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Abstract This research is a comprehensive study on the correlations between the locomo-
tion characteristics and the gait patterns of a metameric earthworm-like robot. The paper is
divided into two parts: modeling and gait generation are the focuses of Part A; relationship
among physical parameters, gait designs and dynamic behavior of the robot, as well as gait
optimization and experimental verification are the core problems presented in Part B. The
results of the research contribute to the design and control of earthworm-like robots.

In the first part of the paper, inspired by earthworms’ morphology structure and based
on the idea of integrating actuator and anchor into an individual body segment, a general
N -segment kinematic model of the earthworm-like robot is developed. Kinematics of a sin-
gle segment and the locomotion mechanism of the whole robot are investigated. Then the
gait generation is studied for a general case. Gait parameters and their constraints are iden-
tified, and a gait generation algorithm is put forward following the mechanism of retrograde
peristalsis waves. After that, considering non-ideal anchors and non-ideal actuators, a dy-
namic model with anisotropic Coulomb dry friction is developed. Critical conditions for
actuator-overload and anchor-slippage are derived, respectively. The constructed kinematic
and dynamic models, the gait generation algorithm and the critical conditions obtained in
this study provide a sound basis for earthworm-like robot design and the follow-up gait
analysis presented in Part B.
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1 General introduction

1.1 Background

In recent years, there is a rising demand for locomotion robots that are capable of moving in
confined space and hazardous environment, such as burrowing through rubbles to search for
earthquake survivors, navigating in slender industrial pipelines to inspect and clean foreign
objects, performing covert action in battlefield to gather information, and entering in human
gastrointestinal (GI) tracts to examine and treat diseases. These potential applications fos-
tered a significant amount of research on robot locomotion mechanisms, such as wheeled,
legged and crawling mechanisms. For some wheeled and legged robots, the complication in
structure, weakness in controllability and difficulty of miniaturization limit their further de-
velopment for application in restricted environment [1]. On the other hand, crawling robots,
by either changing their own configuration or driving internal mass(es) [2–4], can move for-
ward in various media without protruded components for propulsion (e.g., wheels, oars, legs
and jets, etc.). They normally possess simpler structure and better controllability, and can be
miniaturized more easily than traditional wheeled- and legged-robots.

Biomimetics is one of the most important approaches to promote the state-of-the-art of
robotics. Recently, the good locomotion performance of earthworms in various environ-
ments (e.g., on dry rocks, on moist earth and in flowing mud) has attracted much attention
from researchers. A great number of worm-like robots have been developed and tested from
many aspects [5–17], among which most efforts have focused on the design and experimen-
tal verification of the appropriate actuation mechanisms [5–12]. In these studies, robots were
always modeled as a chain of a few (low and specific number) segments, and only simple
gaits were utilized to achieve linear locomotion. A general model with arbitrary number of
segments and general issues of gait design and gait analysis were not investigated in [5–12].

As the number of segments in the robot increases, multiple types of gait are possible. Dif-
ferent types of gait could lead to different kinematic and dynamic behaviors, and therefore,
understanding the correlation between gaits and locomotion performance becomes crucially
important for robot development. However, not much research efforts were devoted to ad-
dressing these issues. Steigenberger, Behn and Zimmermann, etc. [13–16] systematically
studied a worm-like N -mass-point system interconnected by (N − 1) kinematic drivers or
viscoelastic force actuators. Considering both kinematics and dynamics, gaits were gener-
ated by arranging the resting mass points [15]. Adaptive control of the uncertain system
(unknown actuator and environment parameters) was studied in [13, 14] to track a pre-
scribed kinematic gait. For a certain environment-dependent speed of the system, gait shift
was also considered to find the optimal gait with respect to low spike forces or actuator
forces [16]. Chen, Yeo and Gao [17] studied the gait generation problem for an N -segment
inchworm-like robot through exhaustive search in a directed graph. While these studies on
gaits initiated some new directions, there still exist many issues to be addressed, which will
be stated in Sect. 2.

1.2 Biological inspiration

To better learn from the earthworms, characteristics of earthworms’ morphology structure
and locomotion mechanism will be briefly introduced here. Inspiration gained from these
characteristics will be presented.
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Fig. 1 Schematic illustrations of an earthworm’s morphology structure and locomotion mechanism: (a) lon-
gitudinal section, (b) cross-section, (c) continuous trace of locomotion, redrawn based on [19]. In (a) and (b),
only the hydrostatic skeleton and setae are labeled, all the other internal organs and nervous system are not
labeled. In (c), a peristalsis wave travels in the opposite direction to locomotion, indicated by dashed curves

In view of morphology structure, three features deserve our attention [18]. The first one
is the metameric segmentation of earthworm. The earthworm’s body is divided into a large
number of segments (for some species more than 100 segments) by septa, which mechan-
ically isolate each segment, keeping the volume of coelomic fluid unchanged, as is shown
in Fig. 1(a). The metamerism ensures that each segment can work independently, i.e., short-
ening or elongating of one segment does not influence the state of adjacent segments. The
second feature is the muscle layout in individual segment. The muscular system consists
of two muscle layers, namely, circular muscles and longitudinal muscles, which can be
observed in both Fig. 1(a) and 1(b). Due to the constant-volume of coelomic fluid, these
two muscles function antagonistically to each other, forming the hydrostatic skeleton of the
earthworm. Contraction of circular muscles will reduce the diameter but extend the length
of the segment; while contraction of longitudinal muscles will increase the diameter but
shorten the length. Generally, it is believed that the longitudinal muscles play a major role
in earthworm’s locomotion [6, 18]. The third feature is the setae, which are connected to
the longitudinal muscles. During the contraction of longitudinal muscles, setae are stretched
out to form extra contact with the environment, increasing resistance or inducing tempo-
rary anchorage with the environment. It is the setae that make the directed locomotion of
earthworm possible.

In view of locomotion mechanism, there are three features that require our attention
[18, 19]. The first one is the temporary anchorage. Figure 1(c) schematically shows a con-
tinuous trace of an earthworm’s locomotion on the ground or inside a burrow. The dark-
colored segments are at their shortest but widest (fattest) states as the longitudinal muscles
are fully contracted. They have additional setae contact with the ground or the burrow, and
hence, temporarily anchor themselves to the environment and prevent the earthworm from
slipping backwards. The light-colored segments are at their longest but thinnest states as
the circular muscles are fully contracted. These segments can be free from any contact with
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the environment and as a result experience little resistance. The second feature is the waves
of muscular contraction. The alternative contraction of circular and longitudinal muscles in
each segment (i.e., elongating and shortening of each segment) leads to the forward motion
of the earthworm (see the transitions in Fig. 1(c)). The fully shortened segments (dark-
colored) move in the opposite direction to the crawling of the earthworm in the form of a
peristalsis wave, i.e., retrograde peristalsis wave, which is considered as the most represen-
tative feature of the earthworms’ locomotion. The third feature is the adaptability of gaits.
Earthworms’ locomotion may differ significantly when they move in different media (on
glass or on earth), in different weather conditions (dry or moist) and in different operating
situations (safe or dangerous) [20]. They possess the ability to adjust their muscular activ-
ities, and hence, the gait, to adapt to the environment, to move efficiently and to preserve
themselves.

