted in Fig. 1, in which the beam
length is L and the area of cross-section is Ω . The plane of cross-section is defined by the
base vectors b̄2, b̄3 of orthogonal basis B0(b̄1, b̄2, b̄3) and B̄2, B̄3 of basis B(B̄1, B̄2, B̄3) in the
undeformed and deformed configurations, respectively. The corresponding rotation tensors
that bring inertial basis I(ī1, ī2, ī3) to B0 and B0 to B are denoted as R0 and R. Note that īi
for i = 1,2,3 are orthogonal unit vectors. For the undeformed state, the position vector of a
material point on the beam is written as

x(α1, α2, α3) = u0(α1) + α2b̄2(α1) + α3b̄3(α1) (1)

where u0(α1) is the position vector of a point on the reference line, α1 is the arc length
along the reference line, α2 and α3 are the cross-section coordinates. The special formulas
of covariant base vectors, g

i
= ∂x/∂αi , are derived from Eq. (1) as

g
1
= b̄1 + α2κ̃0b̄2 + α3κ̃0b̄3, g

2
= b̄2, g

3
= b̄3 (2)

where b̄1 is defined as b̄1 = ∂u0/∂α1, κ0 is the initial curvature vector of the beam, κ̃0 =
R′

0R
T
0 , and usually the components of κ0 are resolved in the body-attached frame B0 as
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�κ1
0 , κ2

0 , κ3
0 �T = RT

0 κ0. The notation (·)′ represents the spatial derivatives respect to α1, i.e.,
(·)′ = ∂(·)/∂α1. Correspondingly, the contravariant base vectors [14] satisfy

g1 = b̄1√
g

, g2 = b̄2 + α3κ
1
0

b̄1√
g

, g3 = b̄3 − α2κ
1
0

b̄1√
g

(3)

where
√

g = 1 −α2κ
3
0 +α3κ

2
0 > 0 and is near unit. In the deformed state, the position vector

of the material point becomes

X(α1, α2, α3) = u0(α1) + u(α1) + α2B̄2(α1) + α3B̄3(α1) + w(α1, α2, α3) (4)

where u(α1) is the displacement of the reference line point, w(α1, α2, α3) is the warping
displacement of the beam material point,

w(α1, α2, α3) =
3∑

i=1

wi(α1, α2, α3)B̄i(α1).

Similarly, the deformed covariant base vectors, Gi = ∂X/∂αi , can be derived from this
position’s representations

G1 = b̄1 + u′ + α2κ̃1B̄2 + α3κ̃1B̄3 + w′
i B̄i + wiκ̃1B̄i ,

G2 = B̄2 + wi,2B̄i , G3 = B̄3 + wi,3B̄i

(5)

where κ1 is the curvature vector defined as κ̃1 = (RR0)
′(RR0)

T , and notation (·),i indicates
a derivative with respect to the material coordinate αi for i = 2,3. Typically, the components
of κ1 are known in the body-attached frame B as κ∗

1 = �κ1
1 , κ2

1 , κ3
1 �T = RT

0 RT κ1.
The deformation is most concisely described in terms of the deformation gradient tensor,

F = G1g
1T + G2g

2T + G3g
3T = Gig

iT . (6)

The polar decomposition theorem in continuum mechanics states that the deformation gra-
dient tensor can always be decomposed into two parts, one corresponding to a pure rotation
and the other to a pure deformation, which is a useful theorem that implies the decoupling
of rigid rotation and deformation. In this paper, the deformation gradient tensor is defined in
the body-attached frame directly as

F ∗ = G∗
1g

∗1T + G∗
2g

∗2T + G∗
3g

∗3T (7)

where the deformed covariant base vectors Gi and undeformed contravariant base vectors
gi have been projected into the body-attached frames B and B0, respectively, such that G∗

i =
RT

0 RT Gi , and g∗i = RT
0 gi , for i = 1,2,3. The alternative formulation of F ∗ can be written

as

F ∗ = RT
0 RT Gig

iT R0. (8)

Because G∗
i and g∗i are both measured in the body-attached frame, even though the frame

can translate and rotate arbitrarily in the spatial domain with the time varying, the following
physical properties always hold: the deformation gradient tensor F ∗ only describes pure
deformation and the rigid rotation has been automatically filtered out. For this definition, the
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small strain and small local rotation assumptions must be applied. Following the geometric
relationship between the rotation tensor and base vectors of the body-attached frame,

