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Abstract In this work, a new dissipative contact force model, based on the foundation of
Hertz contact law, is presented for impact analysis in multibody dynamics. A hysteresis
damping force is introduced in the model for capturing the energy loss during the contact
process. An approximate function, representing the relationship between the deformation
velocity and deformation, is used to calculate the energy loss due to the damping force. The
difference between the compression phase and restitution phase during the contact process
is taken into account in the energy loss calculation. For illustration, four different contact
force models are applied in a numerical example to compare their behaviors. The results
are presented in the form of dynamic simulations in a multibody system, which allow com-
parison of the differences and similarities among the four contact models. They show the
validity of our model for soft or hard contact problems.
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t (−) time of initial contact
t (+) time of separation
t (m) time of maximum deformation
Ri,Rj radius of solid sphere
FN normal contact force
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δ deformation or indentation
K generalized stiffness
n Hertz’s contact force exponent
T (−), T (+) kinetic energies of the two spheres before and after impact
E Young’s modulus
λ Poisson’s ratio
δ̇(+) relative separation velocity
�E energy loss
e coefficient of restitution
m equivalent mass
δ̇(−) initial deformation velocity
D hysteresis damping coefficient
c hysteresis damping factor
δm maximum deformation
δ̇ relative normal velocity
�Ec,�Er energy loss for compression or restitution

1 Introduction

A multibody mechanical system mainly contains two parts, that is, bodies and joints, which
restrict the relative motion of the various bodies of the system. Contact–impact events can
frequently occur in mechanisms that have clearances at their joints, and the constraint equa-
tions of motion are based on them. The analysis of contact between two bodies can be ex-
tended to the analysis of impact in a multibody system. Therefore, the contact force model
that can describe the contact–impact event is used to represent the interaction among the
different bodies that comprise the multibody system.

The contact–impact phenomenon is important and must be considered for an accurate
analysis of the dynamic behavior of a multibody mechanical system since it has negligible
influences on the responses of the multibody system. However, the contact–impact problem
is challenging and complex to model because it depends on several factors, such as the
geometry of contacting surfaces, material properties, friction, and the contact law involving
the interaction among different bodies that make up the multibody system. Over the last few
decades, the contact problem has been studied by many researchers [1–4], and the interest
on this topic is still arising [5–17].

In general, two main approaches are often used to model the contact–impact events
in a multibody system, including the nonsmooth dynamics formulation and the regular-
ized approach [13, 14]. The first approach is known as a rigid approach since it assumes
that the impact effect occurs instantaneously [18]. In the nonsmooth dynamics approach,
there are two ways to treat the contact–impact problem in a multibody system, namely
the linear complementarity problem (LCP) [4, 19] and the differential variational inequal-
ity (DVI) [20, 21]. For the LCP, the unilateral constraints are used to compute the contact
forces in the contact dynamics problem with the purpose of preventing penetration. For the
DVI, simpler integrator schemes are employed to directly deal with nonsmooth phenomena
[16, 20]. Although the nonsmooth approach is relatively efficient for the contact analysis
in a multibody system, the unknown duration of the contact problem limits its application
since the assumption of instantaneity for the impact effect is invalid if the duration of the
contact is large enough [22].
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In turn, the regularized approach, based on the contact force, can be expressed as a con-
tinuous function of the relative deformation between the compliant surfaces of the contact
bodies, so it is often named as a compliant contact force function or model. This approach
can be understood as if each contact region of the two contact bodies is covered with some
spring–damper elements scattered over their surfaces. In contrast to the nonsmooth formu-
lation, the regularized approach is referred to as the continuous analysis, which requires the
evaluation of the contact force during the contact period. Over the last few decades, several
different contact force models have been published in the literature to calculate the con-
tact force [23, 24]. The simple model is the linear Kelvin–Voigt viscoelastic model [25].
However, the linear model is not very accurate since it does not consider the overall nonlin-
ear nature during the impact process. A more suitable model is the nonlinear Hertz contact
law [26]. The model is purely elastic in nature and does not account for the energy dissi-
pation process associated with the damping of materials. Thus, a large number of studies,
based on the Hertz theory, have been performed to accommodate the energy dissipation in
the form of internal damping. The classical dissipative contact force models are the Hunt
and Crossley model [27], the Lankarani and Nikravesh model [22], and the Flores et al.
model [15]. Some other models of the dissipative contact force can be found in the previous
studies by Herbert and McWhannell [28], Lee and Wang [29], Gonthier et al. [30], and Zhiy-
ing and Qishao [31]. In short, these models have inherently advantages and disadvantages
for each particular application, which have been listed in the paper [24].

