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Abstract Holonomic constraints are ubiquitous in multibody systems. We present an ap-
proach to effectively address the control of holonomically constrained systems using a novel
decomposition of task, constraint, and posture space. In addition to providing a natural ap-
proach for motion control in the presence of constraints, this scheme also allows for con-
current specification of desired constraint forces, given sufficient actuation. It does this by
exposing both motion coordinates and constraint forces within the control formalism, al-
lowing for substantial flexibility in control synthesis. Implementations are presented based
on a partitioning of the constraint forces into controlled and uncontrolled subsets, as well
as a specification of implicit conditions on the constraint forces. A number of examples
demonstrate the practical efficacy of the approach. Finally, a system-level methodology for
constraint management during robot interactions with the environment is presented.

Keywords Holonomic constraints · Task space control · Null space · Lagrange multipliers

1 Introduction

The dynamics of both holonomically and non-holonomically constrained mechanical sys-
tems represents a significant chapter in the history of classical mechanics [21, 22]. For-
mulations addressing constraints have included the method of Lagrange multipliers [20],
Gauss’ Principle of Least Constraint [12], Hertz’ Principle of Least Curvature (a special
case of Gauss’ Principle) [14], and the Gibbs–Appell equations [3, 13], among others [26].
While the configuration space dynamics of constrained systems has been well researched
and understood for some time, relevant research issues exist with regard to the control of
constrained systems. In previous work, the control of constrained systems has been exam-
ined from a configuration space perspective [16]. This includes the use of projection based
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Table 1 Comparison of some
approaches for constrained
motion/force control.
Configuration (or joint) space
control schemes lack the
flexibility of task-level
specification of motion and force
commands

Approach Control
space

Redundant
constraints?

Constraint
force control?

Projection operator
[1, 2, 5, 25]

Joint Yes Yes

Hybrid contact
control [15, 23, 24]

Joint No Yes

Extended operational
space [7, 19, 27]

Task No No

Task/constraint [10] Task No No

Currently proposed Task No Yes

approaches [1, 2, 5]. Additionally, contact control in robot manipulators has also employed
constraint-based approaches [15, 23, 24], again, from a configuration space perspective.
However, it is of particular importance to formulate a control framework that is well-suited
to the structure of constrained systems. Specifically, with respect to holonomic constraints,
the specified motion must be consistent with a restricted subset of configuration space. This
is the constrained motion manifold. Configuration space control presents a fundamental
problem since the entire configuration space is assumed accessible and a particular set of
arbitrarily chosen configuration space coordinates will likely violate the system constraints.
A task space control scheme [17, 18], avoids this problem since, for redundant systems,
a point in task space maps to a self-motion manifold [6] in configuration space. As long as
the constrained motion and self-motion manifolds intersect, valid constraint consistent and
task consistent solutions exist. Task space approaches were employed by Khatib et al. for the
control of coordinated multi-arm movements involving loop closure constraints [7, 19, 27].

In addition to controlling motion, it may be desirable to control constraint forces in con-
strained systems. This can be achieved concurrent to the execution of motion control, pro-
vided there is sufficient actuation in the system. Previous work has addressed this but, again,
from a configuration space perspective [1, 2, 25]. We will present a natural approach to
formulating control for both motion objectives and constraint forces in holonomically con-
strained systems from a task space perspective. While a task space approach was previously
proposed to control motion in holonomically constrained systems [10], this did not address
a formal method for simultaneously controlling constraint forces. The approach presented
here extends the work of [10]. We begin with a mass-weighted orthogonal decomposition
of task, constraint, and posture space, formulated by De Sapio and Park [9]. This decom-
position exposes both motion coordinates and constraint forces. Using this decomposition,
and the constraint handling methodology presented here, desired constraint forces can be
specified and accounted for, along with the motion objectives, in the overall compensation.

Table 1 provides a brief summary of the proposed approach for constrained motion/force
control compared to some other approaches. The approach presented here incorporates the
unique benefit of being formulated in task space and addressing simultaneous control of
motion and constraint force. It does not address redundant constraints as will be discussed
in the subsequent sections, however, this is not seen as a major limitation since redundant
constraints can be eliminated to form a minimal non-redundant set of constraints.

We begin in the next section with a standard expression of the unconstrained config-
uration space dynamics of a multibody system followed by a standard expression of the
holonomically constrained configuration space dynamics. We continue with a brief review
of the reformulation of these configuration space descriptions into task space descriptions.



A methodology for controlling motion and constraint forces 181

We present a new methodology for partitioning the task space constraint forces based on par-
ticular control objectives. A number of examples are presented to illustrate different control
objectives in the combined control of motion and constraint forces. Finally, an approach for
solving the constrained control problem given implicit conditions on the constraint forces is
detailed. Particular limitations in the approaches presented are also discussed.

2 Configuration space dynamics

The equations of motion for a multibody system that is unconstrained with respect to con-
figuration space can be expressed as [5],

M(q) q̈ + b(q, q̇) + f(q, q̇) = B(q, q̇)T u, (1)

where q ∈R
n is the vector of generalized coordinates, u ∈R

k is the vector of control inputs,
B(q, q̇)T ∈R

n×k is the matrix mapping control inputs to generalized actuator forces, M(q) ∈
R

n×n is the configuration space mass matrix, b(q, q̇) ∈ R
n is the vector of centrifugal and

Coriolis terms, and f(q, q̇) ∈ R
n is the vector of generalized applied forces. We will often

use a modified and more specialized form of (1) common in robotics,

M(q) q̈ + b(q, q̇) + g(q) = τ, (2)

where g(q) ∈R
n is the vector of gravity terms. The form of (2) assumes that the generalized

actuator forces, τ ∈ R
n, can be directly interpreted as control inputs; that is, τ = BT u = u,

i.e., BT = 1. Additionally, the generalized applied forces are assumed to be restricted to
gravity terms; that is, f(q, q̇) = g(q).