Overall, the aforementioned characteristics in the earthworms’ muscular structure and
locomotion mechanism provide many guidelines for developing an efficient earthworm-like
robot. From a structure perspective, the metameric segmentation of the earthworm suggests
that the robot could consist of many independent segments. In this way, the robot can have
sufficient degrees of freedom to exhibit various gaits. The antagonistic layout of the longitu-
dinal and circular muscles in an earthworm represents a simple mechanism for actuation and
anchoring, which can be mimicked in robot design as well. Similar to the setae, the robot
surface can also feature anisotropic friction coefficient to enable directed locomotion and
improve locomotion efficiency. From the locomotion mechanism perspective, the temporary
anchorage and the retrograde peristalsis wave of muscular contraction tell us how to effec-
tively arrange and control the many segments in the robot, i.e., how to construct gaits. The
earthworm’s good adaptability of gaits to environments indicates the necessity of having
multiple choices on locomotion gaits.

2 Problem statement and research objectives

Based on reviewing the previous work and inspired by the earthworm, three core issues need
to be further addressed to advance the state of the art of earthworm-like robot design and
locomotion performance optimization: modeling, gait analysis and experiments. These are
discussed in detail in Sect. 2.1 through 2.3, respectively. The research objectives will be
presented in Sect. 2.4.

2.1 Modeling

The first aspect to be discussed is the kinematic modeling idea of the earthworm-like robots.
On the one hand, in many previous built earthworm-like robots [5–12], actuators were sep-
arated from the anchors, and in some cases, actuators were separated from the body seg-
ments (or mass points). However, considering the real earthworm, almost every segment
takes on multiple roles of being both actuator and anchor simultaneously. Recently, sev-
eral earthworm-like robots based on SMA actuators [5], pneumatic and fluidic actuators
[8, 10, 21] and rubber balloons [11] were designed following the idea that both actuator
and anchor are integrated into one body segment. Such a modeling idea can significantly
reduce the complexity of the robot, and hence, improve the reliability and ease the dif-
ficulty for control. On the other hand, with the purpose of designing and experimentally
verifying actuation mechanisms for earthworm-like locomotion, most previous research fo-
cused on robots consisting of a specific number of segments [5–12]. Robots with general
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and arbitrary number of segments were studied in [13–16], where, however, actuator, an-
chor and body segment were separated. Notice that an earthworm possess a large num-
ber of segments, and an earthworm-like robot with more segments could have richer lo-
comotion patterns. Therefore, based on the idea of integrating actuator, anchor component
and body segment together, building a general kinematic model with large and arbitrary
number of segments would greatly contribute to the bio-inspired design of earthworm-like
robots.

Another aspect that needs attention is the dynamic modeling of earthworm-like robots.
In previous designs, ideal anchorage (no slippage) and ideal actuator (unlimited actuation
force) were assumed [5–12]. Such an assumption helps to understand the kinematics of lo-
comotion, but fails to describe the dynamic features. In terms of anchorage, previous work
indicated that the experimental achieved stride/speed is always lower than the theoretical
prediction, and one of the major reasons is that the anchors fail to work ideally, causing
the robot as a whole to slip backward [5, 7, 8, 12]. Besides, notice that active spikes re-
quire additional actuators to drive them [22], which may increase the system complexity
and decrease the reliability. Moreover, in some sensitive and vulnerable media (e.g., inside
human’s GI tracts), spikes/bristles are not suitable because they may damage the media. If
spikes/bristles are not present at the surface of the robot, friction forces have to serve the role
of the anchoring force (e.g., inside the human GI tracts, the anisotropic friction forces are
provided by the microvilli; and in underground burrows, the friction forces are provided by
the irregular soil). Hence, instead of ideal spikes/bristles, considering the non-ideal anchor-
ing forces provided by friction in earthworm-like robots is a more general and meaningful
task. Similarly, in terms of actuators, they may fail to output enough forces to drive the
robot when the number of segments is large. Hence, the ideal-actuator assumption is not
suitable for analyzing the dynamics of the robots, and non-ideal actuating forces should be
considered in a dynamic model. Consequently, studying a dynamic model with non-ideal
actuating force and non-ideal anchoring force can lead to a comprehensive understanding of
the dynamic behavior of the earthworm-like robots, thus providing sound knowledge base
for future better robot design.

2.2 Gait analysis

Since many previous studies focused on robots with low and specific number of body seg-
ments, simple motion gaits (patterns) are enough to achieve effective forward locomotion
and to verify actuator performance [5–12]. However, once the number of segments is rela-
tively large, changing of gaits might induce a huge difference in locomotion performance.
Noticing that the earthworms can exhibit different gaits in different environment, it makes
sense to systematically construct various gaits in an N -segment earthworm-like robot, and
further, to study the effects of gaits on the kinematics and dynamics of the robot.

For the inchworm-like robot, single-stride and multiple-stride gaits were constructed
through exhaustive search [17]. For the worm-like N -mass-point system, gait construction
was also studied [15]. In their constructed gaits, more than one mass point can anchor with
the ground, according with the real earthworm situation that several fully-shortened seg-
ments act as anchor (see the dark segments in Fig. 1(c)). However, it is assumed that only
a pair of actuators can deform simultaneously (one in contracting state and one in relaxing
state, locating in front of and behind the anchor, respectively), which is quite different from
the real earthworm that multiple segments work at a time (see the transitions between two
time instants in Fig. 1(c)). Besides, sometimes in a real earthworm, more than one anchor
point can coexist, which has not been considered in previous studies. For these reasons, it
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is worthwhile to consider a more general problem of gait generation, i.e., how to construct
gaits with multiple anchoring segments, multiple pairs of deforming segments, and multiple
anchor points in a robot.

