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Abstract In this paper, the motion of a spherical robot rolling on a generic surface is con-
sidered. The motion equations are derived in matrix form using a Lagrangian approach, and
quaternions are used to parametrize attitude. Focus is placed on a general formulation of the
problem that facilitates the integration of the holonomic and nonholonomic constraints into
the motion equations in a straightforward manner. The motion equations capture the non-
holonomic nature of rolling without slipping, the contact requirement between the spherical
rover and the generic surface, an additional constraint associated with an energy-harvesting
pendulum, and the quaternion unit-length constraints. Numerical simulations involving Mar-
tian tumbleweed rovers are performed on complex three-dimensional surfaces resembling
Martian craters and wave fields.

Keywords Nonholonomic constraints · Spherical robots · Tumbleweed rover · Euler
parameters

1 Introduction

Spherical robots have attracted a great deal of attention due to their unique characteris-
tics: high manoeuvrability, minimal friction, ease of overcoming obstacles, inability to tip
over, and sealed environment [1–4]. Traditionally, spherical robots are propelled by electro-
mechanical devices such as pendulum systems, driving wheels, shifting masses, and gyro-
scopic wheels [5]. Spherical robots are envisioned to play a major role in applications related
to search and rescue, reconnaissance, surveillance, and planetary exploration.

An extensive amount of research has been conducted on the modeling of spherical robots
that integrate a pendulum system. In [4, 6–10], the motion equations are derived using a
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Lagrangian approach with an Euler angle parametrization of attitude. It is well known that
Euler angle parameterizations of attitude suffer from the presence of singularities when two
degrees of freedom collapse into one [11, pp. 19–20]. Moreover, the spherical robots are
assumed to be rolling without slip on a horizontal surface, or on an inclined plane in the
case of [4]. These models do not consider the interaction between a spherical robot and a
generic curved surface.

In [12–16], the motion of a ball when rolling without slipping on specific surfaces such as
planes, paraboloids, and cones is investigated. Analytical solutions to the motion equations
are developed for each specific case. In order to perform simulations on arbitrary surfaces,
a more general formulation of the surface constraint must be investigated. Moreover, because
of the complexity of spherical robot systems, an approach that integrates the rolling and
surface constraints into the motion equations in a straightforward yet generic manner is
desired. In [17], the rolling constraints associated with a ball rolling on a generic surface
are approached in a systematic manner. However, the methods used in [17] to obtain the
motion equations involve the use of zero-mass particles that lead to a singular mass matrix.
Moreover, [17] uses an unconventional Lagrangian formulation that does not consider the
Lagrange multipliers associated with the system constraints.

Spherical robots have been proposed as potential candidates for the exploration of the
Martian surface. These spherical robots, referred to as tumbleweed rovers, are large balls
that use Martian winds as means of propulsion [18–21]. Tumbleweed rovers are lightweight
structures designed to assist wheeled vehicles by performing long-range scouting mis-
sions [20]. Consider a mission scenario where a wheeled Martian exploration vehicle is
equipped with one or more tumbleweed rovers onboard. Under favorable wind conditions,
the wheeled rover would release a tumbleweed rover that would be blown towards a site of
scientific interest enabling preliminary data collection and risk assessment of the rout from
the wheeled vehicle’s position to the site of interest. When the tumbleweed rover’s mission
is terminated, it would act as a stationary science and communication outpost.

In this paper, a power-generating tumbleweed rover is considered [8, 22, 23]. This de-
sign integrates a pendulum-generator system that can harness electric energy as the rover
is rolling. The electric energy produced by the generator is stored inside a battery and can
be used to power the scientific equipment on-board, as well as avionics. The autonomy pro-
vided by the pendulum-generator system along with the ability of the rover to cover long
distances makes the power-generating tumbleweed rover an ideal candidate for long-range
scouting missions on Mars.

This paper aims to develop the motion equations of a power-generating tumbleweed rover
rolling on generic surfaces using quaternions to parametrize attitude. The methods described
in this paper are equally applicable to other kinds of spherical robots that share a similar
design to the Martian tumbleweed rover. The contributions of this paper are the development
of the holonomic and nonholonomic constraints associated with a spherical robot rolling
on a generic curved surface, the derivation of the motion equations in matrix form using
Lagrange’s equation and quaternions to parameterize attitude, and the modeling of generic
curved surfaces using blending functions. In this paper, the motion equations are derived
using a traditional Lagrangian approach, where the Lagrange multipliers are eliminated by
making use of the null space method, also known as the natural orthogonal complement
method [24–27] [28, pp. 280–289]. Moreover, the method used to incorporate the surface
constraint into the motion equations do not make use of zero mass particles, thus leading to
an invertible mass matrix [17]. Numerical simulations are performed to validate the spherical
robot model. Because the design of tumbleweed rovers is of interest to the authors, the
simulations investigate the trajectory of a tumbleweed rover approaching a Martian carter
and a wave field.