2.1 Introduction of holonomic constraints

We now introduce a set of mC independent holonomic and scleronomic constraint equa-
tions, φ(q) = 0 ∈ R

mC , that are satisfied on a p = n − mC dimensional manifold, Qp , in
configuration space, Q =R

n. The gradient of φ yields the constraint matrix,

�(q) = ∂φ

∂q
∈ R

mC×n. (3)

Given the stipulation that φ(q) = 0 are independent relations it follows that � is full rank
(rank of mC ); that is, the rows of � are linearly independent. In fact, if redundancies ex-
isted among the constraints this would affect the dimensionality of the constrained motion
manifold, Qp , and the rank of the constraint matrix, �. Typically, redundant constraints
are removed from the model of a multibody system [28]. Redundant constraints will not be
addressed in this paper and all subsequent formulations presented here will assume an inde-
pendent set of constraints (and, thus, full rank constraint matrix). Adjoining the constraints
to (2) by introducing a set of constraint forces yields the dynamic equation in the familiar
Lagrange multiplier form,

Mq̈ + b + g − �T λ = τ , (4)

subject to

φ(q) = 0 ⇒ φ̇ = 0, φ̈ = 0 ⇒ �q̇ = 0,�q̈ + �̇q̇ = 0. (5)
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3 Task space dynamics and control

In the previous section, we reviewed configuration space descriptions of the dynamics of
constrained multibody systems. Our objective is to reformulate these descriptions in task
space. This will provide the foundation for constrained task-level control to be discussed in
the next section. A brief summary of task space dynamics and control is presented here. For
a more detailed exposition of the operational, or task, space approach the reader is referred
to [17, 18].

Given a branching chain system and defining a set of m independent task, or operational
space, coordinates, x ∈R

m we define the task Jacobian as

J(q) = ∂x
∂q

∈R
m×n. (6)

These task space coordinates are related to the generalized coordinates by a functional map-
ping, and are chosen as a more natural space from which to formulate the control problem.
As an example, they can be chosen as the Cartesian coordinates of some effector frame of
the multibody system. As with the constraints, given the stipulation that x are independent
coordinates it follows that J is full rank (rank of m); that is, the rows of J are linearly inde-
pendent. Redundant task coordinates will not be addressed in this paper and all subsequent
formulations presented here will assume an independent set of task coordinates (and, thus,
full rank task Jacobian matrix).

The generalized actuator force (or control torque) in (2) can then be composed as JT f,
where f ∈ R

m is the task, or operational space, force. In the redundant case, an additional
term needs to complement the task term in order to realize any arbitrary generalized force.
We will refer to this term as the null space term, and it can be composed as NT τ ∗, where τ ∗
is an arbitrary generalized force and N(q)T ∈ R

n×n is the null space projection matrix. We
then have the following set of unconstrained task, or operational space, equations of motion
[17],

�(q) ẍ + μ(q, q̇) + p(q) = f, (7)

where �(q) ∈ R
m×m is the operational space mass matrix, μ(q, q̇) ∈ R

m is the operational
space centrifugal and Coriolis force vector, and p(q) ∈ R

m is the operational space gravity
vector. These terms are given by

�(q) = (
JM−1JT

)−1
, (8)

μ(q, q̇) = �JM−1b − �J̇q̇, (9)

p(q) = �JM−1g, (10)

N(q)T = 1 − JT �JM−1. (11)

Thus, the overall dynamics of our multibody system, given by

Mq̈ + b + g = JT f + NT τ ∗ = τ , (12)

can be mapped into task space,

Mq̈ + b + g = τ
J̄T→ f = �ẍ + μ + p, (13)
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where J̄ is the dynamically consistent inverse of the task Jacobian,

J̄ = M−1JT �. (14)

In a complementary manner, the overall dynamics can be mapped into the task consistent
null space (or posture space) using NT .

The overall dynamics can be expressed as

JT (�ẍ + μ + p) + NT τ ∗ = τ . (15)

A controller employing (7) would be assumed to have imperfect knowledge of the system.
Therefore, (7) should reflect estimates for the inertial and gravitational terms. Additionally,
a control law needs to be incorporated. To this end, we replace ẍ in (7) with the input of the
decoupled system [18], f�, to yield the dynamic compensation equation,

f = �̂f� + μ̂ + p̂, (16)

where the ·̂ represents estimates of the dynamic properties. Thus our control torque is,

τ = JT
(
�̂f� + μ̂ + p̂

) + N̂T τ ∗. (17)

Any suitable control law can be chosen to serve as input of the decoupled system. In partic-
ular, we can choose a linear proportional-derivative (PD) control law of the form

f� = Kx(xd − x) + Kv(ẋd − ẋ) + ẍd , (18)

where xd are reference values for the task coordinates and Kx and Kv are gain matrices.

