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Abstract This paper concerns a set-point control for a folded configuration of a 3-link gym-
nastic planar robot moving in the vertical plane with the first joint being passive and the
others being active. To realize the goal configuration of the kip motion of a human gymnast
on the high bar, the control objective is to drive the robot from any initial state to any small
neighborhood of the up–down–down equilibrium point and then balance the 3-link robot
about that point, where link 1 is in the upright position and links 2 and 3 are in the down-
ward position. This paper uses the energy-based control approach and the notion of virtual
composite link to design a controller and provides a global motion analysis of the 3-link
robot. Different from the swing-up control problem for which three links are fully stretched
out in the upright position at the goal configuration, a new result of this paper is that in ad-
dition to some conditions on control parameters, a constraint on the mechanical parameters
of the 3-link robot is needed for achieving the set-point control of the folded configuration
(links 1 and 2 are folded). The proposed constraint guarantees the linear controllability at
the up–down equilibrium point of the Acrobot (degenerated from the 3-link robot) whose
actuated second link is the merge of links 2 and 3 of 3-link robot with all possible relative
angles. The simulation results for two 3-link robots are presented to validate the obtained
theoretical results.
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1 Introduction

The last two decades have witnessed considerable progress in the study of underactuated
multibody systems, which possess fewer actuators than degrees of freedom (the number of
configuration variables), from the perspectives of lightening weight, increasing reliability
and saving energy [4, 8, 12, 15, 19, 21, 26, 27]. They appear in a broad range of applications
including robotics, aerospace systems, marine systems, flexible systems, mobile systems,
and locomotive systems. Examples of such systems include gymnastic robots [19, 20] and
manipulators with passive joints [11], underwater vehicles [14], and aircraft [1, 3], rota-
tional/translational actuator [7]. Due to nonholonomic constraints relations arising in the
models of underactuated multibody systems, the control of these systems is still challeng-
ing [16].

One of the important control problems for underactuated robots with passive joint(s) is
the set-point control (regulation or stabilization) of a desired equilibrium point of the robots,
that is, finding a feedback controller that makes the desired equilibrium point asymptotically
stable [2]. Many researchers studied a particular problem of the set-point control called the
swing-up control for a planar robot with passive joint(s) moving in the vertical plane, see,
e.g., [5, 6, 10, 19]. Indeed, the swing-up control is to swing the robot to a small neighborhood
of the upright equilibrium point and then balance it about that point, where all links are in
the upright position.

In spite of some research progress on the swing-up control for planar robots with passive
joint(s), the set-point control for these robots is still open. This paper concerns a 3-link gym-
nastic planar robot moving in the vertical plane with its first joint being passive (unactuated)
and the second and third joints being active (actuated), which is called PAA robot below.
The first, second, and third joints of this robot correspond to the hands, shoulders, and hips
of a human gymnast, respectively. Different from the fully stretched out equilibrium con-
figuration related to the swing-up control shown in plot (a) of Fig. 1, this paper studies the
set-point control for a folded configuration of the PAA robot shown in plot (b) of Fig. 1. The
control objective is to drive the PAA robot from any initial state to any small neighborhood
of the UDD (up–down–down) equilibrium point, where link 1 is in the upright position and
links 2 and 3 are in the downward position. This corresponds to the goal configuration of
the kip motion of a human gymnast on the high bar (plot (b) of Fig. 1), where the upper
limb and the trunk of the gymnast are folded. Note that the kip motion is a basic element
performed on the high bar, in which the gymnast jumps on the bar, swings his legs forward,
brings his legs up to the bar and lifts his body up to the bar.

To the best of authors’ knowledge, nonlinear control toward such an equilibrium config-
uration has not been reported in the literature. We investigate whether we can extend the
energy-based control approach developed in the seminal works of [5, 10, 20] and the notion
of VCL (virtual composite link) in [25] for the swing-up control problem to such a folded
configuration control problem. First, by treating links 2 and 3 of the PAA robot as a VCL,
we design a controller, and present a necessary and sufficient condition for avoiding singu-
lar points in the presented controller. Second, to obtain a global motion analysis of the PAA
robot, we clarify the structure of the closed-loop equilibrium configuration by iteratively
studying two robots of the Acrobot type (two links with a passive first joint) rather than
directly studying the original 3-link robot. We find that the tackled problem is more difficult
than the usual swing-up maneuver. Specifically, different from the swing-up control problem
in [25], a new result of this paper is that in addition to some conditions on control parame-
ters, a constraint on the mechanical parameters of the PAA robot is needed for achieving the
set-point control of the folded configuration. The proposed constraint guarantees the linear
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Fig. 1 Goal configurations of
the swing-up motion (plot (a))
and the kip motion (plot (b)) of a
human gymnast

Fig. 2 A three-link
underactuated planar robot (PAA
robot)

controllability of the Acrobot (degenerated from the PAA robot) whose actuated second link
is the merge of links 2 and 3 of the PAA robot with all possible relative angles.

This paper is organized as follows: Sect. 2 presents some preliminary knowledge and
problem formulation. Section 3 describes an energy- and VCL-based controller for the
folded configuration of the PAA robot. Section 4 analyzes the global motion of the PAA
robot under that controller. Section 5 shows simulation results for two 3-link robots to vali-
date the theoretical results. Section 6 makes some concluding remarks.

2 Preliminary knowledges and problem formulation

2.1 Model of the PAA robot

Consider the PAA robot shown in Fig. 2, where for the ith (i = 1,2,3) link, li is its length,
lci is the distance from the joint i to its COM (center of mass), and Ji is the moment of
inertia around its COM.