Modeling of spherical robots rolling on generic surfaces 93

2 Preliminaries

2.1 Notation

Throughout this paper, vectrix notation will be used, as described in [11]. Using vectrix
notation, a physical vector v−→ is expressed as [11, pp. 523–524]

v−→ = a−→
1va,1 + a−→

2va,2 + a−→
3va,3 = F−→

�
a va,

where va = [va,1 va,2 va,3]� is a column matrix containing the components of v−→ expressed
in Fa . The vectrix associated with Fa is

F−→a =
[

a−→1 a−→2 a−→3
]�

,

where a vectrix is a column matrix of physical vectors. The components of a physical vector
can be transformed from Fa to Fb by using the direction cosine matrix Cba :

vb = Cbava.

The gradient of a continuously differentiable function f (x, y, z) can be expressed in Fa as
written

∇−→f = ∂f

∂x
a−→

1 + ∂f

∂y
a−→

2 + ∂f

∂z
a−→

3

=
[

∂f

∂x

∂f

∂y

∂f

∂z

]
︸ ︷︷ ︸

∇a

F−→a.

In this paper, the terms 11 = [1 0 0]�, 12 = [0 1 0]�, and 13 = [0 0 1]� are used to express
the column matrices of the identity matrix 1.

2.2 Quaternion parametrization

Quaternions, also called Euler parameters, are defined as

qba =
[
εba

ηba

]
=

[
a sin φ

2

cos φ

2

]
,

where εba = [εba
1 εba

2 εba
3 ]�, a is the principal unit-length axis of rotation, and φ is the

principal angle of rotation [11, p. 17]. In terms of the quaternions, the direction cosine
matrix Cba is [11, p. 30]

Cba

(
εba, ηba

) = 1 + 2εba×
εba× − 2ηbaεba×

,

where the quaternions are subject to the unit-length constraint [11, p. 18]

εba�
εba + ηba2 = 1. (1)



94 F.R. Hogan, J.R. Forbes

Fig. 1 Spherical rover model (Color figure online)

The skew-symmetric cross product matrix is defined in [11, pp. 525–526]. The quaternion
unit-length constraint at the rate level is obtained by differentiating Eq. (1) with respect to
time:

2εba�
ε̇ba + 2ηbaη̇ba =

[
2εba�

2ηba

][
ε̇ba

η̇ba

]
= 0. (2)

The relationship between the time-rate-of-change of the quaternions and the angular velocity
is [11, p. 26]

ωba
b = [

2(ηba1 − εba×
) −2εba

]
︸ ︷︷ ︸

Sba
b

[
ε̇ba

η̇ba

]

︸ ︷︷ ︸
q̇ba

, (3)

where Sba
b is a mapping matrix between the time-rate-of-change of the quaternions and the

angular velocity, and ωba
b describes the angular velocity of Fb relative to Fa expressed in Fb .

The relationship between the angular velocity ωba
b and the time-rate-of-change of the quater-

nions is [11, p. 31]
[
ε̇ba

η̇ba

]

︸ ︷︷ ︸
q̇ba

= 1

2

[
ηba1 + εba×

−εba�

]

︸ ︷︷ ︸
Γ ba

b

ωba
b , (4)

where Γ ba
b is a mapping matrix between the angular velocity ωba

b and the quaternions q̇ba .

2.3 Model setup

The spherical robot model considered in this paper is depicted in Fig. 1. A central rod com-
ponent is fixed to the sides of a spherical shell. Mounted to the middle of the central rod is
a power-generating system designed to produce electric energy as the rover is rolling and
the pendulum rod and payload induce a torque on the generator. A spherical annulus, shown
in Fig. 1(b), is added to the spherical shell to ensure that the spherical robot rolls stably
about the preferred axis of rotation [22, 23]. The parameters used to describe the physical
characteristics of the system are given in Table 1. In order to describe the dynamics of the
system in a concise manner, three reference frames are defined and shown in Fig. 2: the
inertial frame Fi , the body fixed frame attached to the sphere Fs , and the body frame fixed
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Table 1 Physical characteristics of the spherical robot