Two approaches make it possible to obtain the energy loss during the contact process.
In the first approach, the energy loss is controlled by the coefficient of restitution. This pa-
rameter is, in general, assumed to be constant; however, it depends on several factors such
as the geometry of the contacting surfaces, pre-impact velocity, local material properties,
contact duration, temperature, and frictions [32, 33]. In the other approach, the energy loss
is obtained from a damping force, which is a function of the deformation velocity. In the
present work, based on the above method, different deformation velocity formulations are
presented and discussed to calculate energy loss and also to account for the difference of
the energy loss in the compression phase and the restitution phase during the contact pro-
cess. Furthermore, a new dissipative contact force model is proposed, which is based on the
analysis of the energy loss calculated separately by the two approaches. The differences and
similarities in several dissipative contact force models are analyzed, and their limitations are
also discussed.

This new dissipative contact force model is based on the Hertz elastic contact equations
because one advantage of the Hertz contact law is that it considers the geometric and ma-
terial characteristics of the contacting surfaces, which are of paramount importance in the
contact dynamic responses. Meanwhile, the contact force model is only valid for low im-
pact velocity, that is, impacts slowly enough so that no plastic deformation occurs and the
damping force component is the prime factor for energy dissipation. For steel–steel system,
Braccesi and Landi (2007) [34] have proposed a so-called yield velocity (below this veloc-
ity, no plastic deformation occurs), that is, 0.519 m/s. This yield velocity has been described
by Vu-Quoc and Zhang (2002) [35].

In this work, we are interested in developing models involving contact events between
soft materials. The soft materials are characterized by low or medium values of the coeffi-
cient of restitution in the case of biomechanical systems and bushing elements. The method-
ology adopted in this work follows closely that of [15], in which an explicit relation between
the coefficient of restitution and a hysteresis damping factor is derived.

This paper is organized as follows. Section 2 presents the model of two solid spheres
in contact. The energy loss calculated by two different approaches are separately presented
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Fig. 1 Impact process between
two solid spheres

in Sects. 3 and 5. The fundamental issues associated with the deformation velocity are dis-
cussed in Sect. 4. Then, the new dissipative contact force model and its application range are
presented in Sect. 6. In Sect. 7, four dissipative contact force models are used in a numerical
example to investigate their behaviors. Finally, Sect. 8 ends the paper with the concluding
remarks.

2 Modeling of two solid spheres in contact

A direct central normal impact between two solid spheres is considered to analyze the gen-
eral situation of the impact process between two bodies [15, 22]. When two solid spheres are
in contact, a contact force occurs in the local contact zone due to the local deformation. In
general, the contact process can be separated as two phases, namely, the compression phase
and the restitution phase. The compression phase starts when the two spheres begin contact
and ends when the deformation reaches the maximum value or the deformation velocity is
zero. The restitution phase starts at the instant of the maximum deformation and lasts until
the two spheres separate.

In Fig. 1, let the two solid spheres i and j have masses mi and mj , velocities v
(−)
i and v

(−)
j

at the time t (−)of the initial contact of the local contact surfaces, and velocities v
(+)
i and v

(+)
j

at the time t (+)of separation of the local contact surfaces. Also, t (m) denotes the time when
the maximum deformation reaches with the velocity zero.

With radii Ri and Rj of the two spheres, the Hertz contact law relates the contact force
as [22]

FN = Kδn, (1)
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where δ is the local relative normal deformation between the contacting spheres, and the
exponent n is equal to 3/2. The generalized parameter K depends on the material properties
and the radii of the spheres, that is,

K = 4

3π(hi + hj )

[
RiRj

Ri + Rj

] 1
2

, (2)

where the material parameters hi and hj are

hl = 1 − λ2
l

πEl

(l = i, j), (3)

and the variables El and λl are, respectively, the Young modulus and Poisson ratio associated
with each sphere.

3 The energy loss associated with the coefficient of restitution

In this section, the energy loss associated with the coefficient of restitution is determined.
Let T (−) and T (+), respectively, denote the kinetic energies of the two spheres before and
after impact.