Partition the generalized coordinate vector q ∈ R
3 as q = [q1, q

T
a ]T, with qa = [q2, q3]T,

where the subscript a denotes “actuated” in this paper. The motion equation of the PAA
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robot is:

M(q)q̈ + H(q, q̇) + G(q) = Bτ, (1)

where

M(q) =
⎡
⎣

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎦ (2)

is a symmetric positive definite inertia matrix, H(q, q̇) ∈ R
3 contains Coriolis and centrifu-

gal terms, G(q) ∈R
3 contains gravitational terms, and τ = [τ2, τ3]T ∈ R

2 is the input torque
vector produced by two actuators at the active joints 2 and 3. We express the detail of the
matrices in (1) as follows:

M11 = α11 + α22 + α33 + 2α12 cosq2 + 2α13 cos(q2 + q3) + 2α23 cosq3,

M12 = M21 = α22 + α33 + α12 cosq2 + α13 cos(q2 + q3) + 2α23 cosq3,

M13 = M31 = α33 + α13 cos(q2 + q3) + α23 cosq3,

M22 = α22 + α33 + 2α23 cosq3,

M23 = M32 = α33 + α23 cosq3,

M33 = α33,

H1 = −α12(2q̇1 + q̇2)q̇2 sinq2 − α13(2q̇1 + q̇2 + q̇3)(q̇2 + q̇3) sin(q2 + q3)

− α23(2q̇1 + 2q̇2 + q̇3)q̇3 sinq3,

H2 = α12q̇
2
1 sinq2 + α13q̇

2
1 sin(q2 + q3) − α23(2q̇1 + 2q̇2 + q̇3)q̇3 sinq3,

H3 = α13q̇
2
1 sin(q2 + q3) + α23(q̇1 + q̇2)

2 sinq3,

G1 = −β1 sinq1 − β2 sin(q1 + q2) − β3 sin(q1 + q2 + q3),

G2 = −β2 sin(q1 + q2) − β3 sin(q1 + q2 + q3),

G3 = −β3 sin(q1 + q2 + q3),

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α11 = J1 + m1l
2
c1 + (m2 + m3)l

2
1 ,

α22 = J2 + m2l
2
c2 + m3l

2
2 ,

α33 = J3 + m3l
2
c3,

α12 = (m2lc2 + m3l2)l1,

α13 = m3l1lc3,

α23 = m3l2lc3,

(3)

⎧⎨
⎩

β1 = (m1lc1 + m2l1 + m3l1)g,

β2 = (m2lc2 + m3l2)g,

β3 = m3lc3g,

(4)

where g is the acceleration of gravity, and

B =
⎡
⎣

0 0
1 0
0 1

⎤
⎦ . (5)
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The total mechanical energy of the PAA robot is expressed as

E(q, q̇) = 1

2
q̇TM(q)q̇ + P (q), (6)

where the potential energy P (q) is set as

P (q) = β1 cosq1 + β2 cos(q1 + q2) + β3 cos(q1 + q2 + q3). (7)

2.2 Problem formulation: set-point control for folded configuration

Consider the following UDD equilibrium point:

q1 = 0 (mod 2π), q2 = −π, q3 = 0, q̇1 = q̇2 = q̇3 = 0. (8)

Letting Er be the total mechanical energy of the PAA robot at the UDD equilibrium point
yields

Er = β1 − β2 − β3. (9)

In this paper, to apply the energy-based control approach, we need to assume that Er > 0
which indicates the COM of the PAA robot at the UDD equilibrium point is above the
horizontal axis.

To realize the set-point control for the UDD equilibrium point, for E(q, q̇), q̇a , and qa ,
if one can design a controller such that

lim
t→∞ E(q, q̇) = Er, lim

t→∞ q̇a = 0, lim
t→∞qa = qar , (10)

where

qar = [−π, 0
]T

, (11)

we will show in Sect. 4 that there exists a sequence of times that the PAA robot can be
driven to any small neighborhood of the UDD equilibrium point so that we can use a local
stabilizing controller to balance the PAA robot at that point.

A conventional Lyapunov function candidate for designing such τ is

VC = 1

2
(E − Er)

2 + 1

2
kDq̇T

a q̇a + 1

2
kP (qa − qar)

T(qa − qar), (12)

where scalars kD > 0 and kP > 0 are control parameters. However, we find that it is difficult
to obtain the relationship between the control parameter kP and the closed-loop equilibrium
configurations for determining whether the control objective can be achieved. To overcome
this difficulty, our idea is to use the notion of VCL which considering links 2 and 3 as a
virtual link [25] and to use the new Lyapunov function candidate shown in (34).

For preparation, in Sect. 2.3 we recall the notion of VCL developed in [25], and in
Sect. 2.4 we discuss the linear controllability for an Acrobot-type robot whose actuated
second link is the merge of links 2 and 3 of the 3-link robot with a constant relative angle.
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Fig. 3 Merge of links 2 and 3
into a VCL (virtual composite
link)

2.3 Virtual composite link

For the PAA robot, we consider its links 2 and 3 as a VCL shown in Fig. 3, where the VCL
starts from joint 2, and the COM of the VCL is the same as the joint COM of links 2 and 3.

Let q2 be the angle of the VCL with respect to link 1, and let θ(q3) be the angle of the
VCL with respect to link 2, shown in Fig. 3. We obtain

q2 = q2 + θ(q3). (13)

Moreover, when link 2 and the VCL are stretched out in a straight line, it is reasonable to
define

θ(q3)
∣∣
q3=0

= 0. (14)

To determine θ(q3), we use a coordinate system (x, y) with its origin at joint 2 and its
x-axis lying on link 2, see Fig. 3. In this coordinate system, the coordinates of the COMs
of links 2 and 3 are (lc2,0) and (l2 + lc3 cosq3, lc3 sinq3), respectively. Let (xc, yc) be the
coordinates of joint COM of links 2 and 3. We obtain

(xc, yc) = (β2 + β3 cosq3, β3 sinq3)

(m2 + m3)g
.

Letting lc2 be the distance between joint 2 and the COM of the VCL, we have

lc2(q3) =
√

x2
c + y2

c = β2(q3)

(m2 + m3)g
, (15)

where

β2(q3) :=
√

β2
2 + β2

3 + 2β2β3 cosq3. (16)

Thus, θ(q3) satisfies
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin θ(q3) = yc

lc2

= β3 sinq3

β2(q3)
,

cos θ(q3) = xc

lc2

= β2 + β3 cosq3

β2(q3)
.

(17)
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Consider the following coordinate transformation on qa :

qa =
[

q2

q3

]
. (18)

From (13) and (14), the transformation from qa to qa is

qa = 0 ⇐⇒ qa = 0. (19)

Using the time-derivative of tan θ(q3) yields

θ̇ (q3) = ψ(q3)q̇3, ψ(q3) = β3(β3 + β2 cosq3)

β
2
2(q3)

. (20)

This shows

q̇a = Ψ q̇a, Ψ =
[

1 ψ(q3)

0 1

]
. (21)

2.4 Linear controllability at folded configuration

Let us consider the Acrobot (2-link case) in this section, which can be treated as a special
case of the 3-link case by assuming the relative angle between links 2 and 3 being constant
denoted as q∗

3 , that is, q3(t) ≡ q∗
3 . Different from q2 in (13), we define

q̃2 = q2 + θ
(
q∗

3

)
.