The purpose of studying gait is to explore the relationship between the gait design and
the locomotion characteristics of the robot. However, only little research has focused in
this field. In [16], an interesting topic of gait shift, was first put forward and studied. By
shifting gaits according to environment changes, the robot can achieve an optimal speed
while maintaining low anchor and/or actuator force requirements. The present research will
employ a new philosophy to deal with the gait analysis. First, for the given actuator and
working environment, the critical conditions for actuator-overload and anchor-slippage will
be explored, respectively. Then, the relationship among physical parameters, gait patterns
and locomotion behavior of the robot will be studied. Gait optimization will be carried out
to maximize the average speed of the robot. Understanding these issues is important to the
gait design and optimal control of the earthworm-like robots.

2.3 Experiments

In previous experimental studies, many earthworm-like robots have been prototyped and
tested, with the purpose of verifying the effectiveness of new actuation mechanism or
overall-design [5–12], and only simple gaits have been adopted to control these robots. To
the authors’ knowledge, there has been no systematic experimental study specifically on
locomotion gaits of earthworm-like robots. The experiments to be carried out in this pa-
per aim to verify the results on gait generation and gait analysis, rather than to test a new
robot. However, to this end, a robust robot platform is still necessary. The robot prototype
should reflect the key characteristics of the constructed models, and at the same time should
have simple design, should be easily actuated and should be able to effectively and effi-
ciently perform locomotion. The experimental gait studies and the obtained result would
greatly enhance the understanding and utilization of locomotion gaits in earthworm-like
robots.

2.4 Research objectives

Based on the above arguments, the objectives of this research are to develop generic models
of the earthworm-like robot, to systematically investigate the correlation between the gait
and the locomotion characteristics of the earthworm-like robot, and to experimentally inves-
tigate the gait and validate the analytical results. The outcome of this research can greatly
advance the state-of-the-art of the earthworm-like robots, including robot design and loco-
motion gait design. To achieve these objectives, several progressive research tasks will be
carried out: (a) develop an N -segment kinematic model of the earthworm-like robot based
on the idea of integrating actuator and anchor component into an individual body segment;
(b) evolve the kinematic model into a dynamic model by incorporating non-ideal anchoring
forces and non-ideal actuators, and to derive the critical conditions for actuator-overload
and anchor slippage; (c) systematically generate locomotion gaits in a most general pattern;
(d) investigate the relationship among physical parameters, gait patterns and locomotion be-
havior of the robot; (e) optimize the gait design for both kinematic and dynamic models
with the purpose of maximizing average speed; (f) experimentally validate the effectiveness
of the gait generation algorithm and verify the results of gait analysis via an earthworm-like
robot prototype.

The paper will be divided into two parts, Part A and Part B. Part A will mainly discuss
the issues of modeling and gait generation (tasks (a) to (c)). Part B will focus on gait analysis
and experiments (tasks (d) to (f)).
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Fig. 2 An N -segment kinematic model of an earthworm-like robot: (a) a line of separated segments from #1
to #N , (b) fully relaxed state ‘0’ of a segment, (c) fully contracted state ‘1’ of a segment

3 Kinematic model

In this section, a new N -segment kinematic model of the earthworm-like robot, developed
based on the inspiration gained from the earthworm and the idea of integrating actuator and
anchor into an individual segment, is presented. Kinematics of a single segment as well as
the locomotion mechanism and average speed of the robot are derived.

3.1 Kinematics of a single segment

The kinematic model is made up of N identical segments interconnected through non-
deformable connectors, as illustrated in Fig. 2(a). Each segment has axisymmetric configu-
ration as a cylinder and works as an actuator with similar characteristics as an earthworm’s
segment. Hence, each segment has two states, namely, fully relaxed state and fully con-
tracted state, denoted by binary values ‘0’ and ‘1’, respectively. Segment at state ‘0’ has the
longest length lmax but the smallest diameter dmin; while segment at state ‘1’ has the shortest
length lmin but the largest diameter dmax, as is shown in Fig. 2(b) and 2(c). As a result, during
the transitions ‘0 → 1’ and ‘1 → 0’, the stroke of a segment is

�l = lmax − lmin. (1)

Temporary anchorage is a key factor for the earthworm-like locomotion. In this kinematic
model, it is assumed that segments at state ‘0’ have no contact with the environment (see
Fig. 2(b)), while segments at state ‘1’ have full contact with the environment due to the
radial expansion. When the robot moves on the ground or inside a burrow, extra friction
will occur at the contact surface between the fully contracted segments (state ‘1’) and the
ground or the sidewalls of the burrow, forming a temporary anchorage in a similar way as
the earthworm does (see Fig. 2(c)).

During one transition, four actuating actions are possible to take place in a single seg-
ment, which are listed in Table 1. Hence, during each transition, segments can be classi-
fied into four types based on their current actuating actions, namely, contracting segments,
relaxing segments, temporarily anchoring segments (for brevity, anchoring segments) and
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Table 1 Four actuating actions
of a single segment Actions Types Deformation

0 → 1 Contracting segment −�l

1 → 0 Relaxing segment �l

0 → 0 Unactuated segment 0

1 → 1 (Temporarily) anchoring segment 0

unactuated segments. Deformation of a segment corresponding to each action is listed in
Table 1. It is worth mentioning that each segment can switch its types during different tran-
sitions.

As a kinematic model, it is reasonable to adopt the following two model assumptions on
each segment.

Model Assumption 1 (Ideal anchors) The friction/anchoring force generated from the an-
choring segments are strong enough to prevent them from slipping backward when their
adjacent segments are contracting or relaxing.

Model Assumption 2 (Ideal actuators) The actuating forces generated from the contract-
ing and relaxing segments are large enough to pull/push any number of adjacent segments
forward.

3.2 Locomotion mechanism

Similar as the locomotion of the real earthworm, displacement of the robot during one tran-
sition is induced by the contracting and relaxing segments, providing that the anchoring
segments stay at rest. Hence, we say that the locomotion of the robot is driven by a “driving
module”, defined as follows:

Definition 1 (Driving module) A driving module is a group of segments that actually drive
the robot forward. During a transition, a driving module is composed of contiguous contract-
ing segments, anchoring segments and relaxing segments. To ensure a forward locomotion,
relaxing segments have to locate in front of the anchoring segments, while contracting seg-
ments have to locate behind the anchoring segments. Contracting and relaxing segments are
required to deform simultaneously during a transition.