3.1 Introduction of holonomic constraints

In this section, we will review task space methodologies for addressing constrained systems.
As we introduced a set of mC holonomic and scleronomic constraint equations to the con-
figuration space dynamics, we can do the same for the task space dynamics. Mapping (4)
and (5) into an appropriate task/constraint space yields

�ẍ + μ + p − J̄T �T (α + ρ) = J̄T 	T τ . (19)

This expression is derived in detail in [10]. The term α(q, q̇) ∈R
mC is the vector of centrifu-

gal and Coriolis forces projected at the constraint, and ρ(q) ∈ R
mC is the vector of gravity

forces projected at the constraint. These terms are given by

α(q, q̇) = H�M−1b − H�̇q̇, (20)

ρ(q) = H�M−1g, (21)

where H(q) ∈ R
mC×mC is the constraint space mass matrix which reflects the system inertia

projected at the constraint

H(q) = (
�M−1�T

)−1
. (22)

The constraint null space projection matrix, 	(q)T ∈R
n×n, is given by

	(q)T = 1 − �T �̄
T
, (23)
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Algorithm 1 Task-level orthogonalization with constraints

1: NT
c0

= 	T {initialization}

2: η0 = �T (α + ρ) {initialization}

3: for i = 1 to nT do

4: QT
i = NT

ci−1
JT

i

5: zi = (JiM−1QT
i )−1[ẍi + JiM−1(b + g − ηi−1) − J̇i q̇]

6: Q̄T
i = (QiM−1QT

i )−1QiM−1

7: NT
ci

= NT
ci−1

(1 − QT
i Q̄T

i )

8: ηi = ηi−1 + QT
i zi

9: end for

10: NT
c = NT

cn

11: η = ηn + NT τ ∗ {total torque}

12: τ = η − �T λ {total control torque}

where �̄ is the dynamically consistent inverse of �,

�̄ = M−1�T H. (24)

The control equation can be expressed as

J̄T 	̂
T
τ = �̂f� + μ̂ + p̂ − J̄T �T (̂α + ρ̂), (25)

where the linear control law of (18) can be used.
It is noted that (19) does not expose the constraint forces (Lagrange multipliers). An

alternate form of the constrained task space dynamics is [8, 9]

	T JT (�cẍ + μc + pc) + �T (α + ρ) + NT
c τ ∗ − �T λ = τ . (26)

This is derived from the task-level orthogonalization procedure [9] summarized in Algo-
rithm 1 for a single task (nT = 1).

The term �c(q) ∈ R
m×m is the task/constraint space mass matrix, μc(q, q̇) ∈ R

m is the
task/constraint space centrifugal and Coriolis force vector, pc(q) ∈ R

m is the task/constraint
space gravity vector, and Nc(q)T ∈ R

n×n is the task/constraint null space projection matrix.
These terms are given by

�c(q) = (
JM−1	T JT

)−1
, (27)

μc(q, q̇) = �cJM−1	T b − �c

(
J̇ − JM−1�T H�̇

)
q̇, (28)

pc(q) = �cJM−1	T g, (29)

Nc(q)T = 	T
(
1 − JT �cJ	M−1

)
. (30)

Equation (26) expresses the control torque as a function of the task accelerations, ẍ, the
kinematic and dynamic properties, and the constraint forces, λ. Employing a linear control
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Fig. 1 The relationship between
the number of generalized
coordinates, n, degrees of
freedom, p, constraints, mC , task
coordinates, m, and null space
coordinates, N . The system is
motion actuated if k ≥ p and task
actuated if k ≥ m, where k is the
number of actuators

law the control equation can be expressed as

τ + �T λ = 	̂
T

JT
(
�̂cf� + μ̂c + p̂c

) + �T (̂α + ρ̂) + N̂T
c τ ∗, (31)

where

f� = Kx(xd − x) + Kv(ẋd − ẋ) + ẍd . (32)

These equations need to be complemented by the condition on the unactuated joints,

Sp τ = 0, (33)

where given k actuated joints, Sp ∈ R
(n−k)×n is a selection matrix that identifies the passive

(unactuated) joints.

3.2 Partitioning the constraint forces

We note that the rank of NT
c ∈R

n×n is N , the dimension of the null space. Therefore, we can
generate an N -dimensional basis for im(NT

c ). We will construct the columns of UT
c ∈R

n×N

from this basis such that im(UT
c ) = im(NT

c ). We can then express the null space torque as
UT

c τN where τN ∈R
N is the control vector for the null space. Thus we can express (31) as

τ = 	̂
T

JT
(
�̂cf� + μ̂c + p̂c

) + �T (̂α + ρ̂) − �T λ + ÛT
c τN, (34)

complemented by

Sp τ = 0. (35)

It is noted that this system is well conditioned only if our previously stated stipulations that
independent constraints and task coordinates are specified. Furthermore, the task conditions
must be independent of the constraints. That is, a task cannot be specified to produce motion
that would violate the constraints. Additionally, given that estimates are used for the inertial
parameters it is conceivable that choices for these estimates could make the system ill-
conditioned or singular, in which case exact solutions for τ would not exist.

We will now review the dimensionality of our control problem. Given a system with
n generalized coordinates and mC holonomic constraints, there are p = n − mC degrees
of freedom characterizing the constrained motion. This motion space can be controlled by
specifying a task with m task coordinates. The null space dimensionality, N = p − m, char-
acterizes the remaining dimensionality of the constrained motion space not used by the task.
This is illustrated in Fig. 1. Given k actuated joints, we will refer to the condition that k ≥ p

as motion actuated and the condition that k ≥ m as task actuated [10].
The control equations given by (34) and (35) represent a system of 2n − k scalar equa-

tions, where τ ∈ R
n constitute n unknowns to be solved for. The system is overdetermined
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Fig. 2 If k > p, then the n RHS
variables of (34) can be
partitioned into k controlled
variables: p controlled motion
coordinates and k − p controlled
constraint forces; and n − k

uncontrolled constraint forces

so we need additional n − k unknowns. The right-hand side (RHS) of (34) contains the
variables f� ∈ R

m, τN ∈ R
N , and λ ∈ R

mC . The total dimensionality of these variables is
m + N + mC = p + mC = n. These n RHS variables can be partitioned into k variables
which can be specified as part of the control and n − k variables which can serve as un-
knowns to be moved to the left hand side (LHS).