Considering the law of the energy balance, the energy loss during the impact process can
be expressed as [22]

�E = T (−) − T (+) = 1

2
mi

[(
v

(−)
i

)2 − (
v

(+)
i

)2] + 1

2
mj

[(
v

(−)
j

)2 − (
v

(+)
j

)2]
. (4)

The linear momentum balance between times t (−) and t (+) gives

mi

(
v

(−)
i − v

(+)
i

) + mj

(
v

(−)
j − v

(+)
j

) = 0. (5)

The coefficient of restitution, denoted e, is defined as the ratio between the relative ve-
locity at separation and the relative velocity at initial contact of the two spheres:

e = −v
(+)
i − v

(+)
j

v
(−)
i − v

(−)
j

. (6)

Substituting Eq. (6) into Eqs. (4), (5) and solving these equations, we obtain

�E = 1

2

mimj

mi + mj

(
v

(−)
i − v

(−)
j

)2(
1 − e2

)
. (7)

Equation (7) can be simplified as

�E = 1

2
m

(
δ̇(−)

)2(
1 − e2

)
(8)

where m and δ̇(−) are the equivalent mass of the two spheres and the initial deformation
velocity:

m = mimj

mi + mj

, (9)

δ̇(−) = v
(−)
i − v

(−)
j . (10)

Thus, using the coefficient of restitution and the deformation velocity, Eq. (8) represents
the energy loss during the impact process of the two solid spheres.
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Fig. 2 Equivalent system to the
contact process: (a) initial
contact phase; (b) the maximum
indentation phase

4 The relationship between the deformation velocity and deformation

An equivalent system of the contact process between the two solid spheres is considered
to get the relationship between the deformation velocity and deformation. The two spheres
are materialized by a single-degree-of-freedom dynamic system, as shown in Fig. 2. In this
figure, D, t (−), and t (m), respectively, denote the damping coefficient, the time of the initial
contact, and the time of the maximum deformation.

In this model, two phases, the compression phase and the restitution phase, are included
during the impact process between the two spheres. During the compression phase, the in-
dentation deformation δ increases from zero to the maximum compression deformation δm,
and the initial indentation velocity δ̇(−) reduces to zero. The contact force consists of the
spring force and damping force, which can be expressed as

FN = Kδn + Dδ̇, (11)

where the exponent n is usually set to 3/2 in the well-known Hertz contact law [26]. The
damping coefficient D is proposed by Hunt and Crossley as [27]

D = cδn. (12)

So, the contact force may be written as

FN = Kδ
3
2 + cδ

3
2 δ̇. (13)

The mathematical representation of the dynamic equivalent system can be expressed as

mδ̈ + Dδ̇ + Kδn = 0 (14)

or

mδ̈ + cδ
3
2 δ̇ + Kδ

3
2 = 0, (15)
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Fig. 3 Variations of deformation
velocity and deformation with
time for different impact
velocities: (a) δ̇(−) = 0.8 m/s;
(b) δ̇(−) = 0.1 m/s

in which m is the equivalent mass given by (9), c is called the “hysteresis damping fac-
tor,” and K represents the equivalent stiffness given by (2). This equation is a second-order
nonlinear ordinary differential equation with variable coefficients. It is difficult to get an
analytical solution of this dynamic equation, so the numerical solution may be obtained by
using Matlab software.

In order to get an effective numerical value, we consider a steel sphere as the impact body
and choose two groups of initial conditions to solve Eq. (15), that is,

(1) R = 0.01 m, E = 2.07 × 1011 N/m2, λ = 0.3, K = 1.07 × 1010 N/m1.5, m = 0.033 kg,
e = 0.9, c = 2.0 × 109 Ns/m2.5, δ̇(−) = 0.8 m/s, δ(0) = 0;

(2) R = 0.01 m, E = 2.07 × 1011 N/m2, λ = 0.3, K = 1.07 × 1010 N/m1.5, m = 0.033 kg,
e = 0.9, c = 2.0 × 1010 Ns/m2.5, δ̇(−) = 0.1 m/s, δ(0) = 0.

Figure 3 shows the deformation velocity–time diagram and the deformation-time dia-
gram in the whole impact process. It is apparently observed that the variation of the defor-
mation velocity–time is not a straight line, and the variation of the deformation velocity with
its corresponding deformation is quite clear by comparison.