RR0 = [B̄1, B̄2, B̄3], R0 = [b̄1, b̄2, b̄3], (9)

it is not difficult to find the deformation gradient tensor in details as

F ∗ =
⎡

⎢⎣

B̄T
1 Gig

iT b̄1, B̄T
1 Gig

iT b̄2, B̄T
1 Gig

iT b̄3

B̄T
2 Gig

iT b̄1, B̄T
2 Gig

iT b̄2, B̄T
2 Gig

iT b̄3

B̄T
3 Gig

iT b̄1, B̄T
3 Gig

iT b̄2, B̄T
3 Gig

iT b̄3

⎤

⎥⎦ , (10)

and the components of F ∗ can be written as

F ∗
ij = B̄T

i Gkg
kT b̄j , (11)

which is identical to the mixed formulation of Hodges [8].

2.2 Strain–displacement relations

For the majority of engineering beam problems that are treatable with a beam theory at all,
the theory of small local deformation and local rotation is adequate. Based on this theory,
the Lagrangian strain tensor [14] is simplified to

εij = 1

2

(
F ∗

ij + F ∗
j i

) − δij , (12)

and the associated strain field is given as follows:

√
gε11 = γ11 + α3

(
κ2

1 − κ2
0

) − α2

(
κ3

1 − κ3
0

) + w′
1 + κ1

0 (α3w1,2 − α2w1,3) + κ2
1 w3 − κ3

1 w2,

√
g2ε12 = 2γ12 − α3

(
κ1

1 − κ1
0

) + w′
2 + √

gw1,2 + κ1
0 (α3w2,2 − α2w2,3) + κ3

1 w1 − κ1
1 w3,

√
g2ε13 = 2γ13 + α2

(
κ1

1 − κ1
0

) + w′
3 + √

gw1,3 + κ1
0 (α3w3,2 − α2w3,3) + κ1

1 w2 − κ2
1 w1,

ε22 = w2,2, (13)

2ε23 = w2,3 + w3,2,

ε33 = w3,3,

ε21 = ε12, ε31 = ε13, ε32 = ε23,

where γ11, 2γ12 and 2γ13 are the components of the force strain vector e∗
1, and are conve-

niently expressed in terms of one-dimensional variables as

e∗
1 = �γ11,2γ12,2γ13�T = RT

0 RT
(
u′

0 + u′) − ī1. (14)

For the Lagrangian strain formulation, both quantities e∗
1 and κ∗

1 are measured in the body-
attached frame B, which will be used as generalized strain measurements for further dy-
namic analysis. Usually, the initial curvature κ0 is not zero, and the covariant base vector
g

1
will never be a unit vector, so the initial curvature has contributions to the Lagrangian
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strain formulation. In order to obtain a more simplified representation of the strain field, the
definition of the Lagrangian strain further modifies to

εij = 1

2

(
F ∗

ij + F ∗
j i

) − 1

2

(
giT b̄j + gjT b̄i

)
. (15)

For the prismatic beam, the modified formulation will recover Eq. (12). The matrix form of
the strain field is obtained from the modified stain definition as

ε∗ = Γhw + Γεε
∗ + ΓRw + Γ�w

′ (16)

with the following notations

ε∗ =

∣∣∣∣∣∣∣∣∣∣∣∣

ε11

2ε12

2ε13

ε22

2ε23

ε33

∣∣∣∣∣∣∣∣∣∣∣∣

, Γh =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
∂

∂α2
0 0

∂
∂α3

0 0
0 ∂

∂α2
0

0 ∂
∂α3

∂
∂α2

0 0 ∂
∂α3

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

Γε = 1√
g

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 α3 −α2

0 1 0 −α3 0 0
0 0 1 α2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,

(17)

and

ε∗ =
∣∣∣∣
e∗

1
κ∗

1

∣∣∣∣ , ΓR = 1√
g

[
κ̃1 + κ1

0 (α3
∂

∂α2
− α2

∂
∂α3

)I3

O3

]
, Γ� = 1√

g

[
I3

O3

]
(18)

where I3 is the 3 × 3 identity matrix, O3 the 3 × 3 zero matrix. If the shear strains 2γ12 and
2γ13 are neglected, the strain field, Eq. (16), is exactly the same as Eq. (14) of Yu et al. [9],
even though the one-dimensional strain vector e∗

1 and curvature κ∗
1 have slightly different

physical significance.