3.2.1 Motion actuated partitioning

We may assume that we wish to specify the task coordinates and the null space coordinates
as part of the control. This represents m task coordinates and N null space coordinates for
a total of m + N = p motion coordinates to be specified as part of the control. If the system
is motion actuated (k ≥ p) then there is sufficient actuation to control these coordinates.
Further, if k > p, then k − p constraint forces can also be controlled in addition to the p

motion coordinates. This is illustrated in Fig. 2.
It has been shown that multibody systems with redundant constraints do not have a

unique solution for joint reaction forces [28, 29]. This is not an issue since the approach
outlined here is limited to the assumption that no redundancies exist among the constraints
(or, if they do, that they are eliminated from the constraint model prior to utilizing the for-
mulation presented here).

In this case, let us introduce a selection matrix, Sc ∈ R
(k−p)×mC , to select the controlled

constraint forces and a selection matrix, Su ∈R
(n−k)×mC , to select the uncontrolled constraint

forces. That is,

λc = Sc λ and λu = Su λ, (36)

or
(

λc

λu

)
=

(
Sc

Su

)
λ, (37)

where λc and λu are the vectors of controlled and uncontrolled constraint forces, respec-
tively, selected out of the full vector of constraint forces, λ. Inverting (37), we have

λ = (
ST

c ST
u

)
(

λc

λu

)
. (38)

Substituting this into (34), we have

τ + �T ST
u λu = 	̂

T
JT

(
�̂cf� + μ̂c + p̂c

) + �T
(
α̂ + ρ̂ − ST

c λcd

) + ÛT
c τN, (39)

where λc has been replaced with λcd
to denote that it is specified as part of the control

reference, along with xd , ẋd , ẍd , and τN . We will define

h(q, q̇) � 	̂
T

JT
(
�̂cf� + μ̂c + p̂c

) + �T
(
α̂ + ρ̂ − ST

c λcd

) + ÛT
c τN . (40)
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Fig. 3 A task space tracking controller for a constrained plant. The desired task motion and constraint forces
are tracked using appropriate dynamic compensation which accounts for the constraints

Thus, (39) and (35) can be represented as the following system of 2n − k equations:
(

1 �T ST
u

Sp 0

)(
τ

λu

)
=

(
h(q, q̇)

0

)
. (41)

Given the inverse
(

1 �T ST
u

Sp 0

)−1

=
(

1 − �T ST
u (Sp�T ST

u )−1Sp �T ST
u (Sp�T ST

u )−1

(Sp�T ST
u )−1Sp −(Sp�T ST

u )−1

)
, (42)

we have the following solution for the control torque:

τ = (
1 − �T ST

u

(
Sp�T ST

u

)−1
Sp

)
h(q, q̇). (43)

A block diagram of this control scheme is shown in Fig. 3.

3.2.2 Example 1

As an illustrative example of this control scheme, we consider the parallel mechanism de-
picted in Fig. 4(left), where n = 9, mC = 6, and p = 3. Units for this and all subsequent
examples will be expressed in SI units (meters, seconds, and Newtons). The constraint equa-
tions describe the loop closures and are given by [8]

φ(q) =
⎛

⎝
rp1 − rl1

rp2 − rl2

rp3 − rl3

⎞

⎠ . (44)

Considering two of the base joints, q1, q3, as well as the elbow joints, q2, q4, and q6, to be
actuated, we have k = 5 and

Sp =

⎛

⎜⎜
⎝

0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞

⎟⎟
⎠ . (45)
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Fig. 4 (Left) Parallel mechanism consisting of serial chains with loop closures. Two base joints, q1, q3, as
well as the elbow joints, q2, q4, and q6, are actuated while the remaining joints are passive. (Right) The
position of the platform is commanded to move to a target while its orientation is uncontrolled. In this case,
n = 9, mC = 6, p = 3, m = 2, N = 1, and k = 5

We will define the task to control the position of the platform (see Fig. 4(right)) while its
orientation is uncontrolled. That is, m = 2, N = 1, and

x � (q7 q8 )T . (46)

We will specify the reference value as

xd = (−0.25 2.75 )T . (47)

The null space torque will be specified to be zero (τN = 0). Additionally, we wish to specify
the constraint forces at the interface of rp1 and rl1 . These correspond to

λc �
(
λ1 λ2

)T
. (48)

We will specify the reference value as

λcd
= (

25 sin(t/50) 150 cos(t/200)
)T

. (49)

The remaining constraint forces will be unspecified. Thus,

Sc =
(

1 0 0 0 0 0
0 1 0 0 0 0

)
(50)

and

Su =

⎛

⎜⎜
⎝

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟⎟
⎠ . (51)
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Fig. 5 The position of the platform is commanded to move to a target while its orientation is uncontrolled
and the constraint forces at the interface of rp1 and rl1 are specified. (Left) Time response of the platform
position showing linear critically damped motion to the target. Time response of the platform orientation
shows undamped null space oscillation due to zero null space torque. The control gains are Kx = 100 and
Kv = 20. (Right) Time response of the controlled constraint forces, λ1 and λ2, showing tracking of the
reference command

The linear (PD) control law of (32) is used as the input of the decoupled system. The
gains are chosen so as to achieve critically damped behavior of the task motion. Equation
(43) is used to compute the control torque. The system dynamics were computed symbol-
ically using a Lagrangian formulation and solved numerically. Figure 5 shows simulation
plots for the system under goal position commands on the task coordinates, x, and sinu-
soidal tracking commands on the constraint force coordinates, λc . The time response of the
platform position shows linear critically damped motion to the target but the time response
of the platform orientation shows undamped oscillation due to the uncontrolled null space.