During the period of compression, the relationship between the deformation velocity and
deformation has been considered. Lankarani and Nikravesh [22] assumed that the contact
force is represented by the Hertz contact model FN = Kδn. Thus, the mathematical repre-
sentation of the dynamic equivalent system can expressed as

mδ̈ + Kδn = 0. (16)
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The relationship between the deformation velocity and the deformation can be obtained
by (16), that is,

δ̇ = δ̇(−)

√√√√1 −
(

δ

δm

) 5
2

. (17)

Flores et al. [15] assumed that the contact force is represented by the ideal Kelvin–Voigt
viscoelastic model FN = Dδ̇ + Kδ. Thus, the mathematical representation of the dynamic
equivalent system can expressed as

mδ̈ + Dδ̇ + Kδ = 0. (18)

In the case that the damping effect (Dδ̇) is neglected, the relationship between the defor-
mation velocity and deformation can be obtained by (18), that is,

δ̇ = δ̇(−)

√
1 −

(
δ

δm

)2

. (19)

In addition, with the purpose of comparing with the two models above, the relationship
can also be assumed as a linear model and a step model, that is,

δ̇ = δ̇(−)

(
1 − δ

δm

)
, (20)

δ̇ = δ̇(−) − δ̇(−)

(
δ

δm

)2(
3 − 2δ

δm

)
. (21)

Based on the maximum deformation values of δm in Fig. 3, Fig. 4 shows the relation-
ship between the deformation velocity and deformation for the purpose of comprising these
formulas (17), (19), (20), and (21) with the numerical solution of Eq. (15).

From Fig. 4 we can observe that Matlab solution gives the relation curves between the
Lankarani and Nikravesh model and the Flores et al. model. In order to obtain a correspond-
ing function of the fitting curve given by Matlab codes, it is necessary to assume a functional
formula with a factor β , which can expressed as

δ̇ = δ̇(−)

√
1 −

(
δ

δm

)β

. (22)

The result shows that β = 2.408 (δ̇(−) = 0.8 m/s) and β = 2.395 (δ̇(−) = 0.1 m/s), which
are quite close to β = 5/2 in (17) presented by Lankarani and Nikravesh. Moreover, it must
be highlighted that the value of the factor β given by Lankarani and Nikravesh (β = 5/2) is
much closer to the true fitting value than the one given by Flores et al. (β = 2), as it can be
clearly observed in the diagrams plotted in Fig. 4.

In conclusion, Eq. (17) provides a good description of the relationship between the de-
formation velocity and deformation, and it will be utilized in the next section.

5 The energy loss associated with the damping force

In this section, the energy losses during the compression and restitution phases are deter-
mined. From Eq. (11), the total energy loss can be evaluated through the work done by the
damping force Dδ̇, which can be expressed as

�E =
∮

Dδ̇ dδ =
∮

cδ
3
2 δ̇ dδ, (23)
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Fig. 4 Deformation
velocity–deformation
relationship described by models
of Lankarani and Nikravesh,
Flores et al., Line, Step, and the
numerical solution for different
impact velocities:
(a) δ̇(−) = 0.8 m/s;
(b) δ̇(−) = 0.1 m/s

where
∮

refers to the integration around a hysteresis loop for the damping force.
The integral loop contains the compression and restitution phases. In the compression

phase, the deformation velocity δ̇ can be obtained from Eq. (17). Based on the assump-
tion that the relations between the deformation velocities and deformation during the two
phases are performed by the same function, we can express the deformation velocity δ̇ in
the restitution phase as

δ̇ = δ̇(+)

√√√√1 −
(

δ

δm

) 5
2

. (24)

It should be noted that the postimpact velocity δ̇(+) is negative because the spheres are
separated from each other.

Thus, the energy loss can divide into two phases, that is,

�Ec =
∫ δm

0
cδ

3
2 δ̇(−)

√√√√1 −
(

δ

δm

) 5
2

dδ, (25)
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�Er =
∫ δm

0
cδ

3
2
∣∣δ̇(+)

∣∣
√√√√1 −

(
δ

δm

) 5
2

dδ. (26)

Similar to Flores et al. [15], Eqs. (25) and (26) can be evaluated as

�Ec = 4

15
cδ̇(−)δ

5
2
m, (27)

�Er = 4

15
c
∣∣δ̇(+)

∣∣δ 5
2
m. (28)

The energy loss may be evaluated by introducing Eqs. (27) and (28) as

�E = �Ec + �Er = 4

15
cδ̇(−)δ

5
2
m + 4

15
c
∣∣δ̇(+)

∣∣δ 5
2
m. (29)

Taking into account the coefficient of restitution

e = − δ̇(+)

δ̇(−)
, (30)

the energy loss can be simplified as

�E = 4

15
c(1 + e)δ̇(−)δ

5
2
m. (31)

It should be noted that, similarly to (31), there is an error in Eq. (40) of the paper by
Flores et al. (2010) [15], which should be (1 + cr), not (1 − cr).