We obtain the motion equation of the Acrobot derived from (1) as follows:

M̃(q̃) ¨̃q + H̃ (q̃, ˙̃q) + G̃(q̃) = BAτ2, (22)

where q̃ = [q1, q̃2]T, BA = [0,1]T, and

M̃(q̃) =
[

α1 + α2 + 2α3 cos q̃2 α2 + α3 cos q̃2

α2 + α3 cos q̃2 α2

]
, (23)

H̃ (q̃, ˙̃q) = α3

[
−2q̇1 ˙̃q2 − ˙̃q2

2

q̇2
1

]
sin q̃2, (24)

G̃(q̃) =
[

−β1 sinq1 − β2 sin(q1 + q̃2)

−β2 sin(q1 + q̃2)

]
, (25)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = α11,

α2(q
∗
3 ) = α22 + α33 + 2α23 cosq∗

3 ,

α3(q
∗
3 ) = l1β2(q

∗
3 )/g,

β1 = β1,

β2(q
∗
3 ) =

√
β2

2 + β2
3 + 2β2β3 cosq∗

3 .

(26)
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Let w = [q1, q̃2, q̇1, ˙̃q2]T and we = [qe
1, q̃

e
2,0,0]T be the state and an equilibrium point

of the Acrobot. Let τ e
2 = −β2 sin(qe

1 + q̃e
2) be the equilibrium torque. Then the linearized

model of the Acrobot around the above equilibrium point can be expressed as:

ξ̇ = Aξ + Nu, (27)

where ξ = w − we , u = τ2 − τ e
2 , A and N are matrices determined by the mechanical pa-

rameters of the Acrobot and the equilibrium point and are omitted for brevity. The Acrobot
is linearly controllable at the equilibrium point if (A,N) is controllable. Note that (A,N) is
controllable if and only if the controllability matrix U = [N,AN,A2N,A3N ] has full row
rank, that is, |U | 	= 0.

Let Uuu and Uud be the controllability matrices of linearized models of the Acrobot
around the upright equilibrium point (links 1 and 2 are in the upright position) and up–down
equilibrium point (links 1 and 2 are in the upright and downward positions, respectively),
respectively. Then

|Uuu| = − ρ2

(α1α2 − α2
3)

4
, |Uud| = − δ

2

(α1α2 − α2
3)

4
, (28)

where

ρ = (α2 + α3)β1 − (α1 + α3)β2, (29)

δ = (α2 − α3)β1 + (α1 − α3)β2. (30)

Lemma 1 in [24] for this Acrobot directly gives the following two inequalities:

α2β1 − α3β2 > 0, (31)

α3β1 − α1β2 ≥ 0. (32)

Thus, ρ > 0 since ρ is the sum of left-hand side terms of (31) and (32); δ may be zero since
δ is the difference of left-hand side terms of (31) and (32). We give the following lemma.

Lemma 1 The linearized model of the Acrobot around the upright equilibrium point is
controllable; while the linearized model of the Acrobot around the up–down equilibrium
point is controllable if and only if δ 	= 0.

We recall a property of the motion of the Acrobot in [24].

Lemma 2 Assume that the up–down equilibrium point of the Acrobot is linearly control-
lable, that is, δ 	= 0 for δ in (30). If q2(t) ≡ q∗

2 and τ2(t) ≡ τ ∗
2 with q∗

2 and τ ∗
2 being constant,

then

q̇1(t) ≡ 0, τ ∗
2 = 0, q∗

2 = −π (mod 2π), (33)

where “≡” means that the equation holds for all time t .

Note that there exist 2-link planar robots satisfying δ = 0, see [24, p. 1521]. In this paper,
to drive the PAA robot close to the UDD equilibrium point, we need a constraint on the
mechanical parameters of the PAA robot similar to the constraint δ 	= 0 for the Acrobot.
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3 Controller design and avoidance of singular points

We present the following Lyapunov function candidate:

V = 1

2
(E − Er)

2 + 1

2
kDq̇T

a q̇a + 1

2
kP eTe, (34)

where e = q̄a − qar is used instead of qa − qar in (12).
Taking the time-derivative of V along the trajectories of (1), and using Ė = q̇T

a τ and

using q̇
T
a = q̇T

a Ψ T owing to (21), we obtain

V̇ = q̇T
a

(
(E − Er)τ + kDq̈a + kP Ψ Te

)
.

Thus, if we can choose τ such that

(E − Er)τ + kDq̈a + kP Ψ Te = −kV q̇a (35)

holds for some constant kV > 0, then we have

V̇ = −kV q̇T
a q̇a ≤ 0. (36)

From (1) and qa = BT q , we obtain

Λ(q, q̇)τ = kDBTM−1(H + G) − kV q̇a − kP Ψ Te, (37)

where

Λ(q, q̇) = (
E(q, q̇) − Er

)
I2 + kDBTM−1(q)B, (38)

with I2 being the 2 × 2 identity matrix. Therefore, when
∣∣Λ(q, q̇)

∣∣ 	= 0, for ∀q,∀q̇ (39)

holds, the following controller obtained from (37) has no singular points for any (q , q̇):

τ = Λ−1
(
kDBTM−1(H + G) − kV q̇a − kP Ψ Te

)
. (40)

We use the fact that M(q) is a matrix function of q2 and q3 to derive a necessary and
sufficient condition such that (39) holds. Then, we apply LaSalle’s invariance principle [9]
to the closed-loop system consisting of (1) and (40) to determine the largest invariant set
that the closed-loop solution approaches as t goes infinity. We present the following lemma
with its proof given in Appendix A.