In this and all subsequent simulations in this paper, the constrained dynamics were nu-
merically integrated with a time step of 1 ms. Baumgarte stabilization [4] was used to stabi-
lize the constraints. Given the constraint stabilized system of equations [11],

(
M −�T

−� 0

)(
q̈
λ

)
=

(
τ − b − g

�̇q̇ + β�q̇ + αφ

)
, (52)

where α and β are the constraint stabilization parameters, the generalized accelerations are

q̈ = 	M−1(τ − b − g) − �̄�̇q̇ − �̄(αφ + βφ̇), (53)

and the Lagrange multipliers are

λ = −�̄
T
(τ − b − g) − H�̇q̇ − H(αφ + βφ̇). (54)

Figure 6 shows simulation plots of some of the control torques generated for this motion.
It is noted that zero control torque is produced at the passive joint, τ5, due to the condition
of (35). The last plot shows the time response of one of the uncontrolled constraint forces.



190 V. De Sapio, N. Srinivasa

Fig. 6 (Top) Time response of the control torques τ1 and τ2 during goal movement. (Bottom left) Zero control
torque (numerical error at the order of 10−12) is produced at the passive joint τ5, due to the imposition of the
passivity requirement in the controller. (Bottom right) Time response of one of the uncontrolled constraint
forces, λ4

3.2.3 Example 2

We can choose to explicitly control the platform orientation as part of the task. In this case
the task is defined as

x � (q7 q8 q9 )T . (55)

The null space vanishes with this expansion of the task space. We will specify the reference
value as

xd = (−0.25 2.75 −0.5 )T . (56)

We note that n = 9, mC = 6, p = 3, m = 3, N = 0, and k = 5.
The procedure of the previous example is used with this new task definition. Figure 7

shows simulation plots for the system under goal position commands on the task coordi-
nates, x, and sinusoidal tracking commands on the constraint force coordinates, λc . As with
the position coordinates the time response of the platform orientation now shows a linear
critically damped response to the target.
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Fig. 7 The position of the platform is commanded to move to a target while its orientation is also controlled
and the constraint forces at the interface of rp1 and rl1 are specified. (Left) Time response of the platform
position and orientation showing linear critically damped motion to the target. The control gains are Kx = 100
and Kv = 20. (Right) Time response of the controlled constraint forces, λ1 and λ2, showing tracking of the
reference command

Figure 8 shows simulation plots of some of the control torques generated for this motion.
It is noted that zero control torque is produced at the passive joint, τ5, due to the condition
of (35). The last plot shows the time response of the uncontrolled constraint forces.

3.2.4 Task actuated partitioning

In the preceding formulation for partitioning the constraint forces we specified the task co-
ordinates and the null space coordinates as part of the control. It is noted that we are not
required to do this and can, for example, dispense with controlling the null space coordi-
nates so that we may control more of the constraint forces. In this case, rather than needing
to meet the condition that k ≥ p, we would only need to meet the condition that k > m in
order to control some of the constraint forces. In the more general case of controlling some,
or possibly none, of the constraint forces we would only need to meet the task-actuated
condition of k ≥ m. This is illustrated in Fig. 9.

In this case, the selection matrix for the controlled constraint forces would be Sc ∈
R

(k−m)×mC and the selection matrix for the uncontrolled constraint forces would be Su ∈
R

(n−N−k)×mC . Our system would then be partitioned as

τ + �T ST
u λu − ÛT

c τN = 	̂
T

JT
(
�̂cf� + μ̂c + p̂c

) + �T
(
α̂ + ρ̂ − ST

c λcd

)
, (57)

complemented by

Sp τ = 0. (58)

Defining

k(q, q̇) � 	̂
T

JT
(
�̂cf� + μ̂c + p̂c

) + �T
(
α̂ + ρ̂ − ST

c λcd

)
, (59)

we have the following system of 2n − k equations:

(
1 �T ST

u −ÛT
c

Sp 0 0

)
⎛

⎝
τ

λu

τN

⎞

⎠ =
(

k(q, q̇)

0

)
. (60)
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Fig. 8 (Top) Time response of the control torques τ1 and τ2 during goal movement. (Bottom left) Zero
control torque (numerical error at the order of 10−12) is produced at the passive joint τ5, due to the passivity
requirement. (Bottom right) Time response of the uncontrolled constraint forces, λ3, λ4, λ5, and λ6

Fig. 9 If k > m, then the n RHS
variables of (34) can be
partitioned into k controlled
variables: m controlled task
coordinates and k − m controlled
constraint forces; and n − N − k

uncontrolled constraint forces
and N uncontrolled null space
coordinates

3.2.5 Example 3

As an illustrative example we will address the specific case of k = m. In this case, we can
only control the task, and not the null space or any constraint forces (see Fig. 10).