Figure 3 shows a general driving module made up of nC contracting segments, nA anchor-
ing segments and nR relaxing segments. In total, the driving module contains (nC +nA +nR)
segments. Here, nC , nA and nR are all positive integers. At time instant t0, the leftmost seg-
ment in a random j th driving module is labeled as segment (1, j ). Other segments in this
driving module can be numbered in turn so that the rightmost segment is (nC +nA +nR, j ).
Denote the time for one transition as �t . During the transition from t0 to (t0 + �t ), the nA

anchoring segments temporarily anchor with the environment and keep still, the nC con-
tracting segments pull themselves and the adjacent segments forward, and the nR relaxing
segments push themselves and the adjacent segments forward. Based on the model assump-
tions and kinematics law, the relative displacement of each segment during the transition
can be expressed (the front-end position of each segment is used as the location marker
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Fig. 3 An illustration of a general driving module composed of nC contracting segments, nA anchoring
segments and nR relaxing segments. The driving modules at time instants t0 and (t0 + �t ) are indicated
by dashed rectangles. The locomotion direction of the driving module is assumed to be right. Legend will
remain in effect in later discussion

of the displacement, sub-indexes (�, j ) are the labels of segments in the j th driving mod-
ule):

Anchoring Segments: xnC+1,j = xnC+2,j = · · · = xnC+nA,j = 0,

Contracting Segments: Relaxing Segments:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xnC,j = 0,

xnC−1,j = �l,

· · ·
x1,j = (nC − 1)�l,

x0,j = nC�l,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xnC+nA+1,j = �l,

xnC+nA+2,j = 2�l,

· · ·
xnC+nA+nR−1,j = (nR − 1)�l,

xnC+nA+nR,j = nR�l.

(2)

In order to preserve the configuration of the driving module and obtain a steady-state
locomotion, the number of contracting segments has to equal to the number of relaxing
segments in a driving module, i.e.,

nC = nR. (3)

As a result, at the time instant (t0 + �t ), the head-end displacement x2nR+nA,j and the tail-
end displacement x0,j of the driving module are the same and equal to �x, as is marked in
Fig. 3,

�x = x0,j = x2nR+nA,j = nR�l. (4)

It is worth noting that if condition (3) is satisfied, the driving module as a whole will
move backward regularly. As is revealed in Fig. 3, during the transition, the driving module
travels backward by nR segments. It can be predicted that during the next transition that
begins at time instant (t0 + �t ), the driving module will travel backward by another nR

segments. Like the earthworm, such backward traveling of driving module is a reflection of
the retrograde peristalsis wave.

As is mentioned in Sect. 2.2, several anchor points, i.e., several driving modules, can
coexist and work simultaneously in a robot. To ensure a regular steady-state motion, all the
driving modules in the robot are assumed to be identical, i.e., each driving module shares
the same configuration of segments. For convenience, we use (nA,nR) to denote the con-
figuration of a driving module composed of nA anchoring segments, nR contracting and nR

relaxing segments.
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Fig. 4 A general N -segment kinematic model of the earthworm-like robot with k driving modules (nA,nR )
and N − k(nA + 2nR) unactuated segments

Notice that the unactuated segments do not produce any deformation but just play a
connecting and transmission role. For convenience, it is assumed that the (N −k(nA +2nR))
unactuated segments are concentrated, and without loss of generality, are located at the head
of the sequence at the initial instant. Therefore, a general N -segment kinematic model with
k driving modules (nA,nR) and (N − k(nA +2nR)) unactuated segments can be built, which
is displayed in Fig. 4. In a global numbering system, the very end segment is labeled as #1,
and numbering in turn, the very front segment is labeled as #N .

Next, the average speed of the N -segment robot is derived. As is mentioned earlier,
during each transition �t , the driving module will move backward by nR segments. Keeping
moving backward, this driving module needs μ(N/nR) transitions to return to its original
position, where μ > 0 is the smallest integer that makes the number of transitions μ(N/nR)

to be an integer. If the quotient (N/nR) is already an integer, then the coefficient μ = 1. As
a result, the motion period T of the robot is

T = μ(N/nR)�t. (5)

Notice that the anchoring segments in the additional driving modules will limit the trans-
mission of displacement induced by adjacent driving modules. The very front and very end
driving modules, in fact, determine the displacement of the N -segment robot as a whole
during a transition. Hence, provided that each driving module is identical, the displacement
of the whole robot during a transition is the same with that of a single driving module, i.e.,
�x = nR�l. Then, for the period T , the tolerable displacement of the robot can be obtained
as

Xtolerable = μ(N/nR)�x = μN�l. (6)

When a driving module moves to the rear part of the system, it will continue propagating
to the front part. However, the displacement of the robot will be limited because of the
rear-front transition. Figure 5 shows the locomotion of a 6-segment kinematic model with
one driving module (nA = 2, nR = 2). The displacement during each transition is identified,
from which, displacement loss induced by rear–front transition can be observed. Generally,
for a driving module (nA,nR), during a rear–front transition, there will be a displacement
loss (nA + nR)�l due to the re-contracting and re-anchoring of the head segments. Hence,
for the period T , the displacement loss of a driving module gives

xloss = μ(nA + nR)�l. (7)

In sum, during a period, the global displacement of the N -segment robot with k driving
modules (nA,nR) is

X = Xtolerable − k · xloss

= μN�l − k · μ(nA + nR)�l = μ
[
N − k(nA + nR)

]
�l. (8)
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Fig. 5 A 6-segment robot with one driving module (nA = 1, nR = 2), with displacement loss during the
rear–front transition. During the first transition, segments #3, #4 and #5, #6 are contracting and relaxing,
respectively, inducing a 2�l displacement of the robot; during the second transition, although segments #3
and #4 are elongating, the robot only make a global displacement of �l because of the re-contracting of the
head segment #6; during the third transition, segment #6 is anchoring with the environment, and segments #4
and #5 are re-contracting, which completely prevents the robot achieving any global displacement

Then the average speed can be obtained as

V̄ = X

T
= μ[N − k(nA + nR)]�l

μ(N/nR)�t
= N − k(nA + nR)

N/nR

�l

�t
. (9)

For a worm system with kinematic drives, a similar expression of the average speed was
given in [23].

4 Gait generation

In this section, gaits are systematically generated for the metameric earthworm-like robot.
Definitions, constraints and gait generation algorithm are given, with several gait examples
as illustration. It is worth noting that the constructed gaits follow the basic kinematics law,
and applies to both the kinematic and dynamic models.

4.1 Definition

To clearly describe the locomotion gait, the following two definitions are given.

Definition 2 (State) The state of an N -segment earthworm-like robot describes the state of
each segment. It is an N -tuple vector q = (st

1, s
t
2, . . . , s

t
N ) with binary numbers st

i ∈ {0,1},
where ‘0’ and ‘1’ denote the fully relaxed state and the fully contracted state of a segment,
respectively, t is the current time instant.