6 The hysteresis damping factor and the normal contact force model

In this section, the hysteresis damping factor c is evaluated, and the normal contact force
model is presented. An energy balance between the start and end of the compression phase
was taken into account to get the relationship between the maximum deformation δm and
the initial deformation velocity δ̇(−):

T (−) = T (m) + U(m) + �Ec, (32)

where T (m) is the kinetic energy at the end of compression phase, and U(m) is the stored
elastic strain energy during the compression phase:

U(m) =
∫ δm

0
Kδ

3
2 dδ = 2

5
Kδ

5
2
m. (33)

Substituting Eqs. (27) and (33) into Eq. (32), the energy balance may be expanded as

1

2
mi

(
v

(−)
i

)2 + 1

2
mj

(
v

(−)
j

)2 = 1

2
(mi + mj)

(
v

(m)
ij

)2 + 2

5
Kδ

5
2
m + 4

15
cδ̇(−)δ

5
2
m. (34)

The momentum balance between times t (−) and t (m) is given by

miv
(−)
i + mjv

(−)
j = (mi + mj)v

(m)
ij . (35)

Substituting Eqs. (9), (10), and (35) in Eq. (34), the relationship between δ̇(−) and δm is
expressed as

δ
5
2
m = 15m

4(2cδ̇(−) + 3K)
δ̇(−)2

. (36)
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Table 1 Different damping
factor models Model c

Flores et al. 8(1−e)
5e

K

δ̇(−)

Lankarani & Nikravesh 3(1−e2)
4

K

δ̇(−)

Hunt & Crossley 3(1−e)
2

K

δ̇(−)

The model in this paper 3(1−e)
2e

K

δ̇(−)

Combining Eqs. (8), (31), and (36), the hysteresis damping factor c can be finally evalu-
ated as

c = 3K(1 − e)

2eδ̇(−)
. (37)

If the contact material is purely elastic, that is, e = 1, the hysteresis damping factor equals
to zero; if the contact material is purely plastic, that is, e = 0, the hysteresis damping factor
tends to be infinite from the view of physics. Finally, the normal contact force in conjunction
with the hysteresis damping factor may be described in an alternative form:

FN = Kδn

[
1 + 3(1 − e)

2e

δ̇

δ̇(−)

]
. (38)

This is a direct relationship between the contact force and the coefficient of restitution.
It is important to point out that this relationship is valid for direct central and frictionless
impacts. The reason is that the coefficient of restitution is invalid when friction or multiple
points appear in impacts.

Equation (37) shows that the damping factor c depends on different parameters such as
the initial deformation velocity and the coefficient of restitution. In order to show the varia-
tions of damping factors associated with different coefficients of restitution, some damping
factor models were developed by Lankarani and Nikravesh [26], Flores et al. [15], Hunt and
Crossley [27], and in this paper, as shown in Table 1. These damping factor models can be
written in a common form:

c = α
K

δ̇(−)
, (39)

where α is a factor changed with the coefficient of restitution. It is provided as the input to
Eq. (38) and is denoted as ein. The damping factor c can be determined by α since K and δ̇(−)

are set values on the initial condition. Hence, the variation of α represents the variation of c.
Figure 5 shows this relationship between α and ein. It can be observed that, for a perfectly

elastic contact (ein = 1), the damping factors from the four models above have the same
zero value, whereas for a perfectly plastic contact (ein = 0), the damping factors from the
Lankarani and Nikravesh model and the Hunt and Crossley model have not infinite values as
expected. This fact is not surprising because they have derived their models for high values
of the coefficient of restitution, being, therefore, valid for hard contacts, such as metals. On
the other hand, it is clearly observed that the α–ein curves given by the model in this paper
are in good agreement with the one given by Flores et al. model. This is in accordance with
the actual situation that the damping factor should rapidly increase with the reducing input
coefficient ein and indicates that they can be valid for soft materials. Therefore, the damping
factor and the contact force model (38) are valid for the entire interval of values (0–1) of the
input coefficient ein.