This represents an underactuated system with respect to motion. Since it is still task
actuated it can be controlled. In fact, this methodology represents a means of controlling
underactuated systems. The system can be represented as

τ + �T λ − ÛT
c τN = 	̂

T
JT

(
�̂cf� + μ̂c + p̂c

) + �T (̂α + ρ̂), (61)
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Fig. 10 If k = m, then only the
task coordinates can be
controlled. The mC constraint
forces and N null space
coordinates are uncontrolled

complemented by

Sp τ = 0. (62)

Defining

s(q, q̇) � 	̂
T

JT
(
�̂cf� + μ̂c + p̂c

) + �T (̂α + ρ̂), (63)

we have the following system of 2n − m equations:

(
1 �T −ÛT

c

Sp 0 0

)
⎛

⎝
τ

λ

τN

⎞

⎠ =
(

s(q, q̇)

0

)
. (64)

Considering only the elbow joints q4, and q6, to be actuated we have

Sp =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎠

. (65)

We define the task to control the position of the platform

x � (q7 q8 )T . (66)

Since only two joints are actuated we can not control the null space or any of the constraint
forces. We specify the task reference value as

xd = (−0.25 2.75 )T . (67)

We note that n = 9, mC = 6, p = 3, m = 2, N = 1, and k = 2.
The linear (PD) control law of (32) is used as the input of the decoupled system. The

gains are chosen so as to achieve critically damped behavior of the task motion. Equation
(64) is solved to compute the control torque. Figure 11 shows simulation plots for the system
under goal position commands on the task coordinates, x. The time response of the platform
position shows linear critically damped motion to the target but the time response of the
platform orientation shows undamped oscillation due to the null space torques arising to
satisfy the passivity requirement. The control torques generated for this motion are shown.
It is noted that zero control torque is produced at the passive joints, τ1, τ2, τ3, and τ5, due to
the passivity condition. The last plot shows the time response of the uncontrolled constraint
forces.
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Fig. 11 (Top left) Time response of the platform position showing linear critically damped motion to the
target. Time response of the platform orientation shows undamped oscillation due to the null space torques
arising to satisfy the passivity requirement. The control gains are Kx = 100 and Kv = 20. (Top right) Time
response of the control torques τ4 and τ6 during goal movement. (Bottom left) Zero control torque (numerical
error at the order of 10−12) is produced at the passive joints, τ1, τ2, τ3, and τ5, due to the passivity condition.
(Bottom right) Time response of the uncontrolled constraint forces

3.3 Implicit conditions on the constraint forces

Rather than partition the constraint forces, we can specify a set of conditions on the con-
straint forces. In the case that k > p (motion actuated) and we choose to control both task
and null space, we have

τ + �T λ = 	̂
T

JT
(
�̂cf� + μ̂c + p̂c

) + �T (̂α + ρ̂) + ÛT
c τN, (68)

complemented by the following conditions on the constraints forces:

A(q, q̇)λ = d(q, q̇), (69)

where A(q, q̇) ∈R
(k−p)×mC and d(q, q̇) ∈R

k−p , and the passivity constraints

Sp τ = 0. (70)
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Fig. 12 The task-level tracking controller for a constrained system with implicit conditions on the constraint
forces, Aλ = d. The desired task motion and null space motion are tracked using appropriate dynamic com-
pensation that accounts for the constraints. Simultaneously, conditions on the constraint forces are satisfied
by the generated torques

This can be expressed as the following system of n + mC equations:

⎛

⎝
1 �T

0 A
Sp 0

⎞

⎠
(

τ

λ

)
=

⎛

⎝
s(q, q̇) + ÛT

c τN

d
0

⎞

⎠ . (71)

A block diagram of this control scheme is shown in Fig. 12.
In the case that k > m (task actuated) and we choose to control only the task, we have

τ + �T λ − ÛT
c τN = 	̂

T
JT

(
�̂cf� + μ̂c + p̂c

) + �T (̂α + ρ̂), (72)

complemented by the following conditions on the constraints forces;

A(q, q̇)λ = d(q, q̇), (73)

where A(q, q̇) ∈R
(k−m)×mC and d(q, q̇) ∈R

k−m. The passivity constraints are

Sp τ = 0. (74)

This can be expressed as the following system of n + mC + N equations:

⎛

⎝
1 �T −ÛT

c

0 A 0
Sp 0 0

⎞

⎠

⎛

⎝
τ

λ

τN

⎞

⎠ =
⎛

⎝
s(q, q̇)

d
0

⎞

⎠ . (75)

3.3.1 Example 4

As an illustrative example we consider the humanoid torso depicted in Fig. 13 turning a
valve. The system is described by n = 13 generalized coordinates. The constraint equations
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Fig. 13 (Left) Humanoid upper body turning a valve. The system is described by n = 13 generalized coordi-
nates. Generalized coordinates q1, . . . , q12 are associated with the humanoid structure and q13 is associated
with the passive valve. Constraints, φ(q), are defined between the humanoid hands and the valve. In this case
n = 13, mC = 10, p = 3, m = 1, N = 2, and k = 12. (Right) The humanoid is commanded to turn the valve
while a set of conditions, Aλ = d, are specified on the constraint forces. The time response of the valve angle
shows linear critically damped motion to the goal. The control gains are Kx = 100 and Kv = 20. The time
responses of the first six controlled constraint forces (in the global reference frame) are plotted as well

associated with the loop closure are

φ(q) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

rrh − rvrh

rlh − rvlh

αrh − αvrh

βrh − βvrh + π/2
αlh − αvlh

βlh − βvlh − π/2

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

, (76)

where rrh and rlh are the contact locations on the left and right hand, respectively, and rvrh

and rvlh are the corresponding contact locations on the valve. The terms α and β denote the
xy Euler angles in an xyz sequence describing the orientation of the hands and the valve.
We note that mC = 10 and p = 3. Considering all joints except the valve joint to be actuated,
we have k = 12 and

Sp = (
0 0 0 0 0 0 0 0 0 0 0 0 1

)
. (77)

We will define the task to control the valve angle (see Fig. 13). So, m = 1, N = 2, and

x � q13 = θ. (78)
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We will specify the reference value as

xd = 0.18 rad. (79)

The null space torque will be specified to be zero (τN = 0). Additionally, we wish to specify
the first nine constraint forces. Thus,

A =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

. (80)

We will specify the reference value of the constraint forces as

d =

⎛

⎜⎜
⎜⎜
⎝

Qy(q13)(−5,1,−1)T

Qy(q13)(5,1,1)T

0
0
0

⎞

⎟⎟
⎟⎟
⎠

. (81)

That is, the desired constraint forces are specified in the local valve reference frame and
transformed into the global frame.

