
Multibody Syst Dyn (2015) 34:275–305
DOI 10.1007/s11044-014-9439-2

Lie-group integration method for constrained multibody
systems in state space

Zdravko Terze · Andreas Müller · Dario Zlatar

Received: 3 December 2013 / Accepted: 21 October 2014 / Published online: 22 November 2014
© Springer Science+Business Media Dordrecht 2014

Abstract Coordinate-free Lie-group integration method of arbitrary (and possibly higher)
order of accuracy for constrained multibody systems (MBS) is proposed in the paper. Mathe-
matical model of MBS dynamics is shaped as a DAE system of equations of index 1, whereas
dynamics is evolving on the system state space modeled as a Lie-group. Since the formulated
integration algorithm operates directly on the system manifold via MBS elements’ angular
velocities and rotational matrices, no local rotational coordinates are necessary, and kinemat-
ical differential equations (that are prone to singularities in the case of three-parameter-based
local description of the rotational kinematics) are completely avoided. Basis of the integra-
tion procedure is the Munthe–Kaas algorithm for ODE integration on Lie-groups, which is
reformulated and expanded to be applicable for the integration of constrained MBS in the
DAE-index-1 form. In order to eliminate numerical constraint violation for generalized po-
sitions and velocities during the integration procedure, a constraint stabilization projection
method based on constrained least-square minimization algorithm is introduced. Two nu-
merical examples, heavy top dynamics and satellite with mounted 5-DOF manipulator, are
presented. The proposed Lie-group DAE-index-1 integration scheme is easy-to-use for an
MBS with kinematical constraints of general type, and it is especially suitable for dynamics
of mechanical systems with large 3D rotations where standard (vector space) formulations
might be inefficient due to kinematical singularities (three-parameter-based rotational coor-
dinates) or additional kinematical constraints (redundant quaternion formulations).

Z. Terze (B) · D. Zlatar
Department of Aeronautical Engineering, Faculty of Mechanical Engineering and Naval Architecture,
University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
e-mail: zdravko.terze@fsb.hr

D. Zlatar
e-mail: dario.zlatar@fsb.hr

A. Müller
Institute of Robotics, JKU Johannes Kepler University, 4040 Linz, Austria
e-mail: andreas.mueller@ieee.org

http://crossmark.crossref.org/dialog/?doi=10.1007/s11044-014-9439-2&domain=pdf
mailto:zdravko.terze@fsb.hr
mailto:dario.zlatar@fsb.hr
mailto:andreas.mueller@ieee.org

276 Z. Terze et al.

Keywords Lie-groups · Multibody systems dynamics · Numerical integration methods ·
DAE systems · Constraint violation stabilization · Munthe–Kaas integration algorithm ·
Special orthogonal group SO(3)

1 Introduction

Mathematical modelling and numerical simulation of large 3D motion and computational
treatment of kinematical constraints are central problems in computational multibody dy-
namics. Unlike problems that belong to the ‘classical’ structural dynamics, which focused
primarily on small displacements leading to linear problems, multibody dynamical models
had to deal with kinematical constraints, large rotations and geometrical nonlinearities from
the very beginning of this discipline of modern applied mechanics [1].

However, since large 3D rotations are not vectorial quantities [2], their representation
within computational procedures and computer codes are far from trivial. Actually, a math-
ematical representation of 3D rotations and subsequent dynamical modelling, which are
strongly related to a chosen representation, are characteristic points distinguishing one
multibody computational procedure and integration algorithm from another. The standard
3D large rotation decomposition via 3-axis rotation angles (such as Euler and Tait–Bryan
angles) has played an important role in the history of mechanical modelling [3, 4] (as well
as in related disciplines, such as flight mechanics) and has also been adopted within multi-
body formalisms, especially for modelling cases where 3D rotations are large but with a
limited domain definition.

The fact that 3D rotation permits its representation via three parameters, such as Euler
angles, comes from its mathematical structure [3]: 3D rotation is described via rotation
matrix R that belongs to the special orthogonal group SO(3), which is also a manifold,
that is, it is a nonlinear space that can be locally parameterized by coordinates that form a
‘chart’ [5, 6]. Along this line, Euler angles form a chart on SO(3), providing a possibility
to shift the calculations from the original nonlinear rotation manifold to a linear parameter
space where standard vector-based algorithms can be used. However, as noted earlier, such
parameterization has only local character, with the consequence that there inevitably exist
singular positions, regardless of which local three-parameter coordinate system is used [7].
Nevertheless, any such three parameters constitute a minimal set of independent coordinates.

To avoid the problem of singularities, several authors proposed a descriptor form of the
rotation description, introducing more (redundant) parameters than the DOF of the problem
at hand (i.e. by introducing more than three parameters for a single 3D rotation). The most
frequently used descriptor methodology calls for the introduction of a quaternion (set of
four parameters) [4, 8], but some authors have also utilized nine-parameter descriptions
based on the rotation matrix R rows and columns entities [9–11]. Although the descriptor
formulation circumvents the singularity problem of local charts of the rotation manifold,
it introduces more kinematical variables than necessary, and, by introducing the additional
algebraic constraints due to redundancy of the parameters, it unnecessary complicates the
modelling and numerical procedure.

In this paper, we will adopt a different route for the large 3D rotation description. Instead
of using a local parameterization (such as Euler angles) with singularities or a redundant
descriptor vector space formulation, we will solve the rotation part of a multibody system
(MBS) dynamics directly on the rotation manifold of each rigid-body configuration space.
By following this route, a local parameterization of each body rotation as well as kinemati-
cal differential equations (differential equations that relate angular velocities and derivatives

Lie-group integration method for constrained multibody systems 277

of the introduced rotation parameters and which are, in the case of three parameters model
description, prone to numerical singularities) are completely avoided in the standard form.
To this end, the proposed computational procedure operates only with the body rotation ma-
trices R and angular velocities ω, avoiding thus local rotation parameters (therefore some
authors call this formulation as ‘coordinate-free’), which leads to a more compact and nu-
merically more efficient integration routine.

However, working directly on nonlinear manifolds assumes that the integration algorithm
is designed appropriately. In particular, vector-space operations of addition and linear com-
bination that are intrinsic to all standard integration ODE/DAE routines (such as Runge–
Kutta schemes, Adams–Moulton, Newmark, generalized α-method, BDF algorithm, etc.)
are no longer valid. Instead of using vector-space methods, ODE integration methods that
operate on nonlinear manifolds (a vector space can be understood as a linear manifold) and
Lie-groups (specially structured manifolds that also possess mathematical structure of the
group) are described in the literature and ready to be used [12, 13]. However, these routines
are almost exclusively designed to be used for ODE problems on manifolds only, meaning
that kinematic (algebraic) constraints issues and equivalent DAE problems (that are cen-
tral to MBS applications) cannot be solved straightforwardly by the existing ‘off-the-shelf’
Lie-group procedures.

The goal of the paper is to propose a mathematical model and a numerical integration
algorithm based on the Lie-group integration scheme (in particular, Munthe–Kaas Lie-group
integration scheme [13, 14]) that will be pertinent to the constrained multibody dynamics. To
this end, the state space of an MBS is modelled as a Lie-group, and the mathematical model
of the numerical scheme is cast as DAE of index 1. The method primarily focuses on the
dynamics of a rigid-body MBS, although its application can also be easily extended on the
systems that possess elastic components (a numerical procedure focused on the integration
of the flexible MBS, designed in the Lie-group settings in index 3 DAE form, is described
in [15]).

Novel contribution of the paper can be summarized as follows:

(1) For the first time, mathematical formulation of MBS state space, introduced as Lie-
group, has been described.

(2) The novel numerical algorithm that operates in a state space Lie-group has been pro-
posed.

The algorithm is based on the Munthe–Kaas numerical procedure for solving Lie-
group ODE problems. However, in this paper, the Munthe–Kaas approach has been
expanded to be pertinent for DAE index 1 problems in Lie-groups and applied for con-
strained MBS.

(3) A novel constraint violation stabilization method that operates directly in an MBS state
space Lie-group has been proposed.

By discussing the novel points described above, the paper proposes a compact integra-
tion procedure for the constrained MBS on Lie-groups. The procedure can be of arbitrary
order of accuracy, including higher orders, such as 4th-order of accuracy Lie-group inte-
gration scheme that is demonstrated within the presented examples (actually, for the first
time, to our best knowledge, an MBS Lie-group integration scheme is proposed that can be
easily implemented as a higher-order method). Since the proposed method operates directly
with the MBS elements’ angular velocities and rotational matrices (meaning that local pa-
rameterization is avoided), this formulation circumvents the well-known problems of the
classical vector-space-based MBS integration procedures, such as the kinematic singularity
of the three-parameter rotation basis, re-parameterization of the system kinematics during
integration, and numerical non-efficiency of the kinematic differential equations.

278 Z. Terze et al.

Here it should be emphasized, for completeness, that geometry of the rotation space,
modelled as a Lie-group, was already studied and applied within the geometrically consis-
tent integration schemes described in the pioneering works [16–18]. Also, the integration
methods of problems of evolution in the rotation group based on generalization of Runge–
Kutta methods that are similar to the Munthe–Kaas approach are discussed in [19].