142 S. Hu, X. Guo

Fig. 5 Relation between α and
ein for different contact models

The same result can be obtained by another way as follows. First, the input coefficient ein

is used for the contact force model. Next, the deformation velocity at separation time δ̇(+) is
obtained by using the contact force model to perform a continuous analysis. Thus, the actual
measure of restitution eout is evaluated as

eout = − δ̇(+)

δ̇(−)
. (40)

It can be found that this actual measure of restitution eout differs from the input coefficient
ein, but they should theoretically be the same value. Figure 6 shows the plots of eout versus
ein for different contact force models. Clearly, the Lankarani and Nikravesh model and the
Hunt and Crossley model are suitable for high values of ein. However, the Flores et al. model
and the contact force model described in this paper can be valid for the values of the input
coefficient of restitution ein between 0 and 1. It is highlighted that the solution for the present
model is much closer to the actual situation from the view of physical point, as presented in
Fig. 6.

7 Numerical examples

A classical bouncing ball problem is a simple contact system selected as an example of
application, as shown in Fig. 7 [15]. This bouncing ball problem is considered here to study
the influence of the use of different contact force models. The physical data for this example
are listed in Table 2.

The ball falls from the initial position until it collides with the ground, which is assumed
to be rigid and stationary. During the contact process between the ball and ground, the
contact force model is used to calculate the contact force, output velocity, deformation, and
contact time. The output velocity v(+) can especially help to calculate the displacement of
the ball after the ball rebounds.
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Fig. 6 Relation between eout
and ein for different contact
models

Fig. 7 An example of a
bouncing ball

Table 2 Data for the bouncing
ball example Characteristics Value

Mass m = 1.0 kg

Radius R = 0.1 m

Initial height h0 = 1.0 m

Acceleration of gravity g = 9.8 m/s2

Equivalent stiffness K = 1.4 × 108 N/m3/2

Initial velocity V0 = 0 m/s

When the ball contacts with the ground, the initial contact velocity v(−) can be evaluated
as

v(−) = √
2g(h0 − R). (41)
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Fig. 8 Deformation–time
relation in different coefficients
of restitution for different contact
force models: (a) Lankarani and
Nikravesh; (b) Hunt and
Crossley; (c) Flores et al.;
(d) described model

Since the velocity of ground is zero, the relative contact velocity δ̇(−) can be expressed
as

δ̇(−) = v(−) − 0 = √
2g(h0 − R). (42)

Therefore, the relative contact velocity would be used in the contact force model to cal-
culate relevant parameters. This problem was analyzed by using Matlab codes.

Figures 8, 9, 10, respectively, show the deformation–time curves, velocity–time curves,
and contact force–deformation curves of the ball obtained by four different contact force
models developed by Lankarani and Nikravesh, Hunt and Crossley, Flores et al., and the
model described in this work. Five difference values (1.0, 0.8, 0.6, 0.4, and 0.2) for the
coefficient of restitution are considered in the four different contact force models.

By analyzing the curves in Fig. 8(a–d), we can observe that the maximum deformation
value reduces with the decreasing coefficient of restitution. This fact is not surprising be-
cause the less amount of energy dissipated during the contact process. Furthermore, it is
worth noting that when the coefficient of restitution is high enough (e.g., e = 1), the four
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Fig. 8 (Continued)

contact force models exhibit very similar responses. However, when the coefficient of resti-
tution is low enough (e.g., e = 0.1), the Lankarani and Nikravesh model and the Hunt and
Crossley model do not work adequately. This means that the two models are valid for the
case in which the dissipated energy is small when compared to the maximum absorbed elas-
tic energy, that is, the relation is valid for the values of the coefficient of restitution close to
unity.

In turn, the Flores et al. model and the model described in this work present superior
responses for low values of the coefficient of restitution because the two models were de-
veloped to take into account the differences of the energy dissipation during both phases of
contact (the compression and restitution phases). From Figs. 9 and 10 we also concluded
that the Flores et al. model and the present model are suitable for the low and high values of
the coefficient of restitution (e.g., 0 < e ≤ 1). In general, the global data produced here are
corroborated by similar analysis available in the thematic literature [22, 26, 30, 36].
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Fig. 9 Deformation
velocity–time relation in different
coefficients of restitution for
different contact force models:
(a) Lankarani and Nikravesh;
(b) Hunt and Crossley; (c) Flores
et al.; (d) described model

From the plots of Fig. 9(a–d) we can observe that if the coefficient of restitution de-
creases, then the velocity value is reduced, and the time of the contact process is increased.
Furthermore, the velocity values obtained by the Flores et al. model and the model described
in this work are obviously close to null if the coefficient of restitution is close to zero. This
indicated that the model described in this work presents a superior response mainly for low
values of the coefficient of restitution, which means that it can perform well for perfectly
inelastic contacts. Moreover, for moderate and high values of the coefficient of restitution
(higher than 0.5), the four models present a close response. This means that the model de-
scribed in this work can perform well for the entire range of the coefficient of restitution.