The linear (PD) control law of (32) is used as the input of the decoupled system. The gains
are chosen so as to achieve critically damped behavior of the task motion. Equation (71) is
solved to compute the control torque. A small dissipative term has been added to the null
space. Figure 13 shows simulation plots for the system under goal position commands on
the task coordinate, x. The time response of the valve angle shows linear critically damped
motion to the target. The time response of the first six controlled constraint forces (in the
global reference frame) are plotted.

3.3.2 Constraint management

A general methodology for handling constraints will now be described that aggregates
the persistent (bilateral) constraints associated with the robot mechanism and the transient
(unilateral) constraints associated the interaction of the robot with the environment. In the
methodology depicted in Fig. 14, a robot is interacting with the environment. At each time
step, unilateral constraints associated with the robot/environment interaction are inferred
from the sensed state of the interaction. These constraints are aggregated with the known in-
ternal (bilateral) mechanism constraints of the robot, and the properties associated with the
constrained dynamics of the robot/environment system are computed and sent to the con-
troller. A set of equality conditions on the robot/environment constraint forces are specified
that satisfy the inequality conditions associated with maintaining desired robot/environment
interactions (e.g., holding onto an object, releasing an object, maintaining contact with sur-
faces). These conditions are aggregated with any control conditions on the internal mech-
anism constraints of the robot and sent to the controller. The resulting conditions on the
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Fig. 14 System-level architecture for task-level constrained motion and force control. Robot/environment
interaction constraints are inferred. These are appended to the internal constraints of the robot and the
robot/environment dynamic properties are updated and sent to the controller. Equality conditions on the con-
straint forces are specified based on the constraint maintenance inequality conditions as well as on control
commands for the internal robot constraint forces. These conditions are sent to the controller where, along
with the specified task and null space motion commands, they are used to compute the joint torques to the
robot. The system parameters generated by each block are shown based on implicit handling of constraint
conditions

constraint forces, along with the specified task and null space motion commands are used to
compute the control input (joint torques) to the robot.

Figure 15(left) depicts a simulation scenario where the humanoid robot transitions from
unconstrained task-level motion control of its hands to constrained task-level motion and
force control of an object that has been grappled. The methodology of Fig. 14 can be ap-
plied to this problem. Given a model of the environment the constraints associated with
interacting with the grappled object would be inferred. Constraint maintenance conditions
would then be specified as inequality conditions (e.g., minimum normal forces needed to be
applied by the hands on the object to maintain grapple). Equality conditions on the constraint
forces would then be specified to the controller, consistent with the constraint maintenance
conditions. A similar methodology could be applied to a humanoid robot interacting with
the environment through foot/ground contact and hand contact. Figure 15(right) depicts a
simulation scenario where the humanoid robot generates a desired force at the hand (against
a wall, for example) while maintaining desirable contact forces at the feet.

3.4 Discussion of particular limitations on control

We have to this point not discussed specific situations under which the general formulation
of the control problems presented in this paper have no solutions. Specific problems can be
physically ill-posed in which case rank deficiencies will exist in the system matrix. This is
a recognition that care must be taken to form physically well-posed problems. For example,
constraint forces cannot be specified in such a manner as to violate force equilibrium.

There are numerous ways that problems can be ill-posed. As a simple example, consider
two unit point masses, A and B, moving on a plane described by

τ = Mq̈, (82)
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Fig. 15 (Left) A humanoid robot transitions from unconstrained task-level motion control of its hands to
constrained task-level motion and force control of an object that has been grappled. Given a model of the
environment interaction constraints would be inferred. Constraint maintenance conditions would then be
specified as inequality conditions (e.g., minimum normal forces needed to be applied by the hands on the
object to maintain grapple) and equality conditions on the constraint forces would be specified to the con-
troller. (Right) A humanoid robot generates a desired force at the hand (against a wall, for example) while
maintaining desirable contact forces at the feet

where

q = (
xA yA xB yB

)T
, τ = (

fxA fyA fxB fyB

)T
, (83)

and

M =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ . (84)

Let us define the task to control only the second point mass

x �
(
xB yB

)T
. (85)

The task Jacobian is then

J =
(

0 0 1 0
0 0 0 1

)
. (86)

Considering only the first point mass to be to be actuated, we have n = 4, mC = 0, p = 4,
m = 2, N = 2, k = 2, and

Sp =
(

0 0 1 0
0 0 0 1

)
. (87)

Our task space parameters are

� = (
JM−1JT

)−1 =
(

1 0
0 1

)
, (88)



200 V. De Sapio, N. Srinivasa

and

NT = 1 − JT �JM−1 =

⎛

⎜⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎞

⎟⎟
⎟
⎠

, (89)

or in terms of an N dimensional basis,

UT =

⎛

⎜⎜
⎜
⎝

1 0

0 1

0 0

0 0

⎞

⎟⎟
⎟
⎠

. (90)

We have the following system of equations:

(
1 −UT

Sp 0

)(
τ

τN

)

=
(

JT �ẍ
0

)
. (91)

However, in this case,

(
1 −UT

Sp 0

)
=

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1 0 0 0 −1 0

0 1 0 0 0 −1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

(92)

is rank deficient (rank is 4) and the control problem cannot be solved. Hence, it is not pos-
sible to control point mass B with actuation only at point mass A, where the point masses
are decoupled. If, however, we couple the point masses such that point mass B is physically
constrained to move with point mass A then n = 4, mC = 2, p = 2, m = 2, N = 0, k = 2,
and