Symbol Property

r radius of sphere, m

mS mass of sphere, kg

mP mass of pendulum, kg

mPA mass of payload, kg

br damping coefficient associated with translational rolling friction, kg·m2

s

bs damping coefficient associated with spin rolling friction, kg·m2

s

bp damping coefficient associated with power generation, kg·m2

s

cPp
p first moment of mass of pendulum relative to Fp expressed in Fp , kg · m

JSs
s second moment of mass of sphere relative to Fs expressed in Fs , kg · m2

JPp
p second moment of mass of pendulum relative to Fp expressed in Fp , kg · m2

g gravitational acceleration, m
s2

Fig. 2 Definition of reference frames

to the pendulum Fp . The pendulum is constrained to rotate about the s−→2 axis, forcing the

p−→
2 axis and the s−→2 axis to be coincident. The quaternions qsi = [εsi� ηsi]� are used to

parametrize the direction cosine matrix Csi and the quaternions qpi = [εpi� ηpi]� are used
to parametrize the direction cosine matrix Cpi .

3 Motion equations

3.1 Generalized coordinates

The generalized coordinates used to describes the dynamics of the system are

q =
[

rwi�
i rsi�

i qsi� qpi�
]�

,
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Fig. 3 Surface contact constraint. The position of the contact point w relative to the center of the sphere is
given by r−→ws = −r n−→, where n−→ is the normal vector to the surface f (x, y, z) = 0 evaluated at the contact
point w

where rwi
i denotes the position of the contact point “w”, depicted in Fig. 3, relative to Fi

expressed in Fi and rsi
i denotes the position of Fs relative to Fi expressed in Fi .

3.2 Angular velocities

Using a quaternion parametrization, the angular velocities of the system are

ωsi
s = Ssi

s q̇si and ωpi
p = Spi

p q̇pi . (5)

The angular velocities in Eq. (5) are related by

ωpi
p = Cpsω

si
s + ωps

p . (6)

3.3 System constraints

3.3.1 Surface contact constraint

Consider a spherical rover rolling on a generic surface defined by f (x, y, z) = 0, as shown
in Fig. 3, where rwi

i = [x y z]�. The coordinates x, y, and z are used to describe the compo-
nents of rwi

i expressed in Fi . The position of the contact point “w” relative to the origin of
Fi is

r−→
wi = r−→

si + r−→
ws = r−→

si − r n−→, (7)

where n−→ is the unit normal physical vector to the surface at the contact point “w” and is
given by

n−→ =
∇−→f

‖∇−→f ‖ .

The velocity of point “w” relative to the origin of Fi with respect to Fi (i.e., the absolute
velocity) expressed in Fi is

ṙwi
i = ṙsi

i − rṅi , (8)
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Fig. 4 Surface contact constraint

where, after manipulation,

ṅi =
(

1 − ∇if
�∇if

‖∇if ‖2

) ˙∇if
�

‖∇if ‖ . (9)

Notice in Eq. (9) that the term (1 − ∇i f
�∇i f

‖∇i f ‖2 ) is a projection matrix [28, p. 30]. Using the

chain rule, the term ˙∇if
�

in Eq. (9) can be expressed as

˙∇if
� = ∂∇if

�

∂rwi
i

drwi
i

dt
= ∂∇if

�

∂rwi
i

ṙwi
i , (10)

where
drwi

i

dt
= ṙwi

i and the term ∂∇i f
�

∂rwi
i

is the Jacobian matrix of ∇if
�. Combining Eqs. (8),

(9), and (10), ṙwi
i can be expressed as

ṙwi
i = ṙsi

i − r

‖∇if ‖
(

1 − ∇if
�∇if

‖∇if ‖2

)
∂∇if

�

∂rwi
i︸ ︷︷ ︸

Q

ṙwi
i .

Isolating the term ṙwi
i results in

ṙwi
i = (1 + Q)−1ṙsi

i , (11)

which is the surface contact constraint at the rate level.

3.3.2 No-slip constraint

Throughout this paper, it is assumed that the spherical rover is rolling without slip. The
velocity of the contact point c, depicted in Fig. 4, relative to Fi with respect to Fi is given
by

r−→
ci•i = r−→

si•i + ω−→
si × r−→

cs . (12)
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Using the no-slip criterion, the instantaneous velocity of the contact point vanishes (i.e.,
r−→ci•i = 0−→) [29, pp. 108–110]. Using rcs

i = −rni , the velocity of the center of the rover can
be expressed in Fi as

ṙsi
i = −rn×

i C�
siω

si
s = −rn×

i C�
siS

si
s q̇si , (13)

which is the no-slip criterion of a sphere rolling on a generic surface. Note that the points
c and w both instantaneously describe the position of the contact point of the sphere on the
surface but they do not have the same velocities. Point c is attached to the sphere, whereas
point w is located on the surface defined by f (x, y, z) = 0. The point c is used to develop the
no-slip constraint, whereas point w is used to evaluate the normal vector n−→ at the contact
point on the surface. The trajectory of point w is shown in a dashed red line in Fig. 5.