Definition 3 (Gait) The gait of an N -segment earthworm-like robot describes the discrete
transition of states with respect to time. It is a sequence of states (q0, q1, q2, . . . , qf ), where
q0 is the initial state, and qf is the final state. To ensure periodicity, it is required that q0 = qf .
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Fig. 6 Regions of gait
parameters nA and nR according
to constraints (10) and (11),
where the total number of
segments N = 11, the number of
driving modules k = 1, 2 and 3.
The region for k = 3 is included
in the region for k = 2, which is
further included in the region for
k = 1. The dots stand for the
integral values that nA and nR

can take

As an example, the gait for the locomotion shown in Fig. 5 is (q0, q1, q2, qf ), where
q0 = (0,0,0,1,1,1), q1 = (0,1,1,1,0,0), q2 = (1,1,0,0,0,1) and qf = (0,0,0,1,1,1).

4.2 Gait parameters and constraints

According to the N -segment kinematic model in Fig. 4, the construction of locomotion gaits
depends on the following four parameters:

• The total number of segments, N

• The number of driving modules, k

• The number of anchoring segments in a driving module, nA

• The number of relaxing/contracting segments in a driving module, nR

These parameters are all positive integers, and are not independent of each other. Instead,
several constraints have to be satisfied to ensure correctness of the kinematics.

First of all, referring to the definition on driving module, we have

k ≥ 1, nA ≥ 1, nR ≥ 1. (10)

Secondly, the total number of segments N should not be smaller than the number of seg-
ments in k driving modules, i.e.,

N ≥ k(nA + 2nR). (11)

For any fixed value of N , conditions (10) and (11) define the region where the gait param-
eters N , k, nA and nR can locate. As an example, for an 11-segment robot with different
number of driving modules, regions of admissible values for nA and nR are displayed in
Fig. 6. The dots in the regions represent the integer values that nA and nR can take. Notice
that by increasing the number of driving modules, the admissible region for gait nA and nR

shrinks considerably, meaning fewer choices for gaits.
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Fig. 7 Routine of the gait generation algorithm

4.3 Gait algorithm

Based on the locomotion mechanism, especially the retrograde peristalsis waves, a gait
generation algorithm is put forward to construct the locomotion gaits of the metameric
earthworm-like robot. Figure 7 shows the routine of the gait generation algorithm.

The core of this algorithm is the transition s
th
i = s

th−1
i−nR

, i.e., during each transition, the
state of the robot moves backward by nR segments. It is a full reflection of the retrograde
peristalsis wave. Following this algorithm, providing that the gait parameters (N,k,nA,nR)
and the initial state qt0 are eligibly given, all the subsequent states of the robot, and hence,
the gait, can be determined. The generated gaits not only work for the kinematic model, but
are also valid in the dynamic model to be discussed later. In what follows, for simplicity, we
will always use the gait parameters (N,k,nA,nR) to denote the gait.
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Fig. 8 Four gaits of a 6-segment kinematic model of the earthworm-like robot: (a) k = 1, nA = 1, nR = 1,
(b) k = 1, nA = 3, nR = 1, (c) k = 1, nA = 2, nR = 2, (d) k = 2, nA = 1, nR = 1. The spatial and temporal
distributions of the robot segments as well as the sequence of states (gaits) are shown. Retrograde peristalsis
waves are denoted by oblique lines. Displacements during transitions are labeled

4.4 Gait examples

To demonstrate the gait generation algorithm, for N = 6, four gaits (satisfying the con-
straints (10) and (11)) are illustrated in this subsection as an example. Corresponding to
the four gaits, the spatial and temporal distribution of the robot segments as well as the se-
quence of states are shown in Fig. 8(a) to 8(d), respectively. Peristalsis waves are observed in
all gaits (marked by oblique lines). The waves travel in the opposite direction to locomotion,
and as a result are retrograde peristalsis waves, which are analogous to those in earthworms.

Especially, in Fig. 8(d), there are two driving modules in a system, corresponding to two
retrograde peristalsis waves.

Figure 8 reveals that the robot’s locomotion varies greatly due to the change of gaits.
These changes also lead to the change of global displacement in a specified period of 6�t ,
and hence, the change of average speed. It is these phenomena that arouse our interest on
the analysis and optimization of the locomotion gaits, which is one of the focuses of Part B.
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5 Dynamic model

In the N -segment kinematic model developed in Sect. 3, anchors and actuators are all as-
sumed to be ideal. In this section, these assumptions are relaxed so that an N -segment dy-
namic model of the earthworm-like robot considering actuator-overload and anchor-slippage
can be built.

The definition on driving module (Definition 1) and the configuration of the N -segment
kinematic model (Fig. 4) still apply in the N -segment dynamic model. However, Assump-
tions 1 and 2 are no longer required. For gait design, both the kinematic and dynamic models
use the same definitions on state and gait (Definitions 2 and 3) and the same gait generation
algorithm shown in Fig. 7.

In what follows, dynamics of a single segment will be studied first. Then, equations for
the N -segment dynamic model will be derived, and critical conditions for actuator-overload
and anchor-slippage will be studied.

5.1 Dynamics of a single segment

Figure 9 shows the deformation of a contracting segment and an relaxing segment (locating
at the left and right side of the anchoring segments, respectively) during a transition from
t0 to (t0 + �t ). The dashed segments represent the configurations at time instant t0. Notice
that during the transition, the length of the contracting segment changes from lmax to lmin,
while the relaxing segment is just the opposite, changing from lmin to lmax. At a time instant
t ∈ (t0, t0 + �t), the lengths of the contracting and relaxing segments are denoted by lC(t)

and lR(t), respectively. Hence, the contracting and relaxing velocities ẋC, ẋR , contracting
and relaxing accelerations ẍC, ẍR (denoted by the velocities and accelerations at point C and
point R, respectively) can be expressed as

ẋC(t) = −d(lC(t) − lmax)

dt
= −l̇C(t), ẋR(t) = d(lR(t) − lmin)

dt
= l̇R(t),

ẍC(t) = −d2(lC(t) − lmax)

dt2
= −l̈C(t), ẍR(t) = d2(lR(t) − lmin)

dt2
= l̈R(t),

(12)

where
lC(t) = (

1 + εC(t)
)
lmax,

lR(t) = (
1 + εR(t)

)
lmin.