� =
(

1 0 −1 0

0 1 0 −1

)

. (93)

We note that

	T = 1 − �T �̄
T =

⎛

⎜⎜
⎜
⎝

1
2 0 1

2 0

0 1
2 0 1

2
1
2 0 1

2 0

0 1
2 0 1

2

⎞

⎟⎟
⎟
⎠

. (94)

We then have

�c = (
JM−1	T JT

)−1 =
(

2 0

0 2

)
. (95)
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Fig. 16 Care must be taken so as
not to arbitrarily specify
constraint forces in such a
manner as to violate force
equilibrium. In this example,
normal constraint forces applied
by the robot hands against the
object need to balance under
static equilibrium

The null space term NT
c vanishes, and we have

(
1 �T

Sp 0

)(
τ

λ

)
=

(
	T JT �cẍ

0

)
. (96)

In this case, the term

(
1 �T

Sp 0

)
=

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 −1 0
0 0 0 1 0 −1
0 0 1 0 0 0
0 0 0 1 0 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

(97)

is of full rank and the control has a solution. For example, given desired unit accelerations
of point mass B in x and y, that is, ẍ = (

1 1
)
, we have

(
τ

λ

)
= (

fxA fyA fxB fyB λ1 λ1
)T = (

2 2 0 0 −1 −1
)T

. (98)

So, without any actuation forces at point mass B it can be accelerated due to the constraint
coupling with point mass A. Point mass A has actuator forces of 2 applied in x and y to
generate unit accelerations at point mass B. Constraint forces of −1 occur between point
mass A and B. This is a trivial example as the constraints effectively lump the two unit point
masses together into a single point mass; nevertheless, it is instructive in examining the
solvability of the control equations.

We now consider the more complex example of a bimanual robot holding an object as
depicted in Figs. 15 and 16. The robot possess 12 fully actuated generalized coordinates.
The object is described by an additional 6 generalized coordinates. Our task is to control the
object in 6 dimensions,

x �
(
xobj yobj zobj αobj βobj γobj

)T
. (99)
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The grasping constraints are expressed as

φ(q) =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

rrh − rorh

rlh − rolh

αrh − αorh

βrh − βorh + π

γrh − γorh

αlh − αolh

βlh − βolh

γlh − γolh

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

. (100)

We then have n = 18, mC = 12, p = 6, m = 6, N = 0, k = 12, where we will control the
task as well as the normal hand constraint forces on the object and 4 of the hand constraint
moments on the object, so

A =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

, d =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

λ1

λ4

0
0
0
0

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

. (101)

Note we have chosen to specify zero constraint moments. Our system can be expressed as

⎛

⎝
1 �T

0 A
Sp 0

⎞

⎠
(

τ

λ

)
=

⎛

⎝
	̂

T
JT (�̂cẍ + μ̂c + p̂c) + �T (̂α + ρ̂)

d
0

⎞

⎠ , (102)

where
⎛

⎝
1 �T

0 A
Sp 0

⎞

⎠ ∈ R
30×30. (103)

For the grasping posture shown in Fig. 16,

Rank

⎡

⎣

⎛

⎝
1 �T

0 A
Sp 0

⎞

⎠

⎤

⎦ = 29. (104)

So, the system is rank deficient. However, for particular choices of ẍ, λ1, and λ4 control solu-
tions can be found. For example, given ẍ = 0 (static equilibrium of the object) the condition
λ1 = −λ4 produces a solution. That is, the vector

⎛

⎝
	̂

T
JT (�̂cẍ + μ̂c + p̂c) + �T (̂α + ρ̂)

d
0

⎞

⎠ (105)

can be expressed as a linear combination of the columns of
⎛

⎝
1 �T

0 A
Sp 0

⎞

⎠ , (106)
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when ẍ = 0 and λ1 = −λ4. However, (105) cannot be expressed as a linear combination
of the columns of (106) when ẍ = 0 and λ1 �= −λ4. This is an intuitive result since the
constraint forces applied by the left and right hands on the object cannot be arbitrary but
must satisfy force equilibrium.

4 Conclusion

A novel approach has been presented for formulating motion control for holonomically
constrained multibody systems that allows for the simultaneous specification of desired con-
straint forces. The approach presented is based on a decomposition of task, constraint, and
posture space, and it leverages the symmetry between constrained dynamics and task space
dynamics. It provides a natural scheme for control synthesis by exposing the coordinates,
both motion and constraint, of interest. The approach can be realized through a partitioning
of the constraint forces or through the specification of implicit conditions on the constraint
forces. The necessary conditions relating the number of actuators, motion coordinates, and
constraint coordinates have been described. The examples presented indicate that the ana-
lytical framework can be implemented in practical constrained multibody control problems.
A system-level approach for constraint management during robot interactions with the en-
vironment has also been presented.

As a practical matter it is assumed that the controller has access to the system state
(via a forward dynamics solver in the simulated case or via sensors in the physical case)
and estimates of the dynamic properties of the physical system. It should also be noted
that the system of equations described by (41), (60), (71), and (75) may not always be well
conditioned. That is, the system matrix in these equations may not always be invertible. Even
given a satisfaction of the conditions relating the number of actuators, motion coordinates,
and constraint coordinates; constraint forces may not always be arbitrarily specified. For
example, given a bimanual robot holding an object (see Fig. 15), the vertical constraint
forces applied to the object would need to balance the weight of the object and could not
be arbitrarily specified under static equilibrium. Additionally, the normal constraint forces
applied by the robot hands against the object would need to balance under static equilibrium
as discussed in the previous section.
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