2.3 Dimension reduction

The strain energy of the beam cross-section is defined as

U = 1

2

∫

Ω

ε∗T Dε∗√g dα2 dα3 (19)

where D is the 6×6 symmetric material matrix in the cross-sectional basis. It is well-known
that a beam has one dimension that is much larger than the other two, so the beam is always
treated as a one-dimensional problem. Hodges and his coworkers [9, 14, 15] have devel-
oped a dimension reduction approach to construct a one-dimensional beam theory from
three-dimensional elasticity. Based on variational asymptotic method [16], a minimization
problem needs to be solved to represent the three-dimensional strain energy, Eq. (19), by
finding the strain energy which could be stored in an imaginary one-dimensional body. In
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doing so, the warping must be defined as a linear function of one-dimensional strain mea-
sures and its derivatives, w = w(ε∗, ε∗′), then it disappears from the problem and affects
only the elastic constants of the beam. Finally, the three-dimensional strain energy of the
beam cross-section can be reproduced in terms of one-dimensional quantities

U = 1

2
ε∗T C∗ε∗ (20)

where C∗ is an approximation of the stiffness matrix of the beam cross-section. The finite
element based approach for the computation of C∗ can be found in [17]. Referring Yu’s
algorithm [17], the paper develops a linear two-dimensional finite element code for cross-
section analysis which is combined with a one-dimensional beam procedure to solve the
three-dimensional beam problem. In details, the two-dimensional finite element based ap-
proach will calculate the stiffness matrix C∗ used for further one-dimensional analysis, and
then the warping field w will be recovered once the force strain of the reference line is
evaluated by the one-dimensional procedure.

2.4 Semi-discretized governing equations of motion

The paper has paid special attention to the slender, closed-section beams. Based on the
assumption of small local deformation, the contribution of sectional warping to beam kine-
matic energy is neglected. The governing equations of motion of the beam are derived from
Hamilton’s principle. Note that the velocity of a material point can be obtained by taking a
time derivative of position, Eq. (4), and resolved in basis B to find

u̇∗ = RT
0 RT u̇ + s̃∗T ω∗ (21)

where ˙(·) indicates a derivative with respect to time, ω∗ are the components of the angular
velocity vector measured in basis B and ω̃∗ = RT

0 RT ṘR0, s∗ is the in-plane vector also
measured in basis B, s∗ = α2 ī2 + α3 ī3. The variation of the kinetic energy

δK =
∫

L

∫

Ω

ρδu̇∗T u̇∗ dΩ dα1 (22)

is recast as

δK =
∫

L

δv∗T M∗v∗ dα1 (23)

where the following notations

v∗ =
∣∣∣∣
RT

0 RT u̇

ω∗

∣∣∣∣ , M∗ =
[

mI3 η̃∗T

η̃∗ ι∗

]
(24)

and the sectional mass constants

m =
∫

Ω

ρ dΩ, η̃∗ =
∫

Ω

ρs̃∗ dΩ, ι∗ =
∫

Ω

ρs̃∗s̃∗T dΩ (25)

are defined, and ρ is the density of the beam material. Meanwhile, the variation in sectional
velocity is found to be

δv∗ =
∣∣∣∣
RT

0 RT (δu̇ + ˜̇uδψ)

RT
0 RT δψ̇

∣∣∣∣ (26)

where δψ is the virtual rotation vector defined in inertial frame, δ̃ψ = δ(RR0)R
T
0 RT .
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The variation of the strain energy in the beam, δU , is modified to

δU =
∫

L

δε∗T C∗ε∗ dα1 =
∫

L

δe∗T
1 N∗

1 dα1 +
∫

L

δκ∗T
1 M∗

1 dα1 (27)

using the definition of beam’s sectional loads
∣∣∣∣
N∗

1
M∗

1

∣∣∣∣ = C∗
∣∣∣∣
ε∗
κ∗

∣∣∣∣ . (28)

It is not difficult to find the variations in strain components from Eq. (14) as

δe∗
1 = RT

0 RT
(
δu′ + ˜u′

0 + u′δψ
)
, δκ∗

1 = RT
0 RT δψ ′. (29)