3.3.3 Pendulum and central rod constraint

Because the pendulum is constrained to rotate about the s−→2 axis, the first and third compo-

nents of the ω
ps
p reduce to zero (i.e., 1�

1 ω
ps
p = 1�

3 ω
ps
p = 0) and Eq. (6) simplifies to

ωpi
p = Cpsω

si
s + 12ω

ps

p,2. (14)

Mathematically, the constraint associated with the pendulum and central rod constraint
can be written as [

1�
1

1�
3

]
ωps

p = −
[

1�
1

1�
3

]
Cpsω

si
s +

[
1�

1

1�
3

]
ωpi

p = 0. (15)

Using a quaternion parametrization, the angular velocity ω
ps
p can be expressed as

ωps
p = Sps

p q̇ps,

where q̇ps = [εps�
ηps]�. Because the pendulum is constrained to rotate about the s−→2 axis,

it can be shown that ε
ps

1 = ε
ps

3 = 0, yielding

ωps
p = [

2(ηps1 − εps×
) −2εps

]
⎡
⎢⎢⎣

0
ε̇

ps

2
0

η̇ps

⎤
⎥⎥⎦ = 12

[
2ηps −2ε

ps

2

]
︸ ︷︷ ︸

Ŝps
p

[
ε̇

ps

2
η̇ps

]

︸ ︷︷ ︸
˙̂qps

, (16)

and

˙̂qps =
[ 1

2ηps

− 1
2ε

ps

2

]

︸ ︷︷ ︸
Γ̂

ps
p

ωps
p .

Using Eqs. (14) and (16), the time-rate-of-change of qpi can be expressed as

q̇pi = Γ pi
p ωpi

p

= Γ pi
p

(
Cpsω

si
s + 12ω

ps

p,2

)

= Γ pi
p CpsSsi

s q̇si + Γ pi
p 12Ŝps

p
˙̂qps . (17)
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3.3.4 Quaternion constraint

The use of the quaternions qsi and qpi introduces two additional constraints on the system.
These constraints, given by Eq. (2), can be combined in a matrix form as

⎡
⎣

[
2εsi� 2ηsi

]
0

0
[

2εpi� 2ηpi

]
⎤
⎦

[
q̇si

q̇pi

]
= 0. (18)

3.3.5 Constraint matrix

The five constraints given by Eqs. (11), (13), (15), and (18) can be combined in matrix form
as ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 + Q) −1 0 0
0 1 rn×

i C�
siS

si
s 0

0 0 −
[

1�
1

1�
3

]
CpsSsi

s

[
1�

1
1�

3

]
Spi

p

0 0
[

2εsi� 2ηsi

]
0

0 0 0
[

2εpi� 2ηpi

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ξ

⎡
⎢⎢⎣

ṙwi
i

ṙsi
i

q̇si

q̇pi

⎤
⎥⎥⎦

︸ ︷︷ ︸
q̇

= 0,

which represent 10 constraints imposed on 14 generalized coordinates. The system can also
be expressed in terms of a set of reduced generalized coordinates ˙̂q by applying the trans-
formation

⎡
⎢⎢⎢⎣

ṙwi
i

ṙsi
i

q̇si

q̇pi

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
q̇

=

⎡
⎢⎢⎢⎢⎣

−r(1 + Q)−1n×
i C�

siS
si
s 0

−rn×
i C�

siS
si
s 0

1 0

Γ pi
p CpsSsi

s Γ pi
p 12Ŝps

p

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Υ

[
q̇si

˙̂qps

]

︸ ︷︷ ︸
˙̂q

,

where Υ is the map between the set of reduced generalized coordinates and the dependent
generalized coordinates and has a 14×6 structure. In order to keep our derivations concise, it
will prove useful to define various kinematic relations. The augmented velocities are defined
as

ν =
⎡
⎢⎣

ṙsi
i

ωsi
s

ω
pi
p

⎤
⎥⎦ =

⎡
⎢⎣

0 1 0 0

0 0 Ssi
s 0

0 0 0 Spi
p

⎤
⎥⎦

︸ ︷︷ ︸
S̄

⎡
⎢⎢⎢⎣

ṙwi
i

ṙsi
i

q̇si

q̇pi

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
q̇

.

