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Abstract An approach for dynamic modeling of a deep-groove ball bearing with waviness
defects in planar multibody system is presented. The deep-groove ball bearing is modeled by
introducing a nonlinear force system that takes into account the contact elastic deformations
between the ball elements and raceways. Hertzian contact theory is applied to calculate the
elastic deflection and nonlinear contact force. The waviness defect on the bearing’s inner
and outer raceways is modeled using a sinusoidal function. A planar slider–crank mecha-
nism containing a deep-groove ball bearing with waviness defects on the raceways is cho-
sen as an example to demonstrate application of the methodologies. Variation of the slider
acceleration, crank moment, and bearing equivalent reaction force is used to illustrate the
dynamic performance of the mechanism when the effect of the bearing waviness defect
is considered. The results indicate that the waviness defect can stimulate vibration of the
slider–crank mechanism in its kinematic processes. Such vibrations can lead to noise and
affect the stability of the mechanical system motion. For a constant waviness, bearings with
different numbers of rolling balls have different amplitudes of vibration of the slider–crank
mechanism. Furthermore, the effect of varying the rolling ball number and waviness on the
dynamic performance of the slider–crank mechanism is different for bearings in different
positions.

Keywords Multibody dynamics · Deep-groove ball bearing · Waviness defect

1 Introduction

Waviness, roughness, and roundness are considered to be the different forms of shaping
error of the inner and outer raceway surfaces of rolling element bearings. They are usu-
ally regarded as distributed defects in the rolling element bearings. With improvements in
processing techniques, the effects of roughness and roundness of the surfaces on bearing
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Fig. 1 Waviness defects on the
outer raceway of a deep-groove
ball bearing [6]

vibration have gradually decreased. However, the influence of waviness is still significant,
as shown in Fig. 1. Hence, waviness is one of the main factors responsible for vibration
in rolling element bearing systems. Bearing vibration directly affects the dynamic perfor-
mance of a mechanical system. In order to produce stable working mechanical systems,
many scholars have carried out research on vibration in a rolling bearing system. Existing
research is mainly focused on the effects on the dynamic performance of the rolling element
bearing system of nonlinear factors such as unbalanced load [1, 2], clearance [1–4], and
local defects [5–9].

In recent years, the nonlinear dynamics of rolling element bearings affected by waviness
defects has attracted more attention. Aktiirk [10] studied the radial and axial vibrations of a
rigid shaft supported by a pair of angular contact ball bearings. The effect of the waviness of
the bearing’s running surface on the vibration of the shaft was investigated. Tandon [11] de-
veloped a theoretical model to predict the vibrational response of a rolling element bearing
with waviness on its inner and outer raceways. Sopanen [12, 13] proposed a dynamic model
for a deep-groove ball bearing with waviness on the raceways. Harsha [14–16] analyzed
the nonlinear dynamic response of a rotor–bearing system due to waviness on the bearing’s
surface. Bai [17] presented a dynamic model with 5 degrees of freedom (DOF) to study the
dynamic performance of ball bearings due to the effect of both internal clearance and wavi-
ness at high speed. The centrifugal force and gyroscopic moment from the balls were also
taken into account. Jang [18–20] presented a nonlinear model to analyze ball bearing vibra-
tion due to waviness in a rigid rotor supported by two or more ball bearings. The waviness
of the balls and each race was modeled using a superposition of sinusoidal functions. Wang
[21] deduced an expression for the nonlinear contact forces on a roller bearing under four-
dimensional loads. A 4-DOF transient dynamics model of the roller bearings was presented
and used to investigate the vibrational behavior of the rotor roller bearing system. The ra-
dial clearances and waviness of the bearings were also taken into account in this work. In
most of the above work, the bearing–rotor system is usually selected as the research object.
The rolling element bearing plays the role of supporting the high-speed rotation of the rotor.
However, the rolling element bearing is often used as the connection between moving links,
i.e., it constitutes a revolving joint between linkages in the applied engineering field. In fact,
one finds that there is not only rotational motion of the bearing to be considered, but also
translational motion within the mechanism. Under these conditions, the dynamic load on the
bearing is more complex. Furthermore, the nonlinear vibrational effects of the bearing on
the dynamic performance of the high-speed mechanism and kinematic accuracy are more
prominent.