(13)

εC(t) and εR(t) are the strains of the contracting and relaxing segments, respectively.
To ensure the periodicity and continuity, the contracting and relaxing processes should

meet the following conditions on displacement and velocity:

lC(t0) = lmax, lR(t0) = lmin,

lC(t0 + �t) = lmin, lR(t0 + �t) = lmax.
(14)

l̇C(t0) = 0, l̇R(t0) = 0,

l̇C(t0 + �t) = 0, l̇R(t0 + �t) = 0.
(15)

Using Eq. (13), conditions (14) and (15) can be rewritten as

εC(t0) = 0, εR(t0) = 0,
(
1 + εC(t0 + �t)

)(
1 + εR(t0 + �t)

) = 1.
(16)

ε̇C(t0) = 0, ε̇R(t0) = 0,

ε̇C(t0 + �t) = 0, ε̇R(t0 + �t) = 0.
(17)
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Fig. 9 Dynamics of a single segment: (a) deformation of a relaxing segment and a contracting segment
during a transition (t0, t0 +�t ); (b)–(d) ε̈ − t , ε̇ − t and ε − t relations of the relaxing segment (solid curves)
and contracting segment (dotted curves)

Considering the acceleration of strain-change to be piecewise constant and following
conditions (16) and (17), the contracting and relaxing processes can be assigned. Analyti-
cally, the accelerations of strain-change are given as

ε̈C(t) =
{−να, t0 ≤ t ≤ t0 + ξ,

νβ, t0 + ξ < t ≤ t0 + �t,

ε̈R(t) =
{

α, t0 ≤ t ≤ t0 + ξ,

−β, t0 + ξ < t ≤ t0 + �t.

(18)

Here, α and β are positive constants, characterizing the acceleration of strain-change
(Fig. 9(b)). ρ, ν and ξ are actuator parameters: ρ denotes the maximal velocity of the strain-
change of the relaxing segments; ν denotes the strain ratio of contracting segment to relaxing
segment; ξ ∈ (0,�t) is the discontinuity point at accelerations. α,β,ρ, ν,�t and ξ satisfy
the following relations: ξ = ρ

α
, β = ρ

�t−ξ
, and ν = (1 + 1

2ρ�t)−1. Integrating Eq. (18), ve-
locities of strain-change ε̇C(t), ε̇R(t) and strains εC(t), εR(t) can be obtained, see Fig. 9(c)
and 9(d), respectively.

Based on the accelerations (18) and the derived ε − t , ε̇ − t relations, and employing
Eqs. (12) and (13), the velocities and accelerations for the contracting and relaxing processes
yield

ẋC(t) = ẋR(t) =
{

αlmin(t − t0), t0 ≤ t ≤ t0 + ξ,

−βlmin(t − t0) + βlmin�t, t0 + ξ < t ≤ t0 + �t,

ẍC(t) = ẍR(t) =
{

αlmin, t0 ≤ t ≤ t0 + ξ,

−βlmin, t0 + ξ < t ≤ t0 + �t.

(19)
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In this dynamic model, it is assumed that the normal force at the contact between the
robot segment and the environment is also dependent on the segments’ radial deformation.
For the fully relaxed segment (state ‘0’) and the contracting/relaxing segments, due to the
small radial dimension, these segments have weak contact with the environment. Radial
deformation has no contribution to the normal force, and it gives

P0 = mg. (20)

For the fully contracted segment (state ‘1’), i.e., the anchoring segment, the radial expan-
sion squeezes the contacting surface, increases the normal force. Hence, the normal force is
assigned as

P1 = (1 + η)mg, (21)

where η > 0 is a positive ratio characterizing the additional pressure induced by the expan-
sion of a segment. Here, the sub-index of Ps (s = 0,1) stands for the state of a segment, m

is the mass of each segment, g is the gravitational acceleration.
In addition, in the dynamic model, each actuator is non-ideal and has a maximum actu-

ating force Qmax. In some cases, if Qmax is not large enough for an actuator to drive itself
and the adjacent segments, this actuator is defined to be overloaded, which may cause some
damage to the actuator and even the robot, and should be avoided in practice. In this re-
search, critical condition for actuator-overload will be derived, but the dynamic behavior
of the robot when the actuator is overloaded will not be discussed because the overloading
characteristics of the actuator are not clear.

5.2 Dynamic equations

Referring to the general driving module depicted in Fig. 3, velocity and acceleration at the
front-end position of each segment in a driving module can be expressed:

Anchoring Segments: ẋnR+1,j = ẋnR+2,j = · · · = ẋnR+nA,j = ẋA,

Contracting Segments: Relaxing Segments:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋnR,j = ẋA,

ẋnR−1,j = ẋR + ẋA,

· · ·
ẋ1,j = (nR − 1)ẋR + ẋA,

ẋ0,j = nRẋR + ẋA,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋnR+nA+1,j = ẋR + ẋA,

ẋnR+nA+2,j = 2ẋR + ẋA,

· · ·
ẋ2nR+nA−1,j = (nR − 1)ẋR + ẋA,

ẋ2nR+nA,j = nRẋR + ẋA.

(22)

Anchoring Segments: ẍnR+1,j = ẍnR+2,j = · · · = ẍnR+nA,j = ẍA,

Contracting Segments: Relaxing Segments:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẍnR,j = ẍA,

ẍnR−1,j = ẍR + ẍA,

· · ·
ẍ1,j = (nR − 1)ẍR + ẍA,

ẍ0,j = nRẍR + ẍA,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẍnR+nA+1,j = ẍR + ẍA,

ẍnR+nA+2,j = 2ẍR + ẍA,

· · ·
ẍ2nR+nA−1,j = (nR − 1)ẍR + ẍA,

ẍ2nR+nA,j = nRẍR + ẍA.

(23)

As a general case, the temporarily anchoring segments are assumed to slip with velocity ẋA

and acceleration ẍA.
To derive the dynamic equations of the model, the velocity and acceleration of mass

center of each segment are approximately expressed as

ẋic = ẋi−1 + ẋi

2
, ẍic = ẍi−1 + ẍi

2
(i = 1, . . . ,N). (24)



408 H. Fang et al.

Substituting Eqs. (22) and (23) into (24) yields

Anchoring Segments: ẋ(nR+1,j)c = ẋ(nR+2,j)c = · · · = ẋ(nR+nA,j)c = ẋA,

Contracting Segments: Relaxing Segments:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ(nR,j)c = (ẋR + 2ẋA)/2,

ẋ(nR−1,j)c = (3ẋR + 2ẋA)/2,

· · ·
ẋ(1,j)c = (

(2nR − 1)ẋR + 2ẋA

)
/2,

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(nR+nA+1,j)c = (ẋR + 2ẋA)/2,

ẋ(nR+nA+2,j)c = (3ẋR + 2ẋA)/2,

· · ·
ẋ(2nR+nA,j)c = (

(2nR − 1)ẋR + 2ẋA

)
/2.