2 Configuration space and state space of unconstrained MBS as Lie-groups

The configuration space of an unconstrained MBS comprising k bodies is modelled as a
Lie-group G = R3 × SO(3) × · · · × R3 × SO(3) (k copies of R3 × SO(3)) with elements
in the form

q = (r1,R1, . . . , rk,Rk), (1)

where SO(3) = {R ∈ R3×3 : RRT = I,det R = +1} is the three-dimensional special or-
thogonal group (Lie-group of rigid body rotation). Each factor R3 × SO(3) represents
a configuration of a single rigid body i represented by (ri ,Ri), its mass centre global
position vector and body rotation matrix with regard to global frame. G is a Lie-group
of dimension n = 6k, where k is the number of rigid bodies. The left multiplication in
the group is given as Lq : G → G, q̄ �→ q · q̄ , where the product operation on G is de-
fined by q · q̄ = (r1 + r̄1,R1R̄1, . . . , rk + r̄k,RkR̄k), and the group identity element is
e = (01, I1, . . . ,0k, Ik).

The angular velocity of a rigid body expressed in the coordinate system attached to the
body is given by the left-invariant vector field ω̃i ∈ so(3) defined as

Ṙi (t) = Ri (t)ω̃i , (2)

with so(3) being the Lie-algebra of SO(3). The element of the Lie-algebra ω̃i ∈ so(3) can be
identified with R3 via mapping operator, which maps a vector ωi ∈ R3 to a skew-symmetric
matrix ω̃i ∈ so(3) [3]. Therefore, the velocity of one body can thus be represented by the
couple (vi , ω̃i) ∈ R3 × so(3) or (vi ,ωi) ∈ R3 × R3. With G so defined, its Lie-algebra is
given as g = R3 × so(3) × · · · ×R3 × so(3) (k copies of R3 × so(3)) with elements of the
form

v = (v1, ω̃1, . . . ,vk, ω̃k). (3)

Alternatively, the vector notation v = [vT
1 ,ωT

1 , . . . ,vT
k ,ωT

k]T is used for formulation of
mathematical models for practical (matrix-notation-based) computations, see Sects. 4 and 7.

Aiming for the application of the Lie-group integration scheme, the MBS state space
must also be expressed as a Lie-group. With the above, the MBS state space is introduced as
S = G×g, that is, S = R3 ×SO(3)×· · ·×R3 ×SO(3)×R3 × so(3)×· · ·×R3 × so(3) ∼=
T G with the elements

x = (r1,R1, . . . , rk,Rk,v1, ω̃1, . . . ,vk, ω̃k). (4)

S is the left-trivialization of the tangent bundle T G. This is a Lie-group itself that possesses
the Lie-algebra s =R3 × so(3) × · · · ×R3 × so(3) ×R3 ×R3 × · · · ×R3 ×R3 with the
element

z = (v1, ω̃1, . . . ,vk, ω̃k, v̇1, ω̇1, . . . , v̇k, ω̇k). (5)

Lie-group integration method for constrained multibody systems 279

The element z ∈ s summarizes the MBS velocity and acceleration. Considering a single body
for the sake of clarity, the operations on the state-space Lie-group S and its Lie-algebra s
are introduced as follows:

(a) Left multiplication in S = R3 × SO(3) × R3 × so(3) is defined as Lx : S → S, x̄ �→
x · x̄, where the product operation is given as

(a, b, c, d) · (e, f, g,h) = (a + e, b · f, c + g,d + h).

(b) Addition in s = R3 × so(3) ×R3 ×R3:

(u,w, c, d) + (ū, w̄, c̄, d̄) = (u + ū,w + w̄, c + c̄, d + d̄).

(c) Multiplication by scalar in s = R3 × so(3) × R3 × R3 : α(u,w, c, d) = (αu,αw,αc,

αd).
(d) Exponential map in s =R3 × so(3) ×R3 ×R3 : exp(u,w, c, d) = (u, expm(w), c, d).
(e) Bracket in s = R3 × so(3) ×R3 ×R3 : [(u,w, c, d), (ū, w̄, c̄, d̄)] = (0, [w, w̄],0,0).

On the right-hand side of these definitions, ‘·’ is the multiplication in SO(3), ‘+’ is the
addition in R3 and so(3), ‘expm’ is the exponential map on so(3), and [w, w̄] is a Lie
bracket (matrix commutator [w, w̄] = ww̄ − w̄w for the matrix Lie-algebra so(3)). For an
MBS consisting of k bodies, these operations are component-wise carried over to S and s .

It will be necessary to relate the tangent space of the configuration space Lie-group G at
the given configuration q to its Lie-algebra. This is given by the differential (tangent map)
of the left multiplication map Lq as

L′
q : TeG → TqG : (v1, ω̃1, . . . ,vk, ω̃k) �→ (ṙ1,R1ω̃1, . . . , ṙk,Rkω̃k), (6)

which is the identity map for translation velocity, that is, vi = ṙi . It relates the time derivative
q̇ of the MBS configuration to the MBS velocity v ∈ g via the tangent map as

q̇ = L′
q(v). (7)

This is the extension of the left-invariant Poisson equation (2), relating Ṙi and ω̃i , to a
system of k unconstrained rigid bodies when R3 × SO(3) is used as the configuration space
of a rigid body. Or, speaking prose all our lives, this is merely the collection of ṙi = vi and
Ṙi (t) = Ri (t)ω̃i for all bodies i = 1, . . . , k, relating translational and angular velocities to
the time derivatives of position vector and rotation matrix when R3 × SO(3) is used as a
rigid-body configuration space.

Analogously, on the state space S = G × g the differential of the left multiplication map,
given as

L′
x : TeS → TxS,

(v1, ω̃1, . . . ,vk, ω̃k, v̇1, ω̇1, . . . , v̇k, ω̇k) �→ (ṙ1,R1ω̃1, . . . , ṙk,Rkω̃k, v̇1, ω̇1, . . . , v̇k, ω̇k),
(8)

relates the Lie-algebra s to the tangent space at x. This allows relating the time derivative
of the MBS state to the velocity and acceleration of the unconstrained MBS, summarized in
z ∈ s , as

ẋ = L′
x(z). (9)

280 Z. Terze et al.

In summary, the Lie-groups G and S serve as configuration and state space of the uncon-
strained MBS. Relation (7) yields kinematic reconstruction equations that express the MBS
configuration (generalized positions) change as the system is moving with a certain velocity.
By solving them on the basis of the known velocity field, one determines the motion of the
MBS. Now, the kinematic relation (9) determines the change of the state of an unconstrained
MBS as it moves with certain velocity and acceleration. This is the central relation for the
following Lie-group integration scheme.

3 Kinematic reconstruction of MBS motion

The attitude of a rotating rigid body R(t) can be reconstructed from its angular velocity
ω̃i (t) ∈ so(3) by solving (2). Starting from an initial rotation R0, the solution for the rotation
matrix is given as R(t) = R0 exp(ũ(t)) [12, 20], where the closed form of the exponential
mapping on SO(3) is given by the Rodrigues formula [7], and u(t) ∈R3 is the instantaneous
rotation vector.

The kinematic reconstruction equation (2) is an ordinary differential equation (ODE) on
the Lie-group SO(3). It can be solved numerically by using geometric integration methods
designed to operate in Lie-groups [12, 13]. Integration of attitude kinematics (2) is a classical
application of the Lie-group integration schemes, which can be extended to unconstrained
MBS. As shown above, this gives rise to the kinematic reconstruction equation (7) that
allows for direct application of a Lie-group integration scheme to the kinematics of the
overall MBS. However, this is not central topic of this paper.

This paper aims to describe a unified approach for numerical integration of kinematics
and dynamics of MBS. To this end, the crucial observation is that Eqs. (7) on the Lie-group
configuration space and Eqs. (9) on the Lie-group state space have the same mathematical
structure, allowing for integration within the same geometric procedure. However, the MBS
motion must also satisfy kinematic constraints the MBS is subjected to. To this end, the
DAE index 1 formulation will be incorporated into the Lie-group integration framework,
ensuring that the velocities and accelerations in z ∈ s on the right-hand side of (9) satisfy
the imposed kinematic constraints. To be precise, the DAE index 1 formulation allows for
immanent acceleration constraints satisfaction only, whereas velocities (as well as config-
uration coordinates) must generally be corrected by constraint stabilization procedure as
described in Sect. 6.

In short, the basic underlying idea of the geometric MBS integration method introduced
in this paper is to solve (9) with a Lie-group integration scheme, whereas the z ∈ s is to be
determined by the MBS dynamics, consistently with the kinematic constraints imposed to
the system.