At present, multibody dynamic systems influenced by nonideal joints have attracted
much attention from many scholars worldwide. Many studies have been made on the influ-
ence of joint clearance, lubricant films, contact forces, friction, and wear on the mechanical
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characteristics of the multibody system dynamics. Ravn [22] and Flores et al. [23] proposed
a continuous analysis approach that was combined with the contact force model presented
by Lankarani and Nikravesh [24] to model clearance revolute joints in planar rigid multi-
body systems. In follow-up studies, the approach was validated by experimental work [25],
and other techniques have also been utilized to guarantee the correctness of the numerical
simulations [26]. In subsequent research, Erkaya and Uzmay [27], Flores and Lankarani [28,
29], Liu et al. [30], and Megahed and Haroun [31] discussed the dynamic performance of
mechanisms with multiple clearance revolute joints. In practical applications, the joints are
designed to operate with a lubricant [32]. A thin lubricant film can not only provide the high
pressures required to keep the journal and bearing apart, but also reduce friction and wear,
provide load capacity, and add damping to dissipate vibrations. Therefore, a proper descrip-
tion of lubricated revolute joints [33–38] is required to achieve a better understanding of
the dynamic performance of such mechanical systems. In general, correctly formulating the
contact force and friction models is important for revealing the dynamical characteristics of
a clearance joint. For this purpose, Muvengei et al. [39] and Machado et al. [40] presented
and discussed several different compliant contact forces models to use in a multibody system
dynamics context to model and analyze contact–impact events. Flores et al. [41] proposed
a new continuous contact force model for soft materials in multibody dynamics. This ap-
proach can be used for contact problems involving materials with low or moderate values of
coefficient of restitution. Lee [42] introduced a numerical technique to solve the problem of
having a very stiff spring-damper on the contact point. The special feature of this technique
is that the equation of motion may be time-integrated with any convenient method valid for
solving ordinary differential equations. Also, time step size reduction and penetration thresh-
old need not be considered at the time of impact. Pereira et al. [43] analyzed and discussed
several analytical models to study the contact between cylindrical bodies. More recently,
Rodriguez and Bowling [44] presented a method for determining the post-impact behavior
of a rigid body undergoing multiple, simultaneous impacts including the effects of friction.
Muvengei et al. [45] analyzed the dynamic response of a slider–crank mechanism when dif-
ferent friction models are adopted to model the clearance joints. As is well known, exposure
to an extended period of the effects of friction will lead to wear of the contact bodies. In
order to reveal the wear phenomenon in clearance joints in depth, some researchers have
complemented previous studies by integrating wear into the dynamic analysis of multibody
systems. In these studies, Gummer [46] developed an analytical and numerically effective
method for calculating the stiffness of a revolute joint depending on the geometry and wear
state. Flores [47] and Mukras [48] presented an approach for modeling and evaluating wear
in multibody systems. The wear model used was based on the generalized Archard equation,
which relates the volume of material loss to the physical and geometrical properties of the
contacting bodies. The simulation results verified that the wear in a clearance joint is not
uniformly distributed around the joint element’s surface. Actually, the mechanism does not
necessarily contain a revolute joint. Translational joints, spatial spherical joints, and spatial
cylindrical joints are also widely used to connect rigid bodies in multibody systems. Flores et
al. [49, 50] presented methods for modeling translational and spherical joints with clearance
in rigid multibody systems. Tian et al. [51] analyzed the effect of clearance of a cylindrical
joint on the dynamic performance of spatial flexible multibody systems. Furthermore, Qi et
al. [52] proposed a methodology for the analysis of the frictional contact of rigid multibody
systems with spatial prismatic joints.

However, most of the above work takes sliding bearings as the object of study. If rolling
element bearings are applied to the revolute joint connections between components [53],
the sliding wear between joint elements can be reduced. However, the vibrations, caused by
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manufacturing defects in the bearings (such as the waviness defects on the raceway surface),
are bound to have an effect on the dynamic performance of the mechanical system. The
primary objective of this work is to present an approach for modeling and dynamically
analyzing a planar multibody system containing deep-groove ball bearings with waviness
defects. The deep-groove ball bearing is modeled by introducing a nonlinear force system
that takes into account the elastic deformations of the contact between the ball elements
and raceways. Hertzian contact theory is applied to calculate the elastic deflection and the
nonlinear contact force. The waviness defect on the bearing’s inner and outer raceways
is modeled using a sinusoidal function. The paper is organized as follows. In Sect. 2, the
method for modeling the waviness defect in the bearing raceways is introduced. Section 3
offers an approach to modeling a deep-groove ball bearing in a planar multibody system. In
Sect. 4, a planar slider–crank mechanism with a deep-groove ball bearing located at different
revolute joints is proposed as a numeral example to verify the methodology. In Sect. 5, the
variation of the slider acceleration, crank moment, and bearing equivalent reaction force are
obtained and discussed. Finally, in the last section, the main conclusions from this study are
presented.