Lemma 3 Consider the closed-loop system consisting of (1) and (40). Suppose that kD > 0,
kP > 0, and kV > 0. Then controller (40) has no singular points for any (q , q̇) if and only if

kD > kDm = max
q2,q3

{
(Er + μ)λmax

((
BTM−1B

)−1)}
, (41)

where λmax(A) denotes the maximal eigenvalue of A > 0 and

μ =
(

3∑
i=1

β2
i + 2

2∑
i=1

3∑
j>i

βiβj cos
j∑

k=i+1

qk

)1/2

. (42)
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In this case,

lim
t→∞V = V ∗, lim

t→∞E = E∗, (43)

lim
t→∞qa = q∗

a , lim
t→∞ qa = q ∗

a , (44)

where V ∗, E∗, q∗
a , and q ∗

a are constants. Moreover, as t → ∞, every closed-loop solution,
(q(t), q̇(t)), approaches the invariant set:

W =
{
(q, q̇)

∣∣∣ q̇2
1 = 2(E∗ − P (q))

M11(q)

∣∣∣∣
qa=q∗

a

, qa ≡ q∗
a

}
. (45)

4 Motion analysis: new results related to folded configuration

We characterize the invariant set W in (45) by analyzing the limit value V ∗ of the Lyapunov
function V in (34). Since limt→∞ V = 0 is equivalent to (10), we analyze the two cases,
V ∗ 	= 0 and V ∗ = 0, separately. Note that

q∗
a =

[
q∗

2
q∗

3

]
, q ∗

a =
[

q∗
2 + θ(q∗

3 )

q∗
3

]
. (46)

4.1 Constraint on mechanical parameters

Regarding the case of V ∗ = 0, from (34) and (19), we have E∗ = Er , q ∗
a = qar with qar in

(11). Using q∗
3 = 0 yields q ∗

2 = q2 = −π and q∗
a = qar . From (6), we obtain

q̇2
1 = 2Er

M11(qar )
(1 − cosq1). (47)

Therefore, the closed-loop solution (q(t), q̇(t)) approaches the following invariant set as
t → ∞:

Wr = {
(q, q̇) | (q1, q̇1) satisfies (47);qa ≡ qar

}
. (48)

Since (47) is a homoclinic orbit converging to the equilibrium point (q1, q̇1) = (0,0) as
t → ∞, (q1(t), q̇1(t)) will have (q1, q̇1) = (0,0) as an ω-limit point [17, p. 44], that is,
there exists a sequence of times tm (m = 1, . . . ,∞) such that tm → ∞ as m → ∞ for which
limm→∞(q1(tm), q̇1(tm)) = (0,0), and this implies that the PAA robot can enter any small
neighborhood of the UDD equilibrium point.

Regarding the case of V ∗ 	= 0, substituting E ≡ E∗ and qa ≡ q ∗
a into (35) yields

kP Ψ T
(
q∗

3

)(
q ∗

a − qar

) + (
E∗ − Er

)
τ = 0. (49)

This shows that E∗ 	= Er . On the contrary, assume that E∗ = Er holds, then from (49), we
have q ∗

a = qar . This yields V ∗ = 0 which contradicts V ∗ 	= 0. Using E∗ 	= Er shows that τ

is a constant vector τ ∗ satisfying the following equation:

kP Ψ T
(
q∗

3

)(
q ∗

a − qar

) + (
E∗ − Er

)
τ ∗ = 0. (50)

Since q3(t) ≡ q∗
3 holds in the invariant set W defined in (45), there exists no relative motion

between links 2 and 3; as shown in Fig. 4, we consider the PAA robot as an Acrobot whose
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Fig. 4 PAA robot with q3 ≡ q∗
3 and an Acrobot

first link is link 1 of the PAA robot and the second link is the merge of links 2 and 3 of the
PAA robot with relative angle q3(t) ≡ q∗

3 . Thus, as described in Sect. 2.4, such an Acrobot
has the following five parameters described in (26).

According to Lemma 2 and (30), since q ∗
2 is a constant, q1(t) is a constant in the invariant

set W provided that the Acrobot in Fig. 4 is linearly controllable at the folded configuration,
that is, from Lemma 1,

(α2 − α3)β1 + (α1 − α3)β2

(
q∗

3

) 	= 0, for ∀q∗
3 . (51)

This is equivalent to

Γ β2

(
q∗

3

) 	= Ξ cosq∗
3 + Λ, for 0 ≤ q∗

3 ≤ 2π, (52)

where Γ , Ξ , and Λ are the following constants determined by the mechanical parameters
of the 3-link robot:

Γ = l1β1 − α11g,

Ξ = 2(gα23β1 − l1β2β3),

Λ = g(α22 + α33)β1 − l1
(
β2

2 + β2
3

)
.

As shown in Appendix B, we obtain

Γ ≥ 0, Λ > Ξ > 0. (53)

Thus, (52) is equivalent to

f (z) := Γ β2(z)

Ξ cos z + Λ
	= 1, for 0 ≤ z ≤ 2π. (54)

Assume that constraint (54) holds. Then, from Lemma 2, we know that q1(t) is a constant
in the invariant set W . Therefore, substituting q̇ = 0, q̈ = 0, q = q∗ = [q∗

1 , q∗
2 , q∗

3 ]T, and
τ = τ ∗ into (1) and from (50), we obtain

β1 sinq∗
1 + β2 sin

(
q∗

1 + q∗
2

) + β3 sin
(
q∗

1 + q∗
2 + q∗

3

) = 0, (55)

kP Ψ T
(
q∗

3

)(
q ∗

a − qar

) + (
P

(
q∗) − Er

)
τ ∗ = 0, P

(
q∗) 	= Er, (56)
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and τ ∗ = BT G(q∗). Therefore, as t → ∞ the closed-loop solution (q(t), q̇(t)) approaches
the following equilibrium set

Ω = {(
q∗,0

) | q∗ satisfies (55) and (56)
}
. (57)

To summarize the above results, we give the following lemma.

Lemma 4 Consider the PAA robot given in (1). Assume the mechanical parameters of the
PAA robot satisfy constraint (54). Suppose that kD satisfies (41), kP > 0 and kV > 0 hold.
Then under controller (40), as t → ∞, the closed-loop solution (q(t), q̇(t)) approaches

W = Wr ∪ Ω, with Wr ∩ Ω = ∅, (58)

where Wr is defined in (48), Ω is the set of equilibrium points defined in (57), and ∅ denotes
the empty set.

We give a remark on constraint (54).