4 Dynamics formulation for constrained MBS in Lie-group setting

To formulate a dynamical model of the system, we start from the equations of motion (based
on Newton–Euler equations) of constrained MBS introduced in the form

Mv̇ + CT(q)λ = Q(q,v, t), (10a)

q̇ = L′
q(v), (10b)

�(q) = 0, (10c)

Lie-group integration method for constrained multibody systems 281

where M is a constant n × n-dimensional system inertia matrix composed of masses and
inertia tensors of the unconstrained system bodies (whose configuration space is G, n = 6k,
assuming k bodies), v ∈ Rn, v = [vT

1 ,ωT
1 , . . . ,vT

k ,ωT
k]T are system velocities in usual ma-

trix notation, q (system configuration) and v (system velocities with angular velocities ex-
pressed as ω̃i ∈ so(3)) are given by Eqs. (1) and (3), Q represents external and all other
forces, λ ∈ Rm is the vector of Lagrange multipliers, and C is the m × n-dimensional con-
straint Jacobian, so that �′(v) = C(q)v, where �′ is the differential of the scleronomic con-
straint mapping �(q) : G → Rm. The latter imposes geometric (configuration) constraints
of the MBS on the configuration space G. Consequently, the MBS is constrained to evolve on
the (n − m)-dimensional sub-manifold N = {q ∈ G : �(q) = 0}. Some authors call the con-
figuration space G (space of unconstrained bodies G where geometric constraints �(q) = 0
are defined) an ambient configuration space [21].

System (10a)–(10c) is a DAE system of index 3 on the Lie-group G. The matrix equa-
tion (10a) represents dynamical equations of the MBS subjected to the configuration con-
straints (10c) that are complemented by the kinematic reconstruction equations (10b) on G.
As it is well-known, the integration results of (10a)–(10c) should also satisfy system kine-
matical constraints on the velocity

C(q)v = 0, (11)

and the acceleration level

C(q)v̇ = ξ(q,v), (12)

which are obtained by once and twice differentiation of the configuration constraints
�(q) = 0 (the same procedure as it is in the case of classical MBS formulations). Here,
we assumed that the MBS is subjected to scleronomic constraints, but the model is eas-
ily extended to incorporate rheonomic constraints as well. As shown below, the constraint
equations in the matrix notation (10c), (11) and (12) as well as the dynamical Eq. (10a) have
identical expressions as they would have if the dynamical model had been formulated by
using classical MBS formulations [1, 4, 22].

Although system (10a)–(10c) can be integrated directly by using DAE index 3 numerical
schemes [15], in order to formulate dynamical model to be pertinent to utilization within the
system kinematic reconstruction on S = G × g via Munthe–Kaas type of ODE integrators,
we reformulate (10a)–(10c) to the DAE index 1 form that yields

[
M CT

C 0

][
v̇
λ

]
=

[
Q
ξ

]
. (13)

Above, during the well-known system index reduction procedure, the acceleration constraint
equation (12) was included in (13) instead of the position constraint equation (10c), whereas
the system dynamical equations (10a) remains the same as it appears in (10a)–(10c). As it
is well-known from the classical MBS literature [4, 22, 23] and research papers in the field
(see, for example, [24] and references cited there or [25]), the integration results of (13)
should also satisfy kinematical constraints on the position and velocity level (10c) and (11)
(so-called ‘hidden constraints’), beside the constraints at the acceleration level (12) that will
be automatically satisfied during integration since they are explicitly included in dynamical
model (13).

The concept of the Lie-group state space model, which is a core of the MBS geometric
integration algorithm presented in the paper, is based on the utilization of (9) and deduction
of z(x, t) ∈ s from the constrained MBS dynamical model (13). To this end, for the given

282 Z. Terze et al.

generalized forces Q(x, t), the linear algebraic system (13) can be solved giving rise to a
mapping

v̇ = H(t, x,Q). (14)

By introducing the mapping F :R× S → s defined as

F (t, x) = (
v,H(t, x)

)
, (15)

the MBS dynamics equation yields with (9) the state-space form as

ẋ = L′
x

(
F (t, x)

)
. (16)

Here it should be emphasized that the index 1 DAE (13) is exactly in the same (matrix)
form as it appears in the classical vector-space-based MBS formulations [4], assuming that
the MBS velocity and acceleration fields are expressed via v and v̇ (i.e. via bodies’ (ab-
solute) translational and angular velocities and accelerations) and kinematical constraints
(10c), (11) and (12) are derived on the basis of the system configuration expressed via q

(i.e. via bodies’ position vectors ri and rotation (body orientation) matrices Ri) and v (or v)
and v̇. Speaking of technical details, in [26] one can find principles of derivation of kinemat-
ical constraints of all lower-pair joints and some higher-pair joints on the basis of such an
approach. See also Appendix B and examples presented in Sect. 7. For example, spherical
joint kinematical constraints that define heavy top kinematical structure (Sect. 7.1) are given
by (25), (26) and (27), whereas the pertinent dynamical equations and system Jacobian C
are expressed by (23), (24) and (28). In matrix notation given here, these expressions are
just the same as if they would appear in the classical MBS formulations, and such is also the
heavy top final dynamical model that yields DAE index 1 form given by (29).

What is different, however, is the integration procedure. On the contrary to the classi-
cal MBS formulations that include reconstruction of the system kinematics based on the
local (singularity-prone) rotation coordinates [4, 27], the Lie-group geometric algorithm
presented in the sequel allows for the straightforward integration of DAE index 1 dynamical
model (13) together with the simultaneous MBS kinematic reconstruction expressed directly
in the coordinate-free form by means of q . Usual kinematic singularities are thus completely
avoided, and the overall integration algorithm takes particularly compact form.

5 Lie-group integration algorithm for constrained MBS

Equation (16) is a first-order ODE on the Lie-group S that can be solved numerically using
geometric integration methods operating directly on Lie-groups. In this paper, the Munthe–
Kaas Lie-group method [12–14] is adopted as the underlying integration algorithm. By fol-
lowing this approach, the solution of (16) is expressed in the form

x(t) = x(0) exp
(
u(t)

)
, (17)

where u(t) ∈ s is a solution of the ODE system in the Lie-algebra s [12, 13]

u̇ = dexp−1
−u

(
z(x, t)

)
, u(0) = 0, (18)

and the operator dexp−1
−u is introduced in (A.9). Since (18) is an ODE defined in the Lie-

algebra s that is linear space, any vector-space ODE integrator, such as the 4th-order Runge–
Kutta (RK) method, can be used for its integration. This is the focal point in the Munthe–
Kaas (MK) type of integrators: instead of working in a nonlinear manifold where (16) is

Lie-group integration method for constrained multibody systems 283

defined, the integration point is transferred into a local tangent (vector) space by (18) and
integrated in a Lie-algebra by using standard ODE integration methods, see Fig. 1. In this
paper, the RK scheme is used for integration in a Lie-algebra, as it was the case in the
original Munthe–Kaas Lie-group algorithm.

Now, the Lie-algebra substitution equation (18) can be written in the form

u̇ = dexp−1
−u

(
F (t, x)

)
, u(0) = 0, (19)

and the standard RK scheme can be applied to solve it within each integration step of the
Lie-group MK-RK algorithm.

Therefore, by following [12, 14, 28], the integration step n̄ in the time interval t ∈
[tn̄−1, tn̄ = tn̄−1 + h] of the MK-RK algorithm can be given in the form

x0 = xn̄−1

for i = 1,2, . . . , s

ui = h

i−1∑
j=1

aijf
∗
j

fi = F
(
tn̄−1 + cih, x0 exp(ui)

)
f ∗

i = dexp−1
−ui

(fi, n)

end

wn̄ = h

s∑
j=1

bjf
∗
j

xn̄ = x0 exp(wn̄)

(20)

where u,fi, f
∗
i ,wn̄ ∈ s , the coefficients aij , bj , ci are given by the s-stage nth-order Runge–

Kutta method’s Butcher table [12], and the function dexp−1
−ui

(fi, n) is the truncated form
of (A.9), where the upper summation in (A.4) is specified as n (to keep the accuracy of
the overall MK-RK algorithm in accordance with the accuracy of the chosen nth-order RK
scheme [13]). Closed forms for fast computations of the functions exp and dexp−1 for SO(3)

Lie-group can be found in Appendix B in [12].
The outline of the integration procedure is depicted in Fig. 1. Once accelerations of the

system are obtained for the current integration step by solving the linear algebraic system
of the classical (matrix-notation-based) DAE index 1 dynamical model of constrained MBS
(13), an integration point is ‘lifted’ from the (nonlinear) state space group manifold S to its
local (vector) tangent space (i.e. Lie-algebra s), where it is integrated as a classical vector
space ODE problem by means of the new local (tangent space) coordinates u (as indicated
in (19), the initial condition for the step ODE integration is always u(0) = 0). Once Lie-
algebra ODE integration is completed, the step integration point is ‘pulled-back’ to the state
space manifold S by the exponential function, which completes the proposed method inte-
gration step.