The augmented velocities can be related to a set of reduced angular velocities ω̂, defined as

ν =
⎡
⎣

−rn×
i C�

si 0
1 0

Cps 12

⎤
⎦

︸ ︷︷ ︸
Π

[
ωsi

s

ω
ps

p,2

]

︸ ︷︷ ︸
ω̂

.
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3.4 Kinetic and potential energy

The kinetic energy of the system is given by

T = 1

2
ν�Mν = 1

2
q̇�S̄�MS̄q̇,

where

M =
⎡
⎢⎣

(mS + mP)1 0 −C�
pic

Pp×
p

0 JSs
s 0

cPp×
p Cpi 0 JPp

p

⎤
⎥⎦ .

Note that the mass matrix is a function of qpi owing to the presence of Cpi . The total
potential energy of the system is [8]

U = g(mP + mS)1�
3 rsi

i + gcPp�
p Cpi13.

3.5 External forces and torques

Four external forces and torques are included in the motion equations: the translational
damping fr , the spin damping τ s , the generator damping τp , and the aerodynamic force fw .
These terms are represented by [8]

fr =

⎡
⎢⎢⎣

0
rbrn×

i C�
siω

si
s

0
0

⎤
⎥⎥⎦ , τ s =

⎡
⎢⎢⎣

0
0

−bsCsinin�
i C�

siω
si
s

0

⎤
⎥⎥⎦ ,

fw =

⎡
⎢⎢⎣

0
fwi
0
0

⎤
⎥⎥⎦ , and τp =

⎡
⎢⎢⎣

0
0

bpω
ps

p,2C�
ps12

−bpω
ps

p,212

⎤
⎥⎥⎦ .

The aerodynamic drag force is defined as

fwi = 1

2
ρACd

∥∥vws/i

i

∥∥2 vws/i

i

‖vws/i

i ‖ ,

where ρ is the density of the surrounding air, A is the frontal area of the rover, and Cd is
the drag coefficient. The term vws/i

i is the relative wind velocity, or more specifically the
velocity of the wind relative to Fs expressed in Fi , and is given by

vws/i

i = vwi/i

i − vsi/i

i .

The term vws/i

i is the absolute wind velocity, that is the velocity of the wind relative to Fi

expressed in Fi . The translational velocity of the rover is vsi/i

i = ṙsi
i . The total generalized

forces and torques column matrix is given by

τ ext = S̄�(
fr + τ s + fw + τp

)
. (19)
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3.6 Application of Lagrange’s equation

The motion equations are obtained using Lagrange’s equation [30, pp. 260–263]:

d

dt

(
∂L

∂q̇

)�
−

(
∂L

∂q

)�
= Ξ�λ + τ ext, (20)

where λ is a 10 × 1 column matrix of the Lagrange multipliers and the Lagrangian is given
by

L = T − U

= 1

2
q̇�S̄�MS̄q̇ − g(mP + mS)1�

3 rsi
i − gcPp�

p Cpi13 (21)

= 1

2
(mS + mP)ṙsi�

i ṙsi
i + ωpi�

p cPp×
p Cpi ṙsi

i + 1

2
ωsi�

s JSs
s ωsi

s

+ 1

2
ωpi�

p JPp
p ωpi

p − g(mP + mS)1�
3 rsi

i − gcPp�
p Cpi13. (22)

Note that Eq. (20) can be expanded into a set of 14 scalar equations. Omitting the details for
brevity, and using Eq. (21), it can be shown that

d

dt

(
∂L

∂q̇

)�
= ˙̄S�Mν + S̄�

⎡
⎢⎣

−C�
piω

pi×
p cPp×

p ω
pi
p

0

−cPp×
p ω

pi×
p Cpi ṙsi

i

⎤
⎥⎦ + S̄�Mν̇.

The term ∂L
∂q can be expressed as

∂L

∂q
=

[
∂L

∂rwi
i

∂L

∂rsi
i

∂L

∂qsi
∂L

∂qpi

]
. (23)

It will prove useful to consider the last two terms separately from the first two terms in
Eq. (23). From inspection of Eq. (22), it is observed that the only terms depending on the
quaternions are ωsi

s , ω
pi
p , and Cpi . Applying the chain rule of differentiation on the terms in

L that depend on ωsi
s and ω

pi
p it follows that

∂L

∂q
=

[
∂L

∂rwi
i

∂L

∂rsi
i

0 0
]
+

[
0 0 ∂L

∂ωsi
s

∂L

∂ω
pi
p

]
⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0

0 0 ∂ωsi
s

∂qsi 0

0 0 0 ∂ω
pi
p

∂qpi

⎤
⎥⎥⎥⎥⎦

+ ∂̂L

∂̂q
(24)

=
[

∂L

∂rwi
i

∂L

∂rsi
i

0 0
]
+ ∂L

∂ν

⎡
⎢⎢⎣

0 0 0 0

0 0 ∂ωsi
s

∂qsi 0

0 0 0 ∂ω
pi
p

∂qpi

⎤
⎥⎥⎦ +

[
0 0 ∂̂L

∂̂qsi

∂̂L

∂̂qpi

]
, (25)

where

∂L

∂rwi
i

= 0,
∂L

∂rsi
i

= −g(mP + mS)1�
3 ,

∂L

∂ν
= ν�M,

∂̂L

∂̂qsi
= 0, and
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∂̂L

∂̂qpi
= ωpi�

p cPp×
p

∂(Cpi ṙsi
i )

∂qpi
− gcPp�

p

∂(Cpi13)

∂qpi
.