(25)

Anchoring Segments: ẍ(nR+1,j)c = ẍ(nR+2,j)c = · · · = ẍ(nR+nA,j)c = ẍA,

Contracting Segments: Relaxing Segments:
⎧
⎪⎪⎨

⎪⎪⎩

ẍ(nR,j)c = (ẍR + 2ẍA)/2,

ẍ(nR−1,j)c = (3ẍR + 2ẍA)/2,

· · ·
ẍ(1,j)c = (

(2nR − 1)ẍR + 2ẍA

)
/2,

⎧
⎪⎪⎨

⎪⎪⎩

ẍ(nR+nA+1,j)c = (ẍR + 2ẍA)/2,

ẍ(nR+nA+2,j)c = (3ẍR + 2ẍA)/2,

· · ·
ẍ(2nR+nA,j)c = (

(2nR − 1)ẍR + 2ẍA

)
/2.

(26)

To perform a steady-state motion, all the driving modules in the dynamic model share the
same velocities and accelerations shown in Eqs. (25) and (26). Besides the segments in the
driving modules, the velocities and accelerations of mass center of the unactuated segments
are ẋU and ẍU :

ẋ(k(nA+2nR)+1)c = ẋ(k(nA+2nR)+2)c = · · · = ẋNc = ẋU = nRẋR + ẋA,

ẍ(k(nA+2nR)+1)c = ẍ(k(nA+2nR)+2)c = · · · = ẍNc = ẍU = nRẍR + ẍA.
(27)

In our dynamic model, the anisotropic Coulomb dry friction is employed, which de-
scribes the non-ideal anchoring force as follows:

F(ẋic) =
⎧
⎨

⎩

−Psf+, if ẋic > 0,

F0, if ẋic = 0,

Psf− if ẋic < 0,

(28)

where F0 is the static friction force; Ps (s = 0,1) is the normal force; f+ and f− are the
coefficients of dry friction corresponding to forward and backward motion, respectively.
Both f+ and f− are non-negative constants and are assumed to be different. Without loss of
generality, it is assumed that

f+ < f−. (29)

This difference reflects the anisotropy of the interface between the segments and the envi-
ronment.

Denote Ri the resultant of all forces applied to segment #i except the friction force, the
static friction force F0 can then be written as

F0 =
⎧
⎨

⎩

−Psf+, if ẋic = 0 and Ri > Psf+,

Ri, if ẋic = 0 and −Psf− ≤ Ri ≤ Psf+,

Psf−, if ẋic = 0 and Ri < −Psf−.

(s = 0,1) (30)

As long as the magnitude of the resultant force Ri does not exceed the given maximal value
of the friction force at rest (Psf+ or Psf−), segment #i will remain at a static state, i.e.,
sticking, which is a characteristic feature of dynamic systems with Coulomb dry friction.
Otherwise, if the magnitude of the resultant force Ri exceeds the maximal friction force at
rest, segment #i will slip. In fact, the “temporary anchor” in the dynamic model is a sticking
motion.
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Table 2 Contribution of
actuating force from segment
#(nR + nA + 1, k) to itself and
the adjacent segments

Segment Item

Acceleration Friction

#(nR + nA + 1, k) ẍR/2 f+mg

#(nR + nA + 2, k) ẍR 0

· · · · · · · · ·
#(2nR + nA, k) ẍR 0

#k(nA + 2nR) + 1 ẍR f+mg/nR

· · · · · · · · ·
#N ẍR f+mg/nR

Considering the dynamics of the whole model and according to Newton’s Second Law,
the dynamic equation of the N -segment dynamic model gives

N∑

i=1

mẍic =
N∑

i=1

F(ẋic). (31)

Substituting the velocity (25) and acceleration (26) of each segment and the dry friction
force (28) into Eq. (31), one gets

NmẌc = k

[

nAF(ẋA) + 2
nR∑

i=1

F

(

ẋA + 2i − 1

2
ẋR

)]

+ (
N − k(nA + 2nR)

)
F(ẋA + nRẋR)

(32)

where the mass center of the whole robot is defined as Xc = 1
N

∑N

i=1 xic, and the symbol
∑nR

i=1 � sums the object over the nR contracting (or relaxing) segments in a driving module.
The velocity of the anchoring segment can be expressed by

ẋA = Ẋc − N − k(nA + nR)

N
nRẋR. (33)

5.3 Critical conditions for actuator-overload and anchor-slippage

In this section, critical conditions for actuator-overload and anchor-slippage are derived.
First, we study the critical condition for actuator-overload. Note that the actuating force

from a contracting/relaxing segment need to assume three functions, the first is to provide
acceleration to the segment itself, the second is to provide acceleration to the adjacent seg-
ments, and the third is to overcome the friction forces. In each driving module (e.g., the j th
driving module), segment #(nR, j) or #(nR + nA + 1, j) have to pull or push the largest
number of segments forward (including itself and the adjacent (nR − 1) segments in the j th
driving module). Especially, segment #(nR + nA + 1, k) shown in Fig. 4 has to addition-
ally push the (N − k(nA + 2nR)) unactuated segments forward, and as a result, demands
the highest actuating force. The contribution of segment #(nR + nA + 1, k) to itself and the
adjacent segments is shown in Table 2, from which, the required actuating force of segment
#(nR + nA + 1, k) is obtained as

Q#(nR+nA+1,k) = mẍR/2 + [
(nR − 1) + (

N − k(nA + 2nR)
)]

mẍR

+ f+mg + (
N − k(nA + 2nR)

)
f+mg/nR. (34)
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If the output force Q#(nR+nA+1,k) is larger than the maximal output Qmax, segment #(nR +
nA + 1, k) may fail to push the adjacent segments forward. Note that this is the most con-
servative estimation. Considering the critical situation that Q#(nR+nA+1,k) takes its maximal
value, i.e., ẍR = αlmin during (t0, t0 + ξ ), the critical condition for actuator overload yields

mαlmin

2
+ [

(nR − 1) + (
N − k(nA + 2nR)

)]
mαlmin + f+mg

+ N − k(nA + 2nR)

nR

f+mg > Qmax. (35)

Then we will study the critical conditions for backward and forward slippage of anchor-
ing segments, providing that the actuator-overload does not occur on any segment. Reorga-
nizing Eq. (32), we obtain

m
[
NẍA + (

N − k(nA + nR)
)
nRẍR

] − 2k

nR∑

i=1

F

(

ẋA + 2i − 1

2
ẋR

)

− (
N − k(nA + 2nR)

)
F(ẋA + nRẋR) = knAF(ẋA), (36)

where the left side stands for the sum of all the external forces except the friction forces
that act on all the anchoring segments, and the right side presents the friction forces on all
the anchoring segments. According to the dry friction model in Eqs. (28) and (30), if the
external force acting on all the anchoring segments is larger than the maximal static friction
force, slippage of the anchoring segments will happen.