Virtual work done by the externally applied force is

δW =
∫

L

δuT F dα1 +
∫

L

δψT T dα1 (30)

where F and T are applied loads per unit span, measured in the inertial frame. Substitut-
ing Eqs. (23), (27) and (30) into Hamilton’s principle and integrating by parts yields the
governing equations of motion as follows:

ḣ − N ′
1 = F,

˜̇uh + ġ − (
˜u′
0 + u′)N1 − M ′

1 = T
(31)

where h and g are the components of the sectional linear and angular momenta measured
in the inertial frame, respectively. Meanwhile, the beam’s sectional forces and moments are
transferred, N1 = RR0N

∗
1 and M1 = RR0M

∗
1.

For semi-discretization of beam modeling, the Galerkin approximation states that

∫

L

wT
6×1

(
ḣ − N ′

1 − F

˜̇uh + ġ − ( ˜u′
0 + u′)N1 − M ′

1 − T

)
dα1 = 0 (32)

where w6×1 is a test function. The classical choice of a test function utilizes the shape func-
tions, w = Hδx, where H is the interpolation matrix containing the components of shape
functions, hi , at all n nodes of a beam element, δx is the variation of the nodal displacements
and rotations. The interpolation matrix H and variations δx are given as

HT =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1I 0
0 h1I

h2I 0
0 h2I
...

...

hnI 0
0 hnI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6n×6

, δx =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δu1
δψ

1
δu2
δψ

2
...

δun

δψ
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6n×1

. (33)

Integrating the Galerkin weak form, Eq. (32), by parts will yield a set of semi-discretized
governing equations of motion. In general, implicit integrators are applied to solve these
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equations. However, the finite rotation forms a set of second-order orthogonal tensor includ-
ing three independent variables with six constraints, so that the rotation vectorization must
be applied before the integration. The paper utilizes the Wiener–Milenković parameters [18],
or equivalently the conformal rotation vector, to vectorize the rotations. The conformal rota-
tion vector, c = 4 tan(φ/4)n̄, describes the finite rotation of magnitude φ about an appropri-
ate axis n̄. This vector, cT = �c1, c2, c3�, is a minimal set representation of rotation, but the
singularity can first occur when φ = φ ± 2π . The current implementation selects the total
translation u and incremental conformal rotation vector, �c = 4 tan(�φ/4)n̄, as unknowns
to avoid the singularity. Only a small time step is used to achieve convergence and guaran-
tee the accuracy of the solution when advancing the integration from initial time ti to final
time tf . As depicted in Fig. 1, the incremental rotation �R becomes small and �φ < 2π .
Furthermore, the interpolation approach proposed by Jelenić and Crisfield [11] has been ap-
plied in this paper to guarantee the compatibility and objectivity of rotation interpolation.
Figure 1 also shows the configuration of the beam at the beginning time ti of a typical time
step. If the dynamic simulation successfully proceeds up to time ti , both the corresponding
translation and rotation tensors are determined. Further observations show that the angular
velocity, ω, can be computed from

ω̃ = �Ṙ�RT , ω = H(�c)�ċ (34)

where H(�c) is the conformal rotation vector related matrix [18]. The discrete formula of
governing equations of motion in the state space is derived from the Galerkin weak form as

[
�H 0

0 M

] ∣∣∣∣
˙̂un˙̂vn

∣∣∣∣ =
∣∣∣∣
v̂n

f̂
n

∣∣∣∣ (35)

where the following notations are introduced:

ûn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1
�c1
u2

�c2
...

un

�cn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v̂n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v1
ω1
v2
ω2
...

vn

ωn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

�H =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

H(�c1)

I

H(�c2)

. . .