Note that the chain rule neglects the fact that the term Cpi is a function of qpi . In order

to complete the differentiation process, the term ∂̂L

∂̂q
= [0 0 ∂̂L

∂̂qsi

∂̂L

∂̂qpi
] is added to Eq. (24),

which differentiates the Lagrangian with respect to the quaternions while holding the angular
velocity terms constant. Taking the transpose of Eq. (25), it follows that

(
∂L

∂q

)�
= S̄�

⎡
⎣

−g(mP + mS)13

0
0

⎤
⎦ +

⎡
⎢⎢⎢⎢⎣

0 0 0
0 0 0

0 ∂ωsi
s

∂qsi

�
0

0 0 ∂ω
pi
p

∂qpi

�

⎤
⎥⎥⎥⎥⎦

Mν

+

⎡
⎢⎢⎢⎢⎢⎣

0
0
0

− ∂(Cpi ṙsi
i

)

∂qpi

�
cPp×
p ω

pi
p − g

∂(Cpi13)

∂qpi

�
cPp
p

⎤
⎥⎥⎥⎥⎥⎦

.

Premultiplying Eq. (20) by Γ �Υ � and using the identities [31, 32]
(

Ṡba
b − ∂ωba

b

∂qba

)
Γ ba

b = −ωba×
b and

∂(Cbava)

∂qba
Γ ba

b = (Cbava)
×,

the motion equations are

�Mν̇ + �
(
ν×Mν + a

) = τ̂
ext

, (26)

where

� =
[

rCsin×
i 1 C�

ps

0 0 1�
2

]
,

a =
⎡
⎢⎣

−C�
piω

pi×
p cPp×

p ω
pi
p + ṙsi×

i C�
pic

Pp×
p ω

pi
p + g(mP + mS)13

0

−ω
pi×
p cPp×

p Cpi ṙsi
i − (Cpi13)

×cPp
p g

⎤
⎥⎦ ,

ν× =
⎡
⎢⎣

ṙsi×
i 0 0
0 ωsi×

s 0

0 0 ω
pi×
p

⎤
⎥⎦ , τ̂

ext = �(fr + τ s + fw + τp), and

Γ =
[

Γ si
s 0

0 Γ̂
ps

p

]
.

Note in Eq. (26) that the term Γ �Υ �Ξ� reduces to 0 because the matrices Υ Γ and Ξ are
orthogonal complements [26]. Applying the transformation ν = Πω̂ and ν̇ = Π̇ω̂ + Π ˙̂ω to
Eq. (26), the set of 6 scalar motion equations can be written in matrix form in terms of the
reduced angular velocities as

M̂ ˙̂ω + τ̂
non = τ̂

ext
, (27)
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where

M̂ = �MΠ, τ̂
non = �

(
MΠ̇ω̂ + ν×Mν + a

)
, and

Π̇ =
⎡
⎣

−rṅ×
i C�

si − rn×
i C�

siω
si×
s 0

0 0
−ω

ps

p,21×
2 Cps 0

⎤
⎦ .

4 Numerical simulation

In this section, the motion equations given by Eq. (27) are implemented in a MATLAB sim-
ulation for validation. The kinematics and dynamics of the system can be combined into
state-space form as

⎡
⎢⎢⎢⎢⎣

ṙsi
i

ṙwi
i

˙̂q
˙̂ω

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

−rn×
i C�

siω
si
s

−r(1 + Q)−1n×
i C�

siω
si
s

Γ ω̂

M̂−1(τ̂
ext − τ̂

non
)

⎤
⎥⎥⎥⎦ . (28)

The MATLAB solver ode45 is used to integrate Eq. (28) with an absolute and relative tol-
erance of 10−6. Because the development of tumbleweed rovers for Martian exploration
applications is of interest to the authors, the physical properties of the spherical robot used
in the simulations are consistent with a power-generating tumbleweed rover design [23] and
are given in Table 2.