Remark 1 Equation (54) is a constraint on the mechanical parameters of the PAA robot,
which corresponds to the linear controllability at the folded equilibrium configuration of the
Acrobot (degenerated from the PAA robot) whose passive first link is link 1 of the PAA robot
and actuated second link is the merge of links 2 and 3 of the PAA robot with all possible
relative angles. Under such a constraint, we can use Lemma 2 to analyze the motion of the
PAA robot for the case of V ∗ 	= 0.

4.2 Conditions on control gains

If Ω in (57) contains a stable equilibrium point in the sense of Lyapunov, then the PAA robot
cannot be driven arbitrarily close to the UDD equilibrium point from some neighborhoods
close to the stable equilibrium point. Thus, we aim at providing some conditions on the
control parameter kP such that the set Ω contains no stable equilibrium points. It is easy to
check that the set Ω contains at least one element of the DUU (down–up–up) equilibrium
point for any given kP , where link 1 is at the downward position and links 2 and 3 are in the
upright position, that is, (q1, q2, q3, q̇1, q̇2, q̇3) = (−π,−π,0,0,0,0). We will show that if
kP is sufficiently large, then Ω contains only the DUU equilibrium point, we will provide a
lower bound for kP .

Define

η1 := β1 max
y∈[0,π ]
z∈[0,2π ]

β2(z)(Φ(y, z) + Er) siny

Φ(y, z)(y + π)
, (59)

η2 := β2β3 max
z∈[π,2π ]

−(β1 − β2(z) + Er) sin z

β2(z)z
, (60)

where

Φ(y, z) :=
√

β2
1 + β

2
2(z) + 2β1β2(z) cosy (61)

and β2(z) is defined in (16). Using the assumption Er = β1 − β2 − β3 > 0, we have
Φ(y, z) ≥ β1 − β2(z) ≥ Er > 0 for all y and z. We present the main result of this paper
with its proof in Appendix C.



Set-point control for folded configuration of 3-link underactuated 361

Theorem 1 Consider the PAA robot given in (1). Assume the mechanical parameters of the
PAA robot satisfy constraint (54) and Er > 0. Suppose that kD satisfies (41), kP > 0 and
kV > 0 hold. If kP satisfies

kP > η1 (62)

and

kP > η2, (63)

then under the controller (40), as t → ∞, the closed-loop solution (q(t), q̇(t)) approaches

W = Wr ∪ {
(−π,−π,0,0,0,0)

}
, (64)

where Wr is defined in (48). Moreover, the DUU equilibrium point in (64) is unstable in the
closed-loop system.

We give a remark on the difference of the control for up–down–down position in this
paper and the swing-up control for the up–up–up position in [25].

Remark 2 The control law for the up–down–down position is similar to that for the up–
up–up position in [25] since they are obtained by using the energy-based control approach
and the virtual composite link. The goal configurations of the two control laws are different,
and the conditions on the mechanical parameters and control parameters for achieving the
control goals are different. Indeed, to drive the PAA robot toward the UDD equilibrium
point, we need to assume that Er > 0 and the mechanical parameters of the PAA robot
satisfy constraint (54); however, there are no such conditions on the mechanical parameters
for swinging the PAA robot up to the upright equilibrium point. From a numerical example
in Sect. 5.2, we can see that for a PAA robot which does not satisfy constraint (54), we fail
to drive the PAA robot toward the UDD equilibrium point.

Next remark is about the stabilizing controller for balancing the PAA robot about the
UDD equilibrium point.

Remark 3 The PAA robot cannot be kept at the UDD equilibrium point by the controller (40)
since that point is not stable, either. When the PAA robot enters a prescribed neighborhood
of that point, we need to switch the controller (40) to a local stabilizing controller to balance
the PAA robot about that point. Since such a stabilizing controller can be designed, for
example, by using the LQR method for the linearized model of the PAA robot around that
point. This is standard and is omitted.

5 Numerical simulation results

We validated the theoretical results in this paper via two numerical examples. Here we
took g = 9.81 m/s2. From (4), the physical unit of β1, β2, and β3 is J (the unit of energy).
From (34), the physical value of V is J2, the physical units of kP and kD are J2 and J2 s2,
respectively. From (35), the physical unit of kV is J2 s. In this paper, to show whether E −Er

approaches 0 or not, we present the time response of E − Er rather than E.
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Table 1 Parameters in the model
of the gymnast [22] Link i Link 1 Link 2 Link 3

mi [kg] 5.4 29.5 18.5

li [m] 0.58 0.50 0.79

lci [m] 0.31 0.20 0.33

Ji [kg m2] 0.15 1.93 1.03

Fig. 5 Satisfaction of
constraint (54)

5.1 Example 1: satisfaction of constraint (54) on mechanical parameters

In [22], the kip motion of a human gymnast was experimentally analyzed by using (1) for
modeling the gymnast. See Table 1 for the parameters of the model in [22].

For this PAA robot, we obtain β1 = 289.5323 J, β2 = 148.6215 J, and β3 = 59.8901 J.
Thus, Er = β1 − β2 − β3 > 0 holds. As to constraint (54), we depict f (z) for 0 ≤ z ≤ 2π in
Fig. 5. From Fig. 5, we know that 0 < f (z) < 1 holds and thus f (z) 	= 1 in constraint (54)
holds. Moreover, we verified numerically that the UDD equilibrium point of this PAA robot
is linearly controllable.

For this PAA robot, the necessary and sufficient condition for avoiding the singular points
given in (41) is kD > 4503 J2 s2. Next, the conditions (62) and (63) on kP are kP > 15863 J2

and kP > 3591 J2, respectively.
We took an initial condition of

q1(0) = −π, q2(0) = q3(0) = 0, q̇1(0) = q̇2(0) = q̇3(0) = 0, (65)

which is the downward equilibrium point. The simulation results under the controller (40)
with

kD = 4550 J2 s2, kP = 16000 J2, kV = 5000 J2 s (66)

are depicted in Figs. 6–8.
From Fig. 6, we observe that V and E − Er converge to zero. From Fig. 7, we see

that link 1 is swung up close to the upright position in a large motion (vibrates by over
2π around), and q2 and q3 converge to −π and 0, respectively. There exists a sequence of
times such that the robot is driven close to the UDD equilibrium point, which motivates
the switching to the stabilizing control. These figures show that the case of V ∗ = 0, rather
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Fig. 6 Time responses of V and
E − Er of the controller (40) for
the PAA satisfying
constraint (54)