6 Constraint violation stabilization procedure

The numerical solution obtained by the described algorithm will automatically satisfy the
constraint equation at the acceleration level (12) since this equation is explicitly incorporated

284 Z. Terze et al.

Fig. 1 Outline of constrained
MBS Lie-group state space
integration step

Lie-group integration method for constrained multibody systems 285

in the DAE index 1 system (13) and the mapping H in (14). However, similarly to the case
with standard vector-space-based formulations [1, 4, 22], constraint equations for general-
ized positions (10c) and velocities (11) will be inevitably violated during the straightforward
integration based on the DAE index 1 system. To tackle this problem, a constraint stabiliza-
tion procedure at the position and velocity level has to be incorporated into the integration
procedure, as it is common practice in MBS dynamics [1, 25, 29].

For the purpose of the constraint stabilization procedure that operates directly on S (that
is MBS state space formulated as a Lie-group where the proposed geometric integrator re-
turns unstabilized integration results), we propose a projective method based on the con-
strained least-square problem given in the form

min
(qi ,vi)

∥∥∥∥
(

qi − q̂i

vi − v̂i

)∥∥∥∥
2

w

, (21)

�(q) = 0, RiRT
i = I, �̇(q,v) = 0, (22)

(where ‖ ‖w denotes the weighted norm, and the difference operation in qi − q̂i stands for
the difference between the corresponding vector-column ri and matrix Ri elements in qi and
q̂i , i.e. it is not a difference between the group elements, which is an operation that is not
defined). During the minimization procedure (21), the projected variables have to satisfy the
constraint equations (22) to obtain the stabilized values qi,vi for each rigid body i (i running
from 1 to k; k is the number of rigid bodies), whereas q̂i , v̂i are the unstabilized values
obtained from the integrator for the current integration step. It should be emphasized here
that the constraint violation corrections imposed by (21) and (22) are actually introduced in
the R12k linear space where S is embedded. Hence, the equations RiRT

i = I are included
in the projection algorithm to make sure that the stabilization procedure returns results in
S and does not undermine the orthogonality of Ri , which is geometrically preserved by the
presented Lie-group integration algorithm (that respects a nonlinear state space manifold
and returns unstabilized integration results in S).

Within the stabilization procedure, after each integration step on the Lie-group S , integra-
tion values are adjusted to be in accordance with the constraints �(q) = 0 and �̇(q,v) = 0
by preserving the orthogonality of Ri during the process (as explained, we treat Ri as it is
valid Ri ∈ GL(3) and impose the orthogonality equations RiRT

i = I as ‘external’ condition
during minimization). In (21), the unit matrix weighted norm I was used for the stabiliza-
tion of the configuration q , whereas for the velocities v, two weighted norms were used and
compared in the examples presented in the next section: the unity norm I and the system
inertia matrix M. As pointed out in [30], basically any positive-definite matrix qualifies for
this selection, and some authors also proposed modified solutions with the aim of improv-
ing the numerical efficiency or energy performance of the algorithm (see [30] and references
there).

Technically, a numerical solution of the projection step can be computed iteratively us-
ing the Gauss–Newton algorithm, which is essentially based on the generalized inverses (or
pseudo-inverse) of the system constraint matrix and which represents a well-known common
procedure in the domain of numerical solving of algebraic systems [31, 32]. Also, different
approaches, such as the penalty method or augmented Lagrange method [33] as well as con-
straint violation stabilizations using projections based on optimal coordinates partitioning
[25, 34] and constraint manifold orthogonal directions [29], are proposed in the literature
(see also Chap. VII.2 in [35]). However, those algorithms are designed to operate primarily
within the classical (vector-space-based) MBS formulations.

286 Z. Terze et al.

Another constraint violation stabilization procedure that is specialized to operate on Lie-
groups within the MBS applications is proposed in [36]. This algorithm uses local expo-
nential coordinates in order to introduce constraint violation corrections around the current
un-stabilized integration values in S . By being based on Lie-group correction updates, this
method respects inherent geometry of S , meaning that the orthogonality condition RiRT

i = I
must not be explicitly imposed during the process.

As a final remark on the proposed stabilization procedure, it can be said that, although
the algorithm expressed by (21) and (22) is based on the corrections in linear R12k where
S is embedded, due to the implemented orthogonality condition RiRT

i = I, it returns cor-
rected integration values ‘directly’ in S . Hence, this procedure is fully complementary to
the proposed Lie-group geometric integrator. Moreover, the structure of the presented sta-
bilization algorithm is similar to the standard least square projection routines that are very
well researched (and widely used) within the classical MBS formulations [31, 37]. Based
on this, it can be expected that potential users of the Lie-group integrator presented in this
paper should not have technical difficulties to accommodate standard linear space MBS sta-
bilization routines to operate on S by utilising (21) and (22).

Speaking of numerical performance, the stabilization algorithm generally performs very
well: it reaches stabilized solution (with a chosen accuracy) within very few iteration steps,
see presented examples. Since the Lie-group integrator returns Ri ∈ SO(3) that satisfy con-
dition RiRT

i = I at ‘machine’ precision (and theses values are initial conditions for the sub-
sequent stabilization procedure for the given integration step), it is to be expected that the
imposed minimization constraint RiRT

i = I (which assures that the stabilized solution also
belongs to S) should not rise numerical difficulties. In other words, the additional numerical
effort of projection of the stabilized solution (calculated in R12k) back to S should not be
a significant one. Moreover, it can be expected that in some cases the whole procedure can
be even more numerically efficient than the local coordinates Lie-group stabilization algo-
rithm [36], which assures stabilized results to be ‘automatically’ consistent with a nonlinear
geometry of S . This method is based solely on Lie-group operational updates that respect
inherent geometry of the manifold S , but incorporation of local correction coordinates (as
well as additional exponential map projection) requires also numerical effort.

7 Examples

7.1 Heavy top

As a numerical illustration, the dynamics of a heavy top (see Fig. 2) is presented in the first
example. The top is modelled as a constrained mechanical system that leads to a DAE for-
mulation, and the equations that govern the system dynamics and kinematics are presented
as follows.

The constrained Newton–Euler equations governing the system dynamics can be given
in the form

mv̇C − λ = mg, (23)

Jω̇ + r̃bRT λ = −ω̃Jω, (24)

where ω represents the body’s angular velocity, vC is velocity of the body’s mass centre,
m and J are the body mass and tensor of inertia, λ stands for the joint reaction forces, g is
the gravity vector, rb is the (constant) body mass centre measured in the body-fixed frame,

Lie-group integration method for constrained multibody systems 287

Fig. 2 Heavy top

and R ∈ SO(3) is the rotation matrix that relates the body frame to the inertial frame. By
introducing r as the body mass centre position, the mechanical system constraints at the
position, velocity and acceleration level due to the spherical joint are given as

−r + Rrb = 0, (25)

[−I3 −Rr̃b]
[

vC

ω

]
= 0, (26)

[−I3 −Rr̃b]
[

v̇C

ω̇

]
= −Rω̃ω̃rb, (27)

and the system constraint Jacobian, denoted by C, is

C = [−I3 −Rr̃b], (28)

which allows for assembling the equations of the system dynamics in DAE of index 1 form

⎡
⎣mI3 0 −I3

0 J r̃bRT

−I3 −Rr̃b 0

⎤
⎦

⎡
⎣v̇C

ω̇

λ

⎤
⎦ =

⎡
⎣ mg

−ω̃Jω

−Rω̃ω̃rb

⎤
⎦ . (29)

Equation (29) comprises Eqs. (23), (24) and (27) and has the same formal shape as (13),
where C is given by (28), and the system generalized inertia matrix is formulated as

M =
[
mI3 0

0 J

]
, (30)

whereas the system velocities v ∈ R6 are expressed as v = [vT
C,ωT]T . During the numer-

ical integration of (29), the integration results must also satisfy the position and velocity
constraint equations (25) and (26). This will be accomplished by a constraint violation sta-
bilization procedure. In the context of derivation of (26), expression (2) has been used as
well as the relation ω̃rb = −r̃bω.

In standard units, the value of the mass is set to m = 15, the inertia tensor is J =
diag[0.234375,0.46875,0234375], the gravity vector is g = [0 0 −9.81]T , the position
of the centre of the mass is rb = [0 1 0]T , and the initial conditions are R0 = I and
ω0 = [0 150 −4.61538]T . For the purpose of numerical integration, the proposed state space
Lie-group integration procedure (based on the 4th-order MK-RK algorithm) was imple-
mented in MATLAB, and the unstabilized integration results obtained with the fixed inte-
gration time step size h = 1e−4 are presented in Figs. 3–8. The mass centre position is

288 Z. Terze et al.

Fig. 3 Coordinates of body mass
centre

Fig. 4 Elements of rotation
matrix R

shown in Fig. 3, whereas the elements of the body rotation matrix R ∈ SO(3) are given in
Fig. 4.

Integrating the mechanical system directly on the manifold S , as it is enabled by the
proposed Lie-group integration method, allowed for avoidance of parameterization singu-
larities, which would have occurred if local coordinates had been used for large 3D rigid
body rotation parameterization.

Indeed, by inspecting the integral curves of the system position and rotation (Figs. 3
and 4), it is visible that all results are smooth functions without any discontinuities whatso-
ever. If, on the other hand, the integration procedure for large 3D rotation had been based
on a set of three-parameter-based local coordinates (which would have led to a ‘standard’
vector space integration routine), then the discontinuities due to exceeding of the domain of
definition of particular variables would have occurred.