4.1 Tumbleweed rover approaching a crater

The first simulation performed follows the motion of a tumbleweed rover rolling on a surface
resembling a Martian crater. The surface f (x, y, z) = 0, seen in Fig. 5, is defined as

f (x, y, z) = z + e1.5(1− x
30

2− y
30

2
) = 0.

A numerical simulation of the nonlinear system is performed in MATLAB with the initial
conditions rwi

i = [−40 40 0]� (m), qsi = [0 0 0 1]�, q̂ps = [0 1]�, ωsi
s = [0 7 0]� (rad/s),

and ω
ps

p,2 = 0 (rad/s). In Fig. 5, an isometric view of the trajectory of the tumbleweed rover
is shown. The trajectory of the center of the rover is given in blue and the trajectory of the
contact point between the rover and the surface is shown in red. In Figs. 5 and 6, the tum-
bleweed rover is seen to follow the path associated with the negative of the largest surface
gradient. In Fig. 7, the attitude and the angular velocities of the rover are shown for the en-
tire trajectory of the rover depicted in Fig. 5. The attitude of the rover is expressed in terms
of Euler angles for the sake of clarity and follows a 3–1–2 Euler angle sequence where
Csi = C2(α)C1(β)C3(γ ) [11, p. 21]. However, note that the simulation was performed in
MATLAB using a quaternion parametrization. The angle θ , taken about the s−→2 axis, relates
the position of the pendulum with respect to it’s downright vertical position.

In Fig. 7, upon entry in the vicinity of the crater, the rover starts shifting towards the
center of the crater and a yaw component is introduced, which is to say γ changes. The roll
component β is bounded between ±25 (deg), indicating that the central rod is approximately
parallel to the tangent plane of the surface the rover is rolling on. Moreover, the angle θ is
bounded between ±180 (deg), indicating that the pendulum is swinging back and forth and
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Table 2 Physical properties of the tumbleweed rover

Property Symbol Value

Mass of Inflated Sphere, kg mIS 5

Mass of Central Rod, kg mCR 5

Mass of Spherical Annulus, kg mSA 5

Mass of Pendulum Rod, kg mPR 1

Mass of Payload, kg mPA 10

Mass of Pendulum, kg mP mPR + mPA
Mass of Sphere, kg mS mIS + mCR + mSA
Length of Pendulum Rod, m �PR 0.9

Length of Central Rod, m �CR 1

Width of Pendulum Rod, m wPR 0.025

Width of Central rod, m wCR 0.025

Width of Spherical Annulus, m wSA 0.2

Height of Payload, m hP 0.1

Radius of Inflated Sphere, m r 1

Sphere Rolling Damping

Coefficient, kg·m2

s

br 3.5

Sphere Spin Damping

Coefficient, kg·m2

s

bs r2br

Pendulum Damping

Coefficient, kg·m2

s

bp 1.5

Wind absolute velocity, m
s vwi

i
8.311

Drag coefficient of sphere, Cd 0.1

Gravitational acceleration ( m
s2 ) g 9.81

First Moment of Mass of
Pendulum, kg · m

cPp −�PR( 1
2 mPR + mPA)13

Second Moment of Mass of
Inflated Sphere, kg · m2

JISs
s

2
3 mIS r31

Second Moment of Mass of
Spherical Annulus, kg · m2

JSAs
s diag( 1

6 mSA(3r2 + 2h2
SA),

mSAr2, ( 1
6 mSA(3r2 + 2h2

SA)))

Second Moment of Mass of
Central Rod, kg · m2

JCRs
s diag( 1

12 mCR(�2
CR + w2

CR),
1
6 mCRw2

CR, 1
12 mCR(�2

CR + w2
CR))

Second Moment of Mass of
Pendulum Rod, kg · m2

JPRp
p diag( 1

12 mPR(4�2
PR + w2

PR),
1
12 mPR(4�2

PR + w2
PR), 1

6 mPRw2
PR)

Second Moment of Mass of
Payload, kg · m2

JPAp
p diag( 1

6 mPA(h2
PA + 6�2

PA),
1
6 mPA(h2

PA + 6�2
PA), 1

6 mPAh2
PA)

Second Moment of Mass of
Pendulum, kg · m2

JPp
p JPRp

p + JPAp
p

Second Moment of Mass of
Sphere, kg · m2

JSs
s JISs

s + JCRs
s + JSAs

s
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Fig. 5 Tumbleweed rover approaching a crater. The blue line describes the trajectory of the center of the
sphere and the red line follows the trajectory of the contact point. The tumbleweed rover rolls towards the
bottom of the crater where it remains motionless (Color figure online)

Fig. 6 Side view of tumbleweed rover approaching a crater

that it is not undergoing full rotations about the central rod. This swinging motion of the
pendulum quickly reaches an equilibrium position as θ̇ tends to 0 (rad/s).