Figure 10(a–d) shows the relationship between the contact force and the deformation.
Again, we observe that the Lankarani and Nikravesh model and the Hunt and Crossley
model dissipate less energy and exhibit smaller hysteresis loops. In contrast, the Flores et
al. model and the model described in this work dissipate more energy and exhibit larger
hysteresis loops. This fact is not surprising because these two models were developed taking
into account that the compression and restitution phased of the contact process are not equal
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to each other due to the differences in the energy loss between these two phases. Moreover,
it must be highlighted that for lower values of the coefficient of restitution, the latter two
models reflect the energy dissipation during the contact process that is better than in the
former two models.

In conclusion, the contact force models can be grouped into two main classes, one for the
higher values of the coefficient of restitution, including the Lankarani and Nikravesh model
and the Hunt and Crossley model, and the other for the entire range of the coefficient of
restitution, including the Flores et al. model and the model described in this work.

8 Conclusions

In this work, a new continuous contact force model for impact analysis in multibody dynam-
ics has been developed to take the energy balance during the contact process into account.
The energy loss during the impact process was evaluated separately based on the classical
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Fig. 10 Contact
force-deformation relation in
different coefficients of
restitution for different contact
force models: (a) Lankarani and
Nikravesh; (b) Hunt and
Crossley; (c) Flores et al.;
(d) described model

kinetic energy principle and the work done by damping force for the two-sphere impact. Fur-
thermore, a relationship between the deformation velocity and deformation was proposed to
calculate the dissipated energy due to the damping force. In particular, a direct approximate
mathematical expression of the relationship was obtained by comparing with the relevant
models, which was difficult to get by the form of analytical function.

The advantages and limitations of the new model together with three classical contact
force models were analyzed by comparing the output and input values of the coefficient of
restitution. Comparisons indicated that the result by the new model was closer to the actual
value for the entire range of the coefficient of restitution (0–1). Finally, numerical examples
were used to analyze and compare the four continuous contact force models. For high values
of the coefficient of restitution, these contact force models exhibited quite similar responses.
In sharp contrast, for the low or moderate values of the coefficient of restitution, the new
model and the Flores et al. model presented very close responses, which were different from
the case simulated with the Lankarani and Nikravesh model and the Hunt and Crossley
model. Thus, the new model is valid for soft and hard contact problems. Also, the model,
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Fig. 10 (Continued)

as an independent formula, can be extended directly for impact analysis of a multibody
mechanical system.

Acknowledgements We would like to thank the financial supports form the Natural Science Foundation
of China.

References

1. Greenwood, D.T.: Principles of Dynamics. Prentice-Hall, Englewood Cliffs (1965)
2. Dubowsky, S., Deck, J.F., Costello, H.: The dynamic modeling of flexible spatial machine systems with

clearance connections. J. Mech. Transm.—T. ASME 109(1), 87–94 (1987)
3. Shabana, A.A.: Dynamics of Multibody Systems. Wiley, New York (1989)
4. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996)
5. Bai, Z.F., Zhao, Y.: Dynamic behaviour analysis of planar mechanical systems with clearance in rev-

olute joints using a new hybrid contact force model. Int. J. Mech. Sci. (2011). doi:10.1016/j.ijmecsci.
2011.10.009

6. Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance
and lubricated spherical joints. Comput. Struct. 87(13–14), 913–929 (2009)

http://dx.doi.org/10.1016/j.ijmecsci.2011.10.009
http://dx.doi.org/10.1016/j.ijmecsci.2011.10.009


150 S. Hu, X. Guo

7. Mukras, S., Mauntler, N.A., Kim, N.H., Schmitz, T.L., Sawyer, W.G.: Modeling a slider–crank mecha-
nism with joint wear. SAE Int. J. Passeng. 2(1), 600 (2009)
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