Lie-group integration method for constrained multibody systems 289

Fig. 5 Component Ψy of
Cartesian rotation vector � ,
defined as ‖�‖ ≤ π

Fig. 6 Norm of Cartesian
rotation vector

This is demonstrated here in Figs. 5, 6 and 7, where the same integration results as those
depicted in Fig. 4 are presented via Cartesian rotation vector (by means of which the atti-
tude (orientation) of the body is determined by the vector’s unit-direction that determines an
axis of the rotation, whereas the magnitude of the vector represents angular rotation around
the axis [26]) and Tait–Bryan angles. Since the Cartesian vector 3D rotation parameteri-
zation is based on SO(3) exponential mapping that reaches singularities after rotation of
magnitude 2kπ , where k is an integer, singularity discontinuities for a multiple pivoting
rigid body are clearly visible. Also, Fig. 7 shows the Tait–Bryan angles (the Euler angles
defined as 3-2-1 successive rotations) of the same motion, where the domain definition sin-
gularities are also visible at time discontinuities of the angle φ. Discontinuities of this kind
would call for re-parameterization of local coordinates, which generally leads to unneces-
sary complexities that slow down the integration and can be a source of potential numerical
instability.

290 Z. Terze et al.

Fig. 7 Tait–Bryan angles

Fig. 8 Properties of rotation
matrix R ∈ SO(3). Numerical
errors of diagonal elements of

product RRT = I and
determinant det R = +1

Furthermore, although the results presented in Figs. 3–8 are obtained by direct numerical
integration without applying the constraint violation stabilization procedure, the orthogo-
nality properties of the rotation matrix R ∈ SO(3) are preserved ‘exactly’ by the Lie-group-
based integration procedure. This is shown in Fig. 8, presenting the difference between the
matrix entries along the main diagonal of the matrix RRT and the identity matrix I, as well
as the errors of the matrix determinant det R = +1 compared to the analytical solution. It is
visible here that the orthogonality of R ∈ SO(3) is preserved at excellent numerical tolerance
even for the unstabilized numerical integration (and it would have been preserved even if a
first-order Lie-group integrator had been applied). On the other hand, if we had attempted
to solve a kinematical reconstruction equation (2) (which is also part of the established
mathematical model) with a standard vector space integration routine, the orthogonality of
the rotation matrix R ∈ SO(3) would have been lost after just a few integration steps for
most of the applied standard integrators. This is so because the orthogonality of R ∈ SO(3)

Lie-group integration method for constrained multibody systems 291

Fig. 9 Generalized position
stabilization procedure. Errors
with and without stabilization,
h = 1e−3

is a configuration constraint of quadratic type that only few standard ODE integrators can
successfully satisfy [13].

However, although the orthogonal properties of R ∈ SO(3) are preserved by the Lie-
group integration method, the general configuration and velocity constraints that come into
play because of the MBS kinematical constraints will be numerically violated during the
DAE index 1 integration (see Sect. 6). Therefore, constraint violation stabilization should
be performed within the integration procedure, and this is illustrated in the sequel, where the
proposed stabilization method is applied and tested within the framework of the presented
example.

In order to validate the characteristics of the stabilization algorithm, the relative con-
straint violation error

�con = ‖θ int − θ con‖
‖θ con‖ , (31)

has been adopted as a performance measure within the framework of several numerical
experiments. At the generalized position level, the variables θ int and θ con are introduced as
θ int = r and θ con = Rrb , where r and R are obtained directly by the integrator. With the
variables so introduced, θ int − θ con of (31) basically represents the left-hand side of Eq. (25),
meaning that the numerator of (31) yields the generalized position constraint violation (if it
differs from zero).

For the generalized positions, (31) is computed with and without the implementation of
the stabilization algorithm for different integration step sizes, and the results are presented
in Figs. 9–11. In Fig. 9, the stabilized integration results are compared with the results ob-
tained via straightforward unstabilized integration. When unstabilized integration was per-
formed with the step lengths of h = 1e−4 and h = 1e−5, the error diagrams completely
resembled the unstabilized error depicted in Fig. 9 but with cumulative errors 7.393e−8 and
7.359e−12, respectively, for the motion domain of 2 seconds.

The stabilized numerical results obtained by using integration time steps of length
h = 1e−3 and h = 1e−4 are presented in Figs. 10 and 11. Here, it is visible that the stabi-
lization algorithm delivers good and reliable stabilization results. The iterative calculation of
a nonlinear optimization procedure based on (21) and (22) was implemented using the MAT-
LAB routine fmincon for convenience, whereas a quasi-Newton-type algorithm can be used

292 Z. Terze et al.

Fig. 10 Generalized position
stabilization procedure,
h = 1e−3, Tol = 1e−7

Fig. 11 Generalized position
stabilization procedure,
h = 1e−4, Tol = 1e−11

for the same purpose in general MBS codes. The stabilization procedure converged very
quickly (see Fig. 15) with the constraint satisfaction fmincon tolerances set as Tol = 1e−7
and Tol = 1e−11 for the integration steps h = 1e−3 and h = 1e−4, respectively. In Figs. 10
and 11, it is visible that the obtained accuracies of constraint violation stabilization are
completely controlled by the imposed numerical tolerance Tol that, within fmincon routine,
controls the numerical satisfaction of the optimization constraint equations imposed by (22).
Actually, the overall stabilization accuracy is equal to the one specified as the constraint sat-
isfaction tolerance only at the beginning of the computational interval (Figs. 10 and 11), and
later on, the process converges very quickly to much better stabilization results, although
the overall stabilization computational cost was always minimal (convergence was achieved
in two optimization steps at the most, see Fig. 15).

Expression (31) was also used for a validation of the constraint stabilization procedure
at the velocity level. For this purpose, the variables θ int and θ con are introduced as θ int = −v
and θ con = Rr̃bω (see Eq. (26)), meaning that the numerator of (31) yields the generalized

Lie-group integration method for constrained multibody systems 293

Fig. 12 Velocity stabilization
procedure. Errors with and
without stabilization, h = 1e−3

velocity constraint violation. With these definitions, expression (31) is computed with and
without the implementation of the stabilization algorithm, and the results obtained with the
fixed integration step h = 1e−3 are presented in Figs. 12–14. Here, a stabilization algorithm
based on Eqs. (21) and (22) was applied, and the optimization tolerances within MATLAB
routine fmincon were set as Tol = 5e−4 and Tol = 1e−7. Figures 13 and 14 show the dif-
ferences in the stabilization performances when the norm weighted matrices in Eq. (21) are
set as W = I and W = M. It is visible that both choices return comparable results, with
the weighted matrix W = M performing slightly better (especially at the beginning of the
simulation period in the case where lower tolerance was specified).

Similarly as for the positions, an unstabilized integration returned a steady growth of
the constraint violation at the velocity level as well (see Fig. 12). When the unstabilized
integration was performed with the steps h = 1e−4 and h = 1e−5, the error diagrams re-
sembled the unstabilized error depicted in Fig. 12 but with cumulative errors 7.196e−8 and
7.199e−12 for the motion domain of 2 seconds.

Figure 15 shows the number of iterative steps within the stabilization optimization proce-
dures at the position and velocity level that were needed to reach the specified tolerance for
different integration steps and constraint satisfaction tolerances. It is visible that maximum
two iteration steps were needed in all the analysed cases. At the position level, approxi-
mately the same numerical efforts were needed for both integration steps h = 1e−3 and
h = 1e−4 because of the higher stabilization tolerance that was imposed on the shorter step
(Tol = 1e−11 vs. Tol = 1e−7). On the other hand, at the velocity level, higher stabilization
tolerance (Tol = 1e−7) resulted in a bigger numerical effort than needed for lower tolerance
(Tol = 5e−4) in the same integration step (h = 1e−3).

7.2 Satellite with 5-DOF manipulator

The second illustrative numerical example is a cylindrically shaped satellite equipped with a
manipulator consisting of three links connected with different types of joints. The kinematic
structure of the system is presented in Fig. 16. The centre of mass of the satellite body
is restricted from translation by a fixed-point constraint (see Appendix B for derivation of
the algebraic constraint equations imposed by the fixed-point constraint; in the example
presented in this section, it is set rFP

b1
= 0, see Appendix B), and its rotational motion with

294 Z. Terze et al.

Fig. 13 Velocity stabilization
procedure, h = 1e−3,
Tol = 5e−4

Fig. 14 Velocity stabilization
procedure, h = 1e−3,
Tol = 1e−7

constant angular velocity is prescribed by the rheonomic constraint given at the velocity
level in the form R1ω1 − ωg1 = 0 (where ωg1 = const is the angular velocity of the satellite
body in the global coordinate system, and R1 and ω1 determine the satellite body rotation
matrix and its angular velocity in the local (body) coordinate system, respectively).