4.2 Tumbleweed rover descending a hill

In Figs. 8 and 9, a simulation is performed where the tumbleweed rover is released from rest
at the top of a hill. At the bottom of the hill, a wave field is modeled to mimic an uneven
surface on Mars. The surface is defined as

f (x, y, z) = z − (
1 − h1(x)

)
g1(x, y) − (

h1(x) − h2(x)
)
g2(x, y) = 0,

where

g1(x, y) = 1

3
(40 − x), g2(x, y) = 1

4

(
sin

x

2
+ sin 2y

)
,

h1(x) = 1

2

(
1 + tanh

(
x − 40

8

))
, and h1(x) = 1

2

(
1 + tanh

(
x − 80

8

))
.

The functions h1(x) and h2(x) are continuous blending functions bounded between 0 and 1
that are used to define a continuous function f (x, y, z) = 0 by merging the surfaces g1(x, y)

and g2(x, y). The functions h1(x) and h2(x) can be thought of functions that turn “off” and
“on” the neighboring surfaces g1(x, y) and g2(x, y). Note that f (x, y, z) = 0 must be twice
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Fig. 7 System response of a tumbleweed rover approaching a crater (γ , yaw; α, pitch; β , roll). The tumble-
weed rover is initially rolling with angular velocity in the s−→

2 direction. After approximately 10 (s), a yaw
component is introduced as the rover starts shifting toward the center of the crater

continuously differentiable in order to compute the gradient and the Jacobian matrix of the
gradient in Eqs. (9) and (10).

A numerical simulation of the nonlinear system is performed in MATLAB with the initial
conditions rwi

i = [0 − 1 40
3 ]� (m), qsi = [0 0 0 1]�, q̂ps = [0 1]�, ωsi

s = [0 0 0]� (rad/s), and
ω

ps

p,2 = 0 (rad/s). In Fig. 8, an isometric view of the trajectory of the tumbleweed rover is
shown. The trajectory of the center of the rover is given in blue, and the trajectories of point
A and point B, depicted in Fig. 1(b), are shown in gray. The trajectory of the lateral sides
permits us to visualize the rolling motion and the dynamic stability of the rover. In Fig. 9,
the passage of the rover through the wave field produces an oscillatory rolling motion that
progressively dampens out. If the spherical annulus component was absent, the oscillatory
rolling motion would gain in amplitude and the rover would roll in an unstable manner [22,
23].

In Fig. 10, the rover is seen to roll nominally about the s−→2 axis for approximately 7 (s)
while descending the slope. Upon entry in the waved field, the system is perturbed and the
states associated with the roll and the yaw of the rover are excited. From 20 to 60 (s), the in-
duced perturbations are damped out, and the system regains its stable rolling configuration.
During the post-processing of our results, the unit-length constraint on the Euler parameters
and the constraint representing the hinge between the pendulum and sphere were investi-
gated in order to verify that they are not violated in the simulations performed in this paper.
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Fig. 8 Tumbleweed rover
descending a hill then entering a
wave field. The oscillations
induced by the wave field
dampen out as the rover resumes
to rotate nominally about the s−→

2

axis (Color figure online)

Fig. 9 Side view of tumbleweed
rover descending a hill then
entering a wave field

Fig. 10 System response of a tumbleweed rover descending a hill then entering a wave field. (γ , yaw; α,
pitch; β , roll). The perturbations induced by the wave field at approximately 7 (s) introduce a roll and yaw
component to the rover. From 20 to 60 (s), the induced perturbations are damped out and the system regains
its stable rolling configuration
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5 Conclusion

In this paper, the motion equations for a spherical robot rolling on a generic curved sur-
face were derived using a Lagrangian formulation using quaternions to parametrize attitude.
Working in matrix form facilitated the integration of the holonomic and nonholonomic con-
straints associated with the pendulum, the use of quaternions, the surface contact, and the
no-slip criterion to the system. Using the methods described in this paper, the addition and
removal of constraints to the system is straightforward as the general form of the derivations
remains unchanged. The motion equations were validated in two numerical simulations per-
formed in MATLAB where the trajectories of the rover were determined for a tumbleweed
rover approaching a Martian crater and crossing a Martian wave field. Numerical simula-
tions can be of great help during the design phase of tumbleweed rovers in order to deter-
mine optimal mass distributions, investigate stable or unstable rover motions, and perform
trajectory analyses. Future areas of research include the modeling of a two degree of free-
dom pendulum-generator system, and the trajectory planning and control of the tumbleweed
rover.
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