I

H(�cn)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(36)

together with the discretized mass matrix

M6n×6n =
∫

L

HT

[
mI η̃T

η̃ ι

]
Hdα1 (37)
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Fig. 2 Rectangular cantilevered beam

and right-hand side vector

f̂
6n×1

=
∫

L

HT

∣∣∣∣∣
−ω̃η̃T ω + N ′

1 + F

−ω̃ιω + ( ˜u′
0 + u′)N1 + M ′

1 + T

∣∣∣∣∣ dα1. (38)

The mass constants have been transformed into inertial frame, η = RR0η
∗ and ι =

RR0ι
∗RT

0 RT .

3 Numerical examples

3.1 Cantilevered beam

A rectangular cantilevered beam of 508 mm in length, 25.4 mm in width and 50.8 mm
in height is depicted in Fig. 2. The cross-section is divided into four layers made of two
different isotropic materials along the α3 direction. The Young’s modulus E for the top and
bottom layers is 2.6×107 psi, and for the middle two it is 2.6×106 psi; the Poisson’s ratio is
μ = 0.3. Five cubic one-dimensional beam elements discretize the beam along a reference
line. The beam cross-section discretizes into 192 two-dimensional quadrilateral elements,
each containing 8 nodes. The stiffness of the cross-section has been calculated based on
the variational asymptotic method, and the predictions of current approach are the same as
those of [17]. The beam suffers transverse loads of magnitude 89.0 kN at the tip, and the
deformed configuration can be found in Fig. 2. The same problem has been solved by LS-
DYNA version 9.7.1, where the beam had been discretized into 5000 three-dimensional solid
elements, as shown in Fig. 3. Concentrated forces with the amplitude of 706.35 N have been
directly applied to each node on the surface of the beam tip cross-section in the transverse
direction, which is equivalent to a load of magnitude 706.35 × 126 = 89.0 kN applied at
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Fig. 3 LS-DYNA model of
rectangular cantilevered beam

Fig. 4 Transverse response of rectangular cantilevered beam: solid line (�), the result of the current ap-
proach; dashed line (+), the result of LS-DYNA

the centroid of the tip cross-section, where 126 is the total number of nodes on the surface
of the cross-section. The deformed configuration is also presented in Fig. 3. The dynamic
response of the beam was integrated by 2-stage Radau IIA algorithm [19] in this paper. The
time histories of displacement and velocity in the transverse direction of the centroid of the
beam tip cross-section are described in Fig. 4. The results of the current model are compared
with those of the three-dimensional LS-DYNA model. The relative error

εr = 1

N

N∑

i=1

|uf

3i − ud
3i |

|ud
3i |

(39)

is used to measure the displacement difference, where N is the total number of sampling
points, u

f

3i and ud
3i are the sampling points of transverse displacement, u3, predicted by the

proposed approach and LS-DYNA, respectively. This quantity is computed as εr = 0.224 %,
and a perfect curve fit is observed. For general one-dimensional beam theory, the deforma-
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Fig. 5 Time history of strain ε22 of rectangular cantilevered beam: solid line (�), the result of the current
approach; solid line (◦), the result of LS-DYNA

tion of an arbitrary point on the beam cross-section cannot be predicted due to the rigid
plane assumption of the cross-section. The current warping beam model can predict the
three-dimensional strain tensor of an arbitrary point. The time history of the strain compo-
nent ε22 of a point, (254.0,−1.5875,−11.1125) mm, is depicted in Fig. 5. The result has
been compared with that of LS-DYNA, and the relative error is calculated as εr = 1.3669 %.

3.2 Buckling of circular arch

The second example deals with the buckling of a circular arch, as depicted in Fig. 6. The arch
frame is clamped at one end and hinged at another, which is subjected to a vertical compres-
sive load applied at its middle. The radius of the arch is R = 100, and the swept angle of the
arch is θ = 215◦. The Young’s modulus is selected as E = 3.0 × 106 for isotropic material,
and the Poisson’s ratio is μ = 0. The rectangular cross-section has the size of 1 × 4, then the
bending stiffnesses are determined directly as EIyy = 1.6 × 107 and EIzz = 1.0 × 106. The
two-dimensional finite element code discretizes the cross-section into 400 elements, each
element contains 4 nodes. The calculated bending stiffnesses, EIyy and EIzz, are the same
as from analytical results, the calculated torsional stiffness is J = 1.68757 × 107, and the
calculated shearing stiffnesses are K22 = 5.04168 × 106 and K33 = 5.0026 × 106, respec-
tively.