The first manipulator element, the base rod, is connected with the satellite body via a
spherical joint. On the other end, the base rod is connected via a revolute joint to the second
manipulator element, the slider rod. The slider rod itself is connected by a prismatic joint
with a tool, a slider, which is able to translate along the slider rod.

The system governing equations are formulated in the form of Eq. (13), where particular
matrices pertinent to this example are given as follows.

The system accelerations vector v̇ is given by

v̇ = [
v̇T

1 ω̇T
1 v̇T

2 ω̇T
2 v̇T

3 ω̇T
3 v̇T

4 ω̇T
4

]T
, (32)

Lie-group integration method for constrained multibody systems 295

Fig. 15 Number of iteration
steps within least square
minimization procedure

where v̇i is the translational acceleration of the mass centre of the ith body, and ω̇i is its
angular acceleration, and the generalized inertia matrix of the system is given by

M = diag
[
m1I3 J1 m2I3 J2 m3I3 J3 m4I3 J4

]
. (33)

The global constraint matrix of the system is shaped by combining all joints and rheonomic
constraint matrices in the form

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

CFP(3×6)

1 0(3×6)

2 0(3×6)

3 0(3×6)

4

CSJ(3×12)

1,2 0(3×6)

3 0(3×6)

4

0(5×6)

1 CRJ(5×12)

2,3 0(5×6)

4

0(5×6)

1 0(5×6)

2 CPJ(5×12)

3,4

CRH(3×6)

1 0(3×6)

2 0(3×6)

3 0(3×6)

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (34)

where CFP(3×6)

1 is the 3 × 6-dimensional fixed-point constraint matrix on the main satellite
body (body 1, lower index 1), CSJ(3×12)

1,2 represents the 3 × 12-dimensional spherical joint

constraint matrix that connects bodies 1 and 2, CRJ(5×12)

2,3 represents the 5 × 12-dimensional

revolute joint constraint matrix on the bodies 2 and 3, CPJ(5×12)

3,4 represents the 5 × 12-

dimensional prismatic constraint matrix that connects bodies 3 and 4, and CRH(3×6)

1 is the
constraint matrix due to the rheonomic constraint R1ω1 − ωg1 = 0 on the main satellite
body. The right-hand-side vector ξ of the global acceleration constraints is formed as

ξ =
[
ξ

FP(3×1)T

1 ξ
SJ(3×1)T

1,2 ξ
RJ(5×1)T

2,3 ξ
PJ(5×1)T

3,4 ξ
RH(3×1)T

1

]T

, (35)

where the upper indices determine the types of the constraints involved, and the lower in-
dices stand for the numbers marking the constrained body.

For brevity, here we will only describe a derivation of the spherical joint constraint ma-
trix and the right-hand-side term of the acceleration constraint, whereas the derivation of
constraint matrices and the acceleration terms of other types of constraints follow accord-
ingly (see details in [26] and Appendix B). For the spherical joint, three algebraic constraint
equations at the generalized displacement level can be written as

�SJ = r1 + R1rSJ
b1

− r2 − R2rSJ
b2

= 0, (36)

296 Z. Terze et al.

Fig. 16 Model of the satellite
with mounted 5-DOF
manipulator

where rSJ
b1

and rSJ
b2

represent the location of the spherical joint in the local coordinate systems
of the bodies (the bodies whose kinematics is constrained by the joint, here bodies 1 and 2),
r1 and r2 are the positions of the mass centres of the bodies in the global coordinate system
(see Fig. 17), and R1 and R2 are the body rotation matrices.

Differentiating (36) once with respect to time, the constraint equation at the velocity level
is obtained as

�̇
SJ = v1 + R1ω̃1rSJ

b1
− v2 − R2ω̃2rSJ

b2
= 0, (37)

whereas another time differentiation gives the acceleration constraint in the form

�̈
SJ = v̇1 − R1r̃SJ

b1
ω̇1 + R1ω̃1ω̃1rSJ

b1
− v̇2 + R2r̃SJ

b2
ω̇2 − R2ω̃2ω̃2rSJ

b2
= 0. (38)

In (37) and (38), ω1,2 and ω̇1,2 are the bodies’ angular velocities and accelerations, respec-
tively. To obtain the acceleration constraint in the form that can be included in the system
dynamics governing equations (13), the acceleration constraint (38) can be written as

CSJ(3×12)

1,2 v̇(12×1)

1,2 = ξ
SJ(3×1)

1,2 , (39)

where v̇(12×1)

1,2 = [v̇T
1 ω̇T

1 v̇T
2 ω̇T

2]T is the generalized acceleration vector of bodies 1 and 2,

and the spherical joint constraint matrix CSJ(3×12)

1,2 and the right-hand-side acceleration term

ξ
SJ(3×1)

1,2 are given as

CSJ(3×12)

1,2 = [
I3 −R1r̃SJ

b1
−I3 R2r̃SJ

b2

]
, (40)

and

ξ
SJ(3×1)

1,2 = R2ω̃2ω̃2rSJ
b2

− R1ω̃1ω̃1rSJ
b1

. (41)

The generalized force vector Q comprises the external forces Qext and nonlinear velocity
terms Qnl that originate from the Euler equations according to the expression

Q = Qext + Qnl, (42)

Lie-group integration method for constrained multibody systems 297

Fig. 17 Spherical joint position
vectors

where the nonlinear velocity part is defined as

Qnl =
[
0(1×3)

1 [−ω̃1J1ω1]T 0(1×3)

2 [−ω̃2J2ω2]T 0(1×3)

3 [−ω̃3J3ω3]T

0(1×3)

4 [−ω̃4J4ω4]T
]T

,

(43)

and the part of external forces follows from all external forces that act on the system

Qext =
[
0(1×3)

1 −LT
SJ 0(1×3)

2 [LSJ − LRJ]T 0(1×3)

3 LT
RJ [R4FPJ]T 0(1×3)

4

]T
. (44)

In Eq. (44), the torque actuator LSJ = [−1 −3 −0.1]T (acting along all three local axes
of the joint) is imposed on the manipulator base spherical joint, whereas the revolute joint
actuator is set as LRJ = [0 0.45 0]T . The force acting on the slider is collinear with the slider
translation axis defined as FPJ = [0 0 −0.533]T . The gravity is neglected.

In standard units, the mass and inertia tensor of the satellite body are set as m1 = 1800
and J1 = diag[1800,1800,900]. The base rod’s mass and inertia tensor yield m2 = 80 and
J2 = diag[15.1125,15.1125,0.225], the slider rod’s mass and inertia tensor are set as m3 =
60 and J3 = diag[11.3,11.3,0.1], and the slider’s mass and inertia tensor yield m4 = 30
and J4 = diag[0.35,0.35,0.8937], respectively. The rheonomic constraint, which prescribes
the rotational motion of the satellite’s body, is specified with the global constant angular
velocity set as ωg1 = [π/60 0 π/30]T . The initial conditions in the global coordinate system
(see Fig. 16) are given as r0

1 = [0 0 0]T , r0
2 = [0 0 2.25]T , r0

3 = [0 0 3.75]T , r0
4 = r0

3 and
R0

1 = R0
2 = R0

3 = R0
4 = I.

Similarly as it was done in the previous example, the proposed Lie-group integration
procedure was repeated with different integration steps and stabilization parameters. First,
a relative constraint violation error (31) was calculated for the constraints imposed on the
system by the spherical joint (Fig. 17) only. This was done to allow for a direct comparison
with the constraint violation stabilization results obtained within the heavy top example,
which also only comprises a spherical joint.

To calculate the generalized position violation error for the satellite’s spherical joint,
the variables in (31) are defined as θ int = r2 and θ con = R1rSJ

b1
− R2rSJ

b2
(based on the con-

straint equation (36) by taking into account r1 = 0), and the results for the integration step
h = 1e−5 and Tol = 1e−14 are shown in Fig. 18. The same integration and stabilization
parameters were also used in the heavy top example, where variables of (31) were defined
on the basis of (25). The results are presented in Fig. 19.

When we compare the results in Figs. 18 and 19, it is visible that the stabilization pro-
cedure returned a less-profiled stabilization effect in the satellite example. Although the
specified stabilization tolerance was always achieved, the final (overall) stabilization accu-
racy (obtained for a certain integration step after the specified accuracy had been achieved)
was higher in the heavy top example than in the more complex satellite MBS (1e−24 vs.

298 Z. Terze et al.

Fig. 18 Satellite spherical
joint-constraint violation at
configuration level, h = 1e−5,
Tol = 1e−14

Fig. 19 Heavy top spherical
joint-constraint violation at
configuration level, h = 1e−5,
Tol = 1e−14

1e−16). This can be explained by the kinematical complexity of the satellite MBS com-
pared to the heavy top one-body mechanical system, which results in a higher number of
integration variables and constraints, as well as in a larger dimension of the constrained
optimization problem.