Fig. 7 Time responses of q1,
q2 + π , and q3 of the controller
(40) for the PAA satisfying
constraint (54)

Fig. 8 Time responses of τ2 and
τ3 of the controller (40) for the
PAA satisfying constraint (54)

than the case of V ∗ 	= 0, occurs, and show that the closed-loop solution (q, q̇) approaches
Wr defined in (48) and there exists a sequence of times for which the PAA robot is swung
up close to the UDD equilibrium point. These simulation results validated our results in
Theorem 1. From Fig. 8, we observe that as a whole the magnitude of |τ2(t)| is greater than
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Fig. 9 Time responses of q1,
q2 + π , and q3 of the controller
(40) and the LQR controller (67)
for the PAA satisfying
constraint (54)

that of |τ3(t)| in this simulation. This supports the statement in [24] mentioned by expert
gymnasts saying that “shoulders take a more important role than hips to achieve an effective
swing”.

As mentioned in Remark 3, when the PAA robot enters into a prescribed neighborhood
of that point, we can switch the controller (40) to a locally stabilizing controller designed by
the LQR method to stabilize the PAA robot to that point,

τ = −Kx, (67)

where x = [x1, x2, x3, x4, x5, x6]T = [q1, q2 + π,q3, q̇1, q̇2, q̇3]T, and the element of xi (i =
1,2,3) of x is treated by modular 2π for the stabilization, and

K =
[−954.1353 975.5020 222.8941 −236.6196 119.2518 −19.0996

−353.4632 325.2489 147.5021 −93.9428 7.4978 93.4635

]
,

which was computed by using the Matlab function “lqr” with the weight matrix related
to state x being 10000I6 and the weight related to the torque being I2. The condition for
switching the controller (40) to the controller (67) was taken as

|xi | < π

6
, |xi+3| < 0.5, i = 1,2,3. (68)

The time responses of q and τ of the controller (40) and the LQR controller (67) are depicted
in Figs. 9 and 10. From Figs. 9 and 10, we find that the switch was taken at about t = 13.38 s,
and we can see that the control objective of this paper has been achieved.

We have made extensive numerical simulations for many other initial conditions for this
robot, we only observed V ∗ = 0. From Theorem 1 in this paper, since the constraint on the
robot is satisfied, if V ∗ 	= 0, then the robot is at the DUU (down–up–up) equilibrium point
which is unstable in the closed-loop system. If the initial condition of the robot is the DUU
equilibrium point, theoretically, the robot will remain at that point, and the corresponding
V ∗ is not zero.

Finally, for the closed-loop system of this robot and the controller (40) with the control
parameters in (66), we checked the stability of the DUU equilibrium point. Direct computa-
tion yields the characteristic equation of the Jacobian matrix evaluated at DUU equilibrium
point as follows:

s6 − 0.2265s5 + 16.10s4 − 12.74s3 − 1000.88s2 − 1366.68s − 8640.19 = 0,
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Fig. 10 Time responses of τ2
and τ3 of the controller (40) and
the LQR controller (67) for the
PAA satisfying constraint (54)

Table 2 Parameters of PAA
robot Link i Link 1 Link 2 Link 3

mi [kg] 1.00 0.50 0.50

li [m] 3.00 0.50 0.50

lci [m] 1.50 0.25 0.25

Ji [kg m2] m1l21
12

m2l22
12

m3l23
12

which has the roots: 0.3060±6.1184j , 5.7411, −4.9394, −0.5935±2.7869j . Thus, the Ja-
cobian matrix has three eigenvalues in the open left-half plane, and three eigenvalues in the
open right-half plane. The set of initial conditions from which the robot starts will converge
to the DUU equilibrium point is determined by the eigenspace of the stable eigenvalues;
and the set has Lebesgue measure zero due to the existence of the unstable eigenvalues [13].
Therefore, for all initial conditions with the exception of a set of Lebesgue measure zero
of this robot, under the controller (40) with the control parameters in (66), as t → ∞, the
closed-loop solution approaches Wr defined in (48). This guarantees that there exists a se-
quence of times such that the robot is driven close to the UDD equilibrium point for a
successful switch to the stabilizing control.

5.2 Example 2: dissatisfaction of constraint (54) on mechanical parameters

Consider the following PAA robot with its mechanical parameters shown in Table 2. For
this robot, we obtain β1 = 44.1450 J, β2 = 3.6788 J, and β3 = 1.2263 J. Thus, Er = β1 −
β2 − β3 > 0 holds. We verified numerically that the UDD equilibrium point of this PAA
robot is linearly controllable, and Er > 0 holds. However, as to (54), we depict f (z) for
0 ≤ z ≤ 2π in Fig. 11. From Fig. 11, we know that (54) does not hold since f (z) = 1 at
z = 0 and z = 2π . This means that the Acrobot, which is degenerated from this PAA with
the angle between links 2 and 3 being 0 constantly, is not linearly controllable at its up–down
equilibrium point.

For this PAA robot, the necessary and sufficient condition for avoiding the singular points
given in (41) is kD > 30.31 J2 s2. Next, the conditions (62) and (63) on kP are kP > 87.73
and kP > 23.06 J2, respectively. We took the same initial condition (65), and we chose
kD = 31 J2 s2, kP = 90 J2, and kV = 90 J2 s.
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Fig. 11 Dissatisfaction of
constraint (54)

Fig. 12 Time responses of V

and E − Er of controller (40) for
the PAA not satisfying
constraint (54)

The simulation results under the controller (40) with the above control parameters are
depicted in Figs. 12–14. From Fig. 12, we observe that neither V nor E − Er converges
to zero. From Fig. 13, although q2 and q3 converge to −π and 0, respectively, we see that
link 1 does not swing up close to the upright position (q1 = 0). These show that V ∗ 	= 0
occurs with q1(t) being not a constant and the controller (40) failed to drive the PAA robot
close to the UDD equilibrium point. From Fig. 14, we see that τ2 and τ3 are not equal to
zero at the beginning of the control and approach 0 as t increases.