This buckling problem has been solved for Euler–Bernoulli kinematics in [20], and the
analytical solution for the first critical load is determined as Pana = 897.0. The numerical so-
lution of Ibrahimbegović [21] for the same problem is Pnum = 897.3. The current approach
simulates the whole buckling process dynamically. The arch is discretized into 20 cubic
beam elements along a reference line, and the inertial load has been neglected by using a
tiny material density, ρ = 1.0 × 10−9. The simulation results show that if the compressive
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Fig. 6 Circular arch configurations: solid line (◦), undeformed configuration; solid line (�), the first buckling
mode; solid line (�), the second buckling mode

load reaches 897.0, the buckling happens. The buckling mode is described in Fig. 6. When
the compressive load continuously increases to 907.4, the snap-through happens, and the
buckling mode, eight-loop like shape, is observed. The warping of the arch middle cross-
section is depicted in Fig. 7, in which the snapshots of warping fields at these two buckling
modes are captured. The middle cross-section rotates 202.7◦ when the eight-loop buckling
happens. Obviously, the warping is small even though a large arch deformation has hap-
pened.

3.3 Jeffcott rotor with flexible anisotropic bearings

The last example deals with the Jeffcott rotor which is composed of a flexible anisotropic
shaft of length L = 1 m and of a mid-span rigid disk of mass M = 5 kg and radius
R = 0.18 m, as depicted in Fig. 8. The shaft, modeled by six equally spaced cubic beam
elements developed in this paper, is connected to the end flexible couplings, represented by
concentrated springs. The finite stiffness end bearings consist of revolute joints connected
to the ground by concentrated springs. The relative rotation of the left-hand side revolute
joint was prescribed to have a constant angular speed Ω = 24 rad/s. The sectional prop-
erties of the shaft and the stiffness properties of the elastic coupling can be found in [22].
The rigid disk suffers an external perturbation along the ī3 axis, f3 = 100 sin(20πt) N for
t ∈ [0,0.05] s. The 3-stage Radau IIA algorithm [19] is applied to predict the forced re-
sponse of Jeffcott rotor. The simulation runs for a total of 1 s with a time step �t = 0.1 ms.
Figure 9 presents the time histories of translation components, u2 and u3, and rotation com-
ponent, c1, of the midpoint of shaft, respectively. The same problem has been solved by
using DYMORE [7], after modeling the flexible shaft by the beam element of Bauchau and
Hong [6]. The simulation results can also be found in Fig. 9. Once again, the relative error
of u3, Eq. (39), is calculated as ε = 2.698 × 10−8. Apparently, it can be concluded that the
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Fig. 7 Circular arch local warping fields: dashed line, undeformed cross-section; dashed–dotted line, de-
formed cross-section of the first buckling mode; solid line, deformed cross-section of the second buckling
mode

Fig. 8 Jeffcott rotor with
flexible anisotropic bearings

dynamic responses of the beam model implemented in the paper can perfectly match those
of the beam model developed by Bauchau and Hong.

4 Conclusion

A new type of geometrically exact beam element with small warping is developed in this
paper, which features large displacements and rotations together with small strains. The
dimension reduction approach based on variational asymptotic method has been explored.
A linear two-dimensional finite element procedure is developed to predict the cross-sectional
stiffness and recover the cross-sectional strain fields. The mixed formula of governing equa-
tions of motion for one-dimensional beam is presented, in which the rotation was vectorized
by Wiener–Milenković parameters and the singularity of finite rotation was avoided. The
implicit Radau IIA algorithms are applied to solve the dynamic problem of the new beam el-
ement. The paper presents three numerical examples to validate the developed beam model.
The first one focuses on the warping prediction of the new element. The simulation results
have been compared to those of the three-dimensional solid model created by commercial



Geometrically exact beam for nonlinear dynamics 391

Fig. 9 Displacement components u2, u3 and rotation component c1 of Jeffcott rotor with isotropic bearing.
(Top figure) u2 by Radau IIA, solid line (◦); u3 by Radau IIA, solid line (�); u2 by DYMORE, dashed line
(
); u3 by DYMORE, dashed line (�). (Bottom figure) c1 by Radau IIA, solid line (◦); c1 by DYMORE,
dashed line (
)

software, LS-DYNA. The second example simulates the buckling process of a circular arch
by using the new beam element. The calculation results prove the capability of the new beam
to accurately describe a large deformation. The last one, a Jeffcott rotor, validates the new
element by comparing it with the beam developed by Bauchau and Hong. It can be con-
cluded that the current beam modeling approach features high accuracy, and the new beam
element with warping is robust enough to predict large deformations.
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