Consider the critical situation that the anchoring segments are about to start slipping
backward. In such a situation, ẋA = 0, ẍA = 0, and all the other segments have forward ve-
locities. Based on the dry friction model, all the friction forces can be determined. If the
external force during (t0, t0 + ξ ) is larger than the maximal static friction force for backward
slippage knAf−P1, all the anchoring segments will slip backward. Substituting the accel-
eration ẍR , normal pressure Ps (s = 0,1) and friction forces (28) into Eq. (36), the critical
condition for backward anchor-slippage gives

(
N − k(nA + nR)

)
nRαlmin + (N − knA)f+g > knA(1 + η)f−g. (37)

Consider the other case that the anchoring segments are about to start sliding forward.
Here, ẋA = 0, ẍA = 0, and all the other segments still have forward velocities. During (t0 +
ξ, t0 + �t ), if the absolute value of external force is larger than that of the maximal static
friction forces for forward slippage −knAf+P1, all the anchoring segments will slip forward.
Hence, the critical condition for forward anchor-slippage is

−(
N − k(nA + nR)

)
nRβlmin + (N − knA)f+g < −knA(1 + η)f+g. (38)

To verify the derived critical conditions, an 11-segment robot with one driving module is
simulated. The physical parameters are shown in Table 3.

Figure 10(a) shows the critical conditions in the nA − nR plane. The outside rectangle
region is determined by constraints (10) and (11). The boundary c.c.1 is the critical condition
for actuator overloading, i.e., condition (35). The boundary c.c.2 is the critical condition for
backward slippage, i.e., condition (36). In region H1, actuators are not strong enough to
propagate the robot during some transitions. Gaits locating in region H1 are not considered
in this research. In region H2, actuators can work normally, but the anchor is not strong
enough to prevent backward slippage of the anchoring segments. To analyze the dynamic
model with gait parameters in this region, numerical simulation on Eq. (32) is required. In
region H3, both actuators and anchors can work normally. The dynamic model in this region
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Table 3 Parameters of the 11-segment robot example

Parameters Values Parameters Values Parameters Values

m 0.1 kg η 0.5 α 0.67 m/s2

�t 1.0 s f+ 0.1 β 2.0 m/s2

g 9.8 m/s2 f− 0.5 ξ 0.75 s

lmin 0.05 m �l 0.0125 m Qmax 1.5 N

Fig. 10 Verification of the critical conditions for actuator-overload and anchor-slippage in an 11-segment
robot with one driving module: (a) Region of gait parameters nA and nR , and the two critical conditions
c.c.1 and c.c.2, two points O1 (nA = 1, nR = 4) and O2 (nA = 2, nR = 4) are simulated to verify the critical
conditions. (b) Velocity of mass center Ẋc (m/s) and velocity of anchoring segments ẋA (m/s) corresponding
to point O1; (c) Velocity of mass center Ẋc (m/s) and velocity of anchoring segments ẋA (m/s) corresponding
to point O2

degenerates into the kinematic model, therefore, expressions for displacement and average
speed in Eqs. (8) and (9) hold valid in this region.

Notice that the critical condition (38) does not appear in this region. This is because the
magnitude of the friction forces on other segments (except the anchoring segments) (N −
knA)f+g is much larger than that of the acceleration component −(N −k(nA +nR))nRβlmin,
and their sum does not exceed the maximal static friction for forward slippage. However,
when increasing the total number of segments N or changing the physical or gait parameters,
forward slippage may occur, which will be presented in Part B.

Points O1 (nA = 1, nR = 4) and O2 (nA = 2, nR = 4) are taken in regions H2 and H3,
respectively, to verify the critical conditions. Through numerical simulation on Eqs. (32)
and (33), velocity of mass center Ẋc and velocity of anchoring segments ẋA corresponding
to points O1 and O2 are calculated and shown in Fig. 10(b) and 10(c), respectively. One can
read from Fig. 10(b) and 10(c) that at point O1, obvious backward velocity of anchoring
segments exists; while at point O2, the velocity of anchoring segments ẋA is always zero,
i.e., no slippage occurs. These phenomena agree with our analysis.

6 Summary

In this paper, inspired by the earthworms’ morphology and locomotion mechanism, an N -
segment kinematic model of the metameric earthworm-like robot is developed following
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the idea of integrating ideal actuator and ideal anchor into an individual body segment. The
metameric earthworm-like robot belongs to the general class of metastructures, the concept
of synthesizing adaptive structures via modular element design and integration. Kinemat-
ics of a single segment and the locomotion mechanism of the whole robot are studied. It
is shown that with the proposed kinematic model, the metameric earthworm-like robot can
perform locomotion in the form of retrograde peristalsis waves, similar to the real earth-
worm.

The issue of gait generation is then discussed in the most general case. Four gait parame-
ters are identified, and their constraints are given. A gait generation algorithm is put forward
based on the mechanism of retrograde peristalsis wave. Following this algorithm, locomo-
tion gaits can be generated if appropriate gait parameters and initial state are assigned. The
generated gaits apply to both the kinematic and dynamic models of the earthworm-like robot.

Without the assumptions of ideal anchors and ideal actuators, an N -segment dynamic
model is developed. In the dynamic model, the actuator has an upper limit of output force,
and the contact between the robot surface and the environment obeys the anisotropic dry
friction law. Assuming that the actuating accelerations are piecewise constant, the dynamics
of a single segment is studied, based on which, the dynamic equations are derived. Fur-
thermore, it is shown that actuators may fail to drive the robot forward when the required
driving force is larger than the maximal output. Slippage of anchoring segment may occur
when the external forces exceed the maximal static friction force. Critical conditions for
actuator-overload and anchor-slippage are derived.

The kinematic model and dynamic model as well as the gait generation algorithm de-
veloped in this research provide a basis for gait analysis and gait optimization that will be
performed in Part B. These models also help to guide the design and prototyping of an
earthworm-like robot for experimental investigation, which will also be presented in Part B.
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