6 Conclusion

This paper studied a set-point control for a folded configuration of a PAA robot moving in
the vertical plane with the first joint being passive and the other two joints being active. The
control objective is to drive the PAA robot from any initial state to any small neighborhood of
the UDD equilibrium point and then balance the robot about that point, which corresponds
to the goal configuration of the kip motion of a gymnast on the high bar. Such a control
problem has not been studied in the literature.

We used the energy-based control approach and the notion of VCL to combine links 2 and
3 into a virtual link for designing a controller and provided a global motion analysis of the
PAA robot. We presented a necessary and sufficient condition for avoiding singular points
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Fig. 13 Time responses of q1,
q2 + π , and q3 of controller (40)
for the PAA not satisfying
constraint (54)

Fig. 14 Time responses of τ2
and τ3 of the controller (40) for
the PAA not satisfying
constraint (54)

in the presented controller. In this paper, we showed that the control toward such a folded
configuration is more difficult than the well-known swing-up control problem. In addition
to some conditions on control parameters, this paper showed that the proposed constraint
on the mechanical parameters of the PAA robot guarantees the success of the proposed set-
point controller. The proposed constraint guarantees the linear controllability for the folded
configuration of the Acrobot (degenerated from the PAA robot), whose actuated second
link is the merge of links 2 and 3 of the PAA robot with all possible relative angles. The
simulation results for two PAA robots were provided to validate the effectiveness of the
proposed controller and the necessity of the constraint. Specifically, for a PAA robot whose
mechanical parameters do not satisfy the constraint, our numerical investigation shows that
the proposed controller cannot drive the robot close to the UDD equilibrium point from some
initial conditions. This paper provides some insights into the difficulty and complexity of
controlling different equilibrium configurations of multi-degree-of-freedom underactuated
mechanical systems beyond a fully stretched configuration related to the swing-up control.

The robust control of underactuated robotic systems with uncertainties and/or measure-
ment noise is an interesting and challenging subject for future study. To compare with the
feedback law presented in this paper, it is an interesting future subject to see how it behaves
in comparison to feedforward control based on optimal control for underactuated robotic
systems [18, 23].
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Appendix A: Proof of Lemma 3

First, we analyze (39). Define Ma(q) = (BTM−1(q)B)−1. Since M(q) > 0, we can see that
|Λ(q, q̇)| 	= 0 if and only if

∣∣kDI2 + (E − Er)Ma

∣∣ 	= 0. (A.1)

Using E(q, q̇) ≥ P (q), we obtain

(E − Er)Ma ≥ (
P (q) − Er

)
Ma.

Different from the swing-up control problem, Er ≥ P (q) does not necessarily hold since Er

is the potential energy corresponding to the UDD equilibrium point. Therefore, a sufficient
condition for (39) is

kD > max
q

f (q); f (q) = (
Er − P (q)

)
λam(q), (A.2)

where

λam(q) =
{

λmax(Ma(q)), if Er ≥ P (q),

λmin(Ma(q)), if Er < P(q)
(A.3)

with λmax(Ma(q)) and λmin(Ma(q)) being the largest and smallest eigenvalues of Ma(q),
respectively.

We now show that (A.2) is also necessary for (39). To show this, on the contrary, for any
given kD satisfying 0 < kD ≤ maxq f (q), we just need to show that there exists an initial
state (q(0), q̇(0)) at which Λ(q, q̇) is singular. Let ζ ∈R

3 be a value of q which maximizes
f (q), that is, ζ = arg maxq f (q). Take ζd ∈R

3 as

ζd = M(ζ)− 1
2

⎡
⎣

√
2d0

0
0

⎤
⎦ , d0 = f (ζ ) − kD

λam(ζ )
≥ 0. (A.4)

Thus, for an initial state (q(0), q̇(0)) = (ζ, ζd), we have

kD + (
E

(
q(0), q̇(0)

) − Er

)
λam

(
q(0)

)

= kD +
(

1

2
ζ T
d M(ζ )ζd + P (ζ ) − Er

)
λam(ζ ) = 0.

This yields
∣∣kDI2 + (

E
(
q(0), q̇(0)

) − Er

)
Ma

(
q(0)

)∣∣ = 0.

Thus, (39) has singular points if kD ≤ maxq f (q).
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Below, we show how to simplify (A.2) to (41) by eliminating q1 from (A.2). For any q

that maximizes f (q) in (A.2),

0 = ∂f (q)

∂q1
= −∂P (q)

∂q1
λam(q) (A.5)

must hold, where the second equality holds because neither M(q) nor Ma(q) contains q1.
This yields ∂P (q)/∂q1 = G1(q) = 0. Using G1(q) = 0 and computing P 2(q) = P 2(q) +
G2

1(q), we can write P (q) in terms of qa as

P (q) = ±μ(qa), (A.6)

where μ(qa) is defined in (42). Since μ(qa) > 0 and Er > 0, substituting P (q) = −μ(qa)

with λam(q) = λmax(Ma(q)) (due to Er ≥ 0 ≥ P (q)) into (A.2) shows that (41) is a necessary
and sufficient condition such that (39) holds.

Second, using LaSalle’s invariance principle [9], we can show (43) and (44). Finally,
substituting qa ≡ q∗

a and E ≡ E∗ into (6) proves (45). �

Appendix B: Proof of (53)

Using (3) yields

Γ = (
m1lc1l1 − m1l

2
c1 − J1

)
g. (B.1)

According to (A.1) in [24], we obtain

m1lc1l1 − m1l
2
c1 − J1 ≥ 0. (B.2)

Using (3) and l2 ≥ lc2 yields

Ξ = 2m3lc3

(
m1lc1l2 + m2l1(l2 − lc2)

)
g2 > 0. (B.3)

Finally, we compare Ξ and Λ.

Λ − Ξ = g2
(
(J2 + J3)(lc1m1 + l1m2) + lc1l

2
c2m1m2

+ (
lc1

(
l2
2 − l2

c3

)
m1 + l1

(
J2 + J3 + (−l2 + lc2 + lc3)

2m2

))
m3

)

> 0.

This completes the proof of (53).