To calculate the violation error for the satellite spherical joint at the velocity level, the
variables of (31) were defined as θ int = −v2 and θ con = R1r̃SJ

b1
ω1 − R2r̃SJ

b2
ω2 (based on

Eq. (37) by taking into account v1 = 0), and stabilization is performed for the integration
step h = 1e−5 with optimization tolerance set as Tol = 1e−14 and weighted matrix W = I.
The results, depicted in Fig. 20, can be compared with the velocity constraint violation er-
rors obtained with the same integration parameters in the heavy top example, presented in
Fig. 21. Here, as it was the case regarding the generalized positions, the velocity projection
algorithm has a smaller stabilization effect in the satellite example, compared to the heavy
top velocity stabilization with the same integration and stabilization parameters.

Besides the relative constraint violation error for the spherical joint discussed above, the
absolute constraint violation errors for the whole system were calculated via the equations

Lie-group integration method for constrained multibody systems 299

Fig. 20 Satellite spherical
joint-constraint violation at
velocity level, h = 1e−5,
Tol = 1e−14

Fig. 21 Heavy top spherical
joint-constraint violation at
velocity level, h = 1e−5,
Tol = 1e−14

Fig. 22 Generalized position
stabilization procedure,
h = 1e−2, Tol = 1e−10

300 Z. Terze et al.

Fig. 23 Generalized position
stabilization procedure,
h = 1e−3, Tol = 1e−11

Fig. 24 Velocity stabilization
procedure, h = 1e−2,
Tol = 1e−10

�(q) = �pos and �̇(q,v) = �vel for the configuration and velocity constraints and depicted
in Figs. 22, 23, 24 and 25. The integration time steps were h = 1e−2 and h = 1e−3, and
optimization tolerances were set as Tol = 1e−10 and Tol = 1e−11, respectively, for both
stabilization levels (note larger time steps and demanding tolerances). It is clear from these
figures that the constraint violation error is controllable by the user via setting the Tol pa-
rameter at the desired value (in the context of generalized position stabilization and velocity
stabilization with W = M only some peaks exceeded—and only to a small extent—specified
demanding tolerances within a three-step iteration process). It can also be seen in Figs. 24
and 25 that the velocity stabilization procedure, which used the norm weighted matrix equal
to the system mass matrix W = M, yielded better results compared to those that were ob-
tained with W = I. This effect is more pronounced here than in the heavy top example,
and this might be explained by the fact that the satellite MBS comprises more bodies in
the kinematical chain, meaning that the inertial characteristics of the system expressed in
M influence the velocity constraint manifold projection given by (21) and (22) to a greater
extent (especially in the context of integration with the larger time steps). However, this ex-

Lie-group integration method for constrained multibody systems 301

Fig. 25 Velocity stabilization
procedure, h = 1e−3,
Tol = 1e−11

planation should not be generalized since detailed performance of particular projections is
clearly case-dependent (with the hint that the velocity projection with the weighted matrix
W = M generally returned better or equal results within the framework of this study).

It is important, however, that the desired stabilization effect could have been achieved,
and this could have been done at minimal computational expense: although the tolerances
imposed in the stabilization cases depicted in Figs. 22–25 were quite demanding (Tol =
1e−10, Tol = 1e−11) and the integration was performed with large integration steps, the
presented results were obtained with numerical effort that never exceeded three iteration
steps in the context of the iterative minimization procedure. This also means that if the
constraint violation stabilization procedure is programmed separately (‘in-house’) within
the framework of a general MBS code, the Newton iteration should be able to reuse the
iteration Jacobian from the previous time steps, thus reducing the numerical effort of the
stabilization.

8 Conclusion

A Lie-group integration method for a constrained MBS is proposed in the paper. The method
operates on a system state space modelled as a Lie-group; the mathematical model of the
MBS dynamics is modelled as DAE of index 1 on the Lie-group. Such an approach enables
one to derive a coordinate-free mathematical formulation of the system dynamics, whereas
the integration algorithm operates directly on the MBS state space manifold where the po-
sition and velocity constraints are introduced. Hence, no local parameters (such as Euler
angles) for the mathematical description of large 3D rotations are required.

Since the proposed method operates directly with the MBS elements’ angular velocities
and rotational matrices, and local parameterization is avoided, this formulation circumvents
the well-known problems of the classical vector-space-based MBS integration procedures,
such as the kinematic singularity of the three-parameter rotation basis, re-parameterization
of the system kinematics during integration, and numerical non-efficiency of the kinematic
differential equations.

In order to eliminate a numerical constraint violation at the generalized positions and
velocity level during the integration procedure (constraint violation stabilization is always

302 Z. Terze et al.

necessary if a mathematical model is shaped as a DAE system), the kinematical constraint
violation stabilization algorithm on the introduced state space Lie-group is proposed. The
stabilization algorithm is based on the constrained least-square minimization algorithm, and
it stabilizes both configuration and velocity constraint violations.

The application of the proposed integration method is illustrated with two numerical ex-
amples. They showed that the procedure returns good and reliable simulation results. Since
the method is formulated on the state space Lie-group, the SO(3) matrices of the MBS
elements’ attitudes are obtained directly from the integrator, with their orthogonality prop-
erties preserved at the ‘machine’ (i.e. software) precision. Moreover, it was shown that the
described constraint violation stabilization procedure allows for a controlled kinematical
constraints violation, the tolerance of which can be specified by the user. Although itera-
tive, the constraint stabilization procedure exhibited minimal computational burden in all
analysed cases.

As a conclusion, the proposed Lie-group DAE-index-1 integration method is based on
an efficient mathematical formulation. It is easy to use for discrete mechanical systems with
kinematical constraints of general type, and it is especially recommended for an MBS with
a large 3D rotation motion domain. Moreover, in the context of practical computations, an
MBS dynamical model and imposed kinematical constraints are formulated in the matrix
notation form that does not differ from the classical vector-space-based MBS formulations.

The proposed algorithm allows for synthesis of integration method of higher order of
accuracy (4th order was used in the examples presented in the paper), based on the order
of standard vector-space ODE integrator that is used for integration in a Lie-algebra. As an
alternative to the described Lie-group state space MBS formulation, a state space formu-
lation based on the SE(3) Lie-group modelling of the MBS elements’ screw motion was
described in [38]. Although this approach has a clear advantage when system joints impose
the bodies’ relative motions that belong to a sub-group of SE(3) (in these cases the kine-
matical constraints are numerically completely satisfied with the sole Lie-group integration,
without applying a constraint violation stabilization method of any kind), for general MBS
integration, both approaches have their pros and cons [38].

Acknowledgements The first and third author acknowledge the support of the Croatian Science Founda-
tion under the contract of the project 04/35 ‘Geometric Numerical Integrators for Dynamic Analysis and
Simulation of Structural Systems’. The second author acknowledges that this work has been partially sup-
ported by the Austrian COMET-K2 programm of the Linz Center of Mechatronics (LCM).

Appendix A: Differential of the exponential map

Starting from the rotational motion of one body, we introduce the differential of the expo-
nential mapping dexpm : so(3) × so(3) → so(3) via ‘left trivialized’ tangent of the matrix
exponential map ‘expm’ in a way that the following expression is valid:

d

dt
expm

(
w̄(t)

) = expm
(
w̄(t)

)
dexpm−w̄(t)

(˙̄w(t)
)
, (A.1)

where the function dexpm−w̄ is defined as

dexpm−w̄(w) = w − 1

2! [w̄,w] + 1

3!
[
w̄, [w̄,w]] + 1

4!
[
w̄,

[
w̄, [w̄,w]]] + · · ·

=
∞∑

j=0

1

(j + 1)!
(−adj

w̄(w)
)
, (A.2)

Lie-group integration method for constrained multibody systems 303

and the adjoint operator adw̄ is given as the Lie bracket

adw̄(w) = w̄w − ww̄ = [w̄,w], for all w(t), w̄(t) ∈ so(3). (A.3)

Furthermore, the inverse function dexpm−1
−w̄ is defined by

dexpm−1
−w̄(w) = w + 1

2
[w̄,w] + 1

12

[
w̄, [w̄,w]] + · · · =

∞∑
j=0

Bj

j !
(−adj

w̄(w)
)
, (A.4)

where Bj are Bernoulli numbers [39]. Before we proceed, please note that Eqs. (A.2) and
(A.4) are derived under the assumption of the ‘left trivialization’ expression in (A.1). This
is in accordance with our formulation of the Lie-algebra g, where the left-invariant vector
field ω̃i ∈ so(3) is used in its definition. However, in the literature, the differential of the
exponential mapping is usually defined by using the ‘right trivialized’ formulation in the
form

d

dt
expm

(
w̄(t)

) = dexpmw̄(t)

(˙̄w(t)
)

expm
(
w̄(t)

)
. (A.5)

This would lead to expressions of dexpmw̄ and dexpm−1
w̄ with Lie brackets that would appear

with different signs in (A.2) and (A.4). However, please note that if the right trivialization
had been used, the final expressions for dexpmw̄ and dexpm−1

w̄ would have differed from
(A.2) and (A.4) only in the sign of the second term ± 1

2 [w̄,w].
After deriving the differential of the exponential map for the rotational motion of the

rigid body, we need to include its translational part as well. Accordingly, the differential of
the exponential mapping for the unconstrained body i motion R3 × SO(3) is given by

dexp−z̄i
(zi) = dexp(−v̄i ,−w̄i)