Appendix C: Proof of Theorem 1

For an equilibrium point (q∗,0) of Ω in (57), using

τ ∗
2 = −β2 sin

(
q∗

1 + q∗
2

) − β3 sin
(
q∗

1 + q∗
2 + q∗

3

) = −β2

(
q∗

3

)
sin

(
q∗

1 + q ∗
2

)
,

τ ∗
3 = −β3 sin

(
q∗

1 + q∗
2 + q∗

3

)
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and q ∗
2 = q∗

2 + θ(q∗
3 ), we rewrite (55) and (56) as follows:

β1 sinq∗
1 + β2

(
q∗

3

)
sin

(
q∗

1 + q ∗
2

) = 0, (C.1)

kP

(
q ∗

2 + π
) − β2

(
q∗

3

)(
P

(
q∗) − Er

)
sin

(
q∗

1 + q ∗
2

) = 0, (C.2)

kP ψ
(
q∗

3

)(
q ∗

2 + π
) + kP q∗

3 − (
P

(
q∗) − Er

)
β3 sin

(
q∗

1 + q ∗
2 − θ

(
q∗

3

) + q∗
3

) = 0, (C.3)

P
(
q∗) 	= Er, (C.4)

where

P
(
q∗) = β1 cosq∗

1 + β2

(
q∗

3

)
cos

(
q∗

1 + q ∗
2

)
. (C.5)

To show that the closed-loop solution (q(t), q̇(t)) approaches W expressed in (64), using
Lemma 4, we only need to show that the equilibrium set Ω in (57) has only the DUU equi-
librium point under the conditions (62) and (63). We prove this statement via the following
two steps:

Step 1. For link 1 and the VCL (see Fig. 4), we show that if kP > η1 in (62) holds, then for
any given q∗

3 , only (q∗
1 , q ∗

2 ) = (0,−π) and (q∗
1 , q ∗

2 ) = (−π,−π) satisfy (C.1) and (C.2);

Step 2. For links 2 and 3, we show that if kP > η2 in (63) also holds, then (q∗
1 , q ∗

2 , q∗
3 ) =

(−π,−π,0) is a unique solution of (C.1)–(C.4).
As to Step 1, adding the square of (C.1) to that of P (q∗) in (C.5) yields

P
(
q∗) = ±Φ

(
q ∗

2 , q∗
3

)
, (C.6)

where Φ(q ∗
2 , q∗

3 ) is defined in (61).
Using the assumption Er = β1 − β2 − β3 > 0, we have Φ(q ∗

2 , q∗
3 ) > 0 for all q ∗

2 and q∗
3

due to β1 > β2 + β3 ≥ β2(q
∗
3 ) and

Φ
(
q ∗

2 , q∗
3

) ≥ β1 − β2

(
q∗

3

) ≥ Er.

Thus, P (q∗) 	= 0 under the assumption Er > 0. To eliminate q∗
1 from (C.2), by computing

(C.5)× sin(q∗
1 + q ∗

2 )−(C.1)× cos(q∗
1 + q ∗

2 ), we obtain

sin
(
q∗

1 + q ∗
2

) = β1 sinq ∗
2

P (q∗)
. (C.7)

Therefore, using (C.6) and (C.7), we can eliminate q∗
1 from (C.2) and obtain

kP

β1

(
q ∗

2 + π
) = β2(q

∗
3 )(Φ(q ∗

2 , q∗
3 ) − sgn(P (q∗))Er) sinq ∗

2

Φ(q ∗
2 , q∗

3 )
, (C.8)

where sgn(P (q∗)) denotes the sign of P (q∗). Note that the above equation holds for
q ∗

2 = −π with any q∗
3 . When q ∗

2 	= −π , we rewrite (C.8) as

kP = β1β2(q
∗
3 )(Φ(q ∗

2 , q∗
3 ) − sgn(P (q∗))Er) sinq ∗

2

Φ(q ∗
2 , q∗

3 )(q ∗
2 + π)

.

Since Φ(q ∗
2 , q∗

3 ) > β1 − β2 ≥ Er and sin(q ∗
2 )/(q ∗

2 + π) ≥ 0 in [0,π], if (62) holds, then
(C.8) has a unique solution q ∗

2 = −π . Owing to (C.7), we have sinq∗
1 = 0, that is,

q∗
1 = 0, or, q∗

1 = −π (mod 2π). (C.9)
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From (C.5), we obtain

P
(
q∗) = (

β1 − β2

(
q∗

3

))
cosq∗

1 . (C.10)

As to Step 2, by using q ∗
2 = −π , (C.9), and (17), we can simplify (C.3) as

kP

β2β3
q∗

3 = − (β1 − β2(q
∗
3 ) − sgn(P (q∗))Er) sinq∗

3

β2(q
∗
3 )

. (C.11)

Obviously, q ∗
3 = 0 is a solution of (C.11). For q∗

3 	= 0, we rewrite (C.11) as

kP = −β2β3(β1 − β2(q
∗
3 ) − sgn(P (q∗))Er) sinq∗

3

β2(q
∗
3 )q∗

3

.

Since sinq∗
3 ≤ 0 for π ≤ q∗

3 ≤ 2π , if (63) holds, then (C.11) has a unique solution q ∗
3 = 0.

To summarize, if (62) and (63) hold, then only (q∗
1 , q ∗

2 , q∗
3 ) = (0,−π,0) and (q∗

1 , q ∗
2 , q∗

3 ) =
(−π,−π,0) satisfy (C.1)–(C.3). From (19) and q3 = 0, we have q2 = −π . From (C.9),
since P (0,−π,0) = Er contradicts (C.4), (q∗

1 , q ∗
2 , q∗

3 ) = (−π,−π,0) is the only solution
of (C.1)–(C.4); this shows that the set Ω in (57) has only the DUU equilibrium point.

Finally, to show that the DUU equilibrium point is unstable, let (−π + δ,−π,0,0,0,0)

be a point in a neighborhood of the DUU equilibrium point. Using P (−π + δ,−π,0) =
−Er cos δ, we have V (−π,−π,0,0,0,0) = 2E2

r and V (−π + δ,−π,0,0,0,0) = (1 +
cos δ)2E2

r /2, which shows

V (−π + δ,−π,0,0,0,0) < V (−π,−π,0,0,0,0) (C.12)

for δ /∈ {0,±2π, . . .}. Since V is non-increasing under the controller (40), according
to Lemma 4, no matter how small |δ| > 0 is, the PAA robot starting from (−π + δ,

−π,0,0,0,0) will not approach (−π,−π,0,0,0,0) but will approach Wr instead. This
shows that the DUU equilibrium point is unstable. �
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