(vi ,wi) = (
vi ,dexpm−w̄i

(wi)
)
, (A.6)

(where dexpm−w̄i
function is introduced as above), and its inverse is readily given as

dexp−1
−z̄i

(zi) = dexp−1
(−v̄i ,−w̄i)

(vi ,wi) = (
vi ,dexpm−1

−w̄i
(wi)

)
. (A.7)

With the above results, we can define the differential of the exponential mapping for the
whole unconstrained MBS system as the function dexp : s × s → s given by

dexp−z̄(z) = (
dexp−z̄1

(z1), . . . ,dexp−z̄k
(zk), v̇1, ẇ1, . . . , v̇k, ẇk

)
, (A.8)

and its inverse can be written as

dexp−1
−z̄ (z) = (

dexp−1
−z̄1

(z1), . . . ,dexp−1
−z̄k

(zk), v̇1, ẇ1, . . . , v̇k, ẇk

)
. (A.9)

Appendix B: Derivation of algebraic equations imposed by the fixed-point constraint

In order to model fixed-point constraint, three algebraic constraint equations at the general-
ized displacement level can be written as

�FP = rFP
1 − r1 − Rir

FP
b1

= 0, (B.1)

where rFP
b1

represents the location of the fixed-point constraint in the body 1 local coordinate
system that is fixed to the body (see Fig. 26), r1 is the position of the mass centre of body

304 Z. Terze et al.

Fig. 26 Fixed-point constraint
position vectors

1 in the global coordinate system, and rFP
1 is a constant vector that determines, in the global

coordinate system, the position of the body point that is fixed in space.
After differentiating with respect to time, the velocity level constraint is obtained in the

form

�̇
FP = −v1 − R1ω̃1rFP

b1
= 0, (B.2)

whereas additional differentiation yields an acceleration constraint in the form

�̈
FP = −v̇1 − R1r̃FP

b1
ω̇1 − R1ω̃1ω̃1rFP

b1
= 0. (B.3)

To obtain the acceleration constraint in the form that can be included in the system dynamics
governing equations (13) the acceleration constraint (B.3) can be written as

CFP(3×6)

1 v̇(6×1)

1 = ξ
FP(3×1)

1 , (B.4)

where v̇(6×1)

1 = [v̇T
1 ω̇T

1]T is the generalized acceleration vector of body 1, and the fixed-point
constraint matrix CFP(3×6)

1 and the right-hand-side acceleration term ξ
FP(3×1)

1 are given as

CFP(3×6)

1 = [−I3 R1r̃FP
b1

]
, (B.5)

and

ξ
FP(3×1)

1 = R1ω̃1ω̃1rFP
b1

. (B.6)

References

1. Schiehlen, W.: Multibody system dynamics: Roots and perspectives. Multibody Syst. Dyn. 1, 149–188
(1997)

2. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (1999)
3. Holm, D.: Geometric Mechanics. Part II: Rotating, Translating and Rolling. Imperial College Press,

London (2008)
4. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Hills

(1988)
5. Shutz, B.F.: Geometrical Methods of Mathematical Physics. Cambridge Univ. Press, Cambridge (1980)
6. Boothby, W.: An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd edn. Aca-

demic Press, San Diego (2003)
7. Morawiec, A.: Orientations and Rotations. Springer, Berlin (2004)
8. Betsch, P., Siebert, R.: Rigid body dynamics in terms of quaternions: Hamiltonian formulation and con-

serving numerical integration. Int. J. Numer. Methods Eng. 79, 444–473 (2009)
9. Reich, S., Zentrum, K.Z.: Symplectic integrators for systems of rigid bodies. Integration Algorithms for

Classical Mechanics. Fields Inst. Commun. 10, 181–191 (1996)
10. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge Univ. Press, Cambridge

(2004)

Lie-group integration method for constrained multibody systems 305

11. Betsch, P., Steinmann, P.: Constrained integration of rigid body dynamics. Comput. Methods Appl.
Mech. Eng. 191, 467–488 (2001)

12. Iserles, A., Munthe-Kaas, H.Z., Norsett, S.P., Zanna, A.: Lie-group methods. Acta Numer. 9, 215–365
(2000)

13. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2006)
14. Munthe-Kaas, H.: Runge–Kutta methods on Lie groups. BIT Numer. Math. 38, 92–111 (1998)
15. Brüls, O., Cardona, A.: On the use of Lie group time integrators in multibody dynamics. ASME J.

Comput. Nonlinear Dyn. 5, 1–23 (2010)
16. Cardona, A., Geradin, M.: A beam finite element non-linear theory with finite rotations. Int. J. Numer.

Methods Eng. 26, 2403–2438 (1988)
17. Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions—geometrically

exact approach. Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988)
18. Simo, J., Wong, K.: Unconditionally stable algorithms for rigid body dynamics that exactly preserve

energy and momentum. Int. J. Numer. Methods Eng. 31, 19–52 (1991)
19. Bottasso, C.L., Borri, M.: Integrating finite rotations. Comput. Methods Appl. Mech. Eng. 164, 307–331

(1998)
20. Müller, A.: Approximation of finite rigid body motions from velocity fields. J. Appl. Math. Mech./Z.

Angew. Math. Mech. (ZAMM) 90, 514–521 (2010)
21. Müller, A., Terze, Z.: The significance of the configuration space Lie group for the constraint satisfaction

in numerical time integration of multibody systems. Mech. Mach. Theory 82, 173–202 (2014)
22. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon,

Boston (1989)
23. Schiehlen, W.: Multibody Systems Handbook. Springer, Berlin (1990)
24. Blajer, W.: A geometrical interpretation and uniform matrix formulation of multibody system dynamics.

Z. Angew. Math. Mech. 81(4), 247–259 (2001)
25. Terze, Z., Naudet, J.: Geometric properties of projective constraint violation stabilization method for

generally constrained multibody systems on manifolds. Multibody Syst. Dyn. 20, 85–106 (2008)
26. Geradin, M., Cardona, A.: Flexible Multibody Dynamics. Wiley, Chichester (2004)
27. Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Dordrecht, Heidelberg, London, New York

(2010)
28. Celledoni, E., Owren, B.: Lie group methods for rigid body dynamics and time integration on manifolds.

Comput. Methods Appl. Mech. Eng. 192, 421–438 (2003)
29. Blajer, W.: Methods for constraint violation suppression in the numerical simulation of constrained

multibody systems—a comparative study. Comput. Methods Appl. Mech. Eng. 200(13–16), 1568–1576
(2011)

30. García Orden, J.C.: Energy considerations for the stabilization of constrained mechanical systems with
velocity projection. Nonlinear Dyn. 60(1–2), 49–62 (2010)

31. Eich, E.: Convergence results for a coordinate projection method applied to mechanical systems with
algebraic constraints. SIAM J. Numer. Anal. 30, 1467–1482 (1993)

32. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics. Teubner, Stuttgart (1998)
33. Bayo, E., Ledesma, R.: Augmented Lagrangian and mass orthogonal projection methods for constrained

multibody dynamics. Nonlinear Dyn. 9, 113–130 (1996)
34. Terze, Z., Naudet, J.: Structure of optimized generalized coordinates partitioned vectors for holonomic

and non-holonomic systems. Multibody Syst. Dyn. 24, 203–218 (2010)
35. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic

Problems. Springer, Berlin (1996)
36. Müller, A., Terze, Z.: A constraint stabilization method for time integration of constrained multibody

systems in Lie group setting. In: ASME 2014 IDETC on 10th International Conference on Multibody
Systems, Nonlinear Dynamics, and Control (MSNDC), 17–20 August 2014, Buffalo, New York, USA
(2014)

37. Andrzejewski, T., Bock, H.G., Eich, E., von Schwerin R.: Recent advances in the numerical integration of
multibody systems. In: Schiehlen, W. (ed.) Advanced Multibody System Dynamics. Kluwer Academic,
Dordrecht (1993)

38. Müller, A., Terze, Z.: On the choice of configuration space for numerical Lie group integration of con-
strained rigid body systems. J. Comput. Appl. Math. (2013). doi:10.1016/j.cam.2013.10.039

39. Budd, C.J., Iserles, A.: Geometric integration: numerical solution of differential equations on manifolds.
Philos. Trans.: Math. Phys. Eng. Sci. 357, 945–956 (1999)

http://dx.doi.org/10.1016/j.cam.2013.10.039

	Lie-group integration method for constrained multibody systems in state space
	Abstract
	Introduction
	Conﬁguration space and state space of unconstrained MBS as Lie-groups
	Kinematic reconstruction of MBS motion
	Dynamics formulation for constrained MBS in Lie-group setting
	Lie-group integration algorithm for constrained MBS
	Constraint violation stabilization procedure
	Examples
	Heavy top
	Satellite with 5-DOF manipulator

	Conclusion
	Acknowledgements
	Appendix A: Differential of the exponential map
	Appendix B: Derivation of algebraic equations imposed by the ﬁxed-point constraint
	References