2 Modeling of the waviness of bearing raceways

2.1 Kinematic analysis of the ball bearing

A kinematic analysis of a bearing is used to reveal the relationship between the motion of
the rolling elements and the inner and outer raceways. The position of each rolling ball in
the bearing at any time t can be subsequently determined. In the process of rotation of the
bearing, a rigid cage is often used to equally space the balls—this also enables them to roll
on the surfaces of the raceways with equal velocity. If the slipping and sliding that occurs
between the bearing rolling balls and raceways are ignored, the velocity of the cage and
rolling element set is the mean of the inner and outer raceway velocities [54], as shown in
Fig. 2.

The velocity of the rolling ball at any time t can therefore be described using

υm = υi + υo

2
(1)

Fig. 2 Rolling speeds and
velocities in the deep-groove ball
bearing
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with

υi = ωidi

2
, υo = ωodo

2
, (2)

where ωi and ωo are the angular velocities of the bearing’s inner and outer races, respec-
tively, and di and do are the bearing’s inner and outer raceway diameters, respectively. Sub-
stituting Eq. (2) into Eq. (1) yields

υm = ωidi + ωodo

4
. (3)

Taking into account that

rm = di + do

4
(4)

and

ωm = υm

rm
(5)

and substituting Eqs. (3) and (4) into Eq. (5), the angular velocity of the cage and rolling
balls can be obtained:

ωm = ωidi + ωodo

di + do
. (6)

The angular position of the r th ball in the bearing at time t can be represented by

φr = 2π

Nb

(r − 1) + ωmt, (r = 1,2, . . . ,Nb), (7)

where Nb is the number of balls in the bearing. By using the form given in Eq. (7), the ball
elements are constrained to distribute uniformly and move around the bearing raceways with
equal velocity.

2.2 Waviness of the bearing’s inner and outer raceways

In general, a bearing raceway is formed by grinding. During the grinding process, a contin-
uous and periodic waviness defect is generated on the surface of the bearing raceway due to
the effect of the periodic vibration of the grinding wheel spindle. Obviously, the complexity
of the bearing waviness defect is determined by the vibrational characteristics of the grind-
ing machine. Due to the fact that an actual vibrational signal in the time domain usually
has many frequency components, the real waviness on the bearing raceway surface may be
a complex curve formed by the superposition of many simple periodic curves. To simplify
the problem, the main vibration component is generally considered. Then, the single wavi-
ness defect caused by this main vibration component is usually considered in the vibrational
analysis of the rolling element bearings. We can certainly change the wavelength and ampli-
tude of this single waviness to discuss its influence on the dynamic response of the bearing
system.

Based on experimental test results [54], the waviness of the bearing raceway can be
simplified as a periodic sinusoidal function, as shown in Fig. 3. The corresponding waviness
Π at a certain position L in the bearing can be described using

Π = Πp sin

(
2πL

λ

)
, (8)
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Fig. 3 A simplified model for
the waviness

Fig. 4 Modeling the waviness defect of the bearing raceways: the bearing’s (a) inner and (b) outer raceways

where Πp is the maximum amplitude of the waviness, and λ is the mean wavelength of the
waviness.

The waviness of the bearing inner raceway surface is shown in Fig. 4(a). Here, Pi is the
center of the bearing inner race, and b is the center of the ball. According to Eq. (8) and
considering the influence of the initial amplitude, the waviness Πi can be expressed as

Πi = ΠT + Πp sin

(
2πLi

λi

)
, (9)

where ΠT is the amplitude of the waviness when Li = 0.
For the inner raceway of the rolling element bearing, the mean wavelength λi of the

waviness can be expressed as

λi = πdi

Ni
, (10)

where Ni represents the total number of waviness on the bearing inner raceway. We also
have

Li = diθi

2
, (11)

θi = 2π

Nb

(i − 1) + (ωm − ωi)t (i = 1,2, . . . ,Nb). (12)

Figure 4(b) shows the waviness on the bearing outer raceway surface, in which Pj repre-
sents the center of the bearing’s outer race. The waviness at any position on the surface of
outer raceway can be described using

Πo = ΠT + Πp sin

(
2πLo

λo

)
. (13)
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The mean wavelength λo of the waviness on the bearing outer raceway can be expressed
as

λo = πdo

No
, (14)

where No denotes the total waviness number on the outer raceway. Also,

Lo = doθj

2
, (15)

θj = 2π

Nb

(j − 1) + (ωm − ωo)t (j = 1,2, . . . ,Nb). (16)

3 Modeling of a deep-groove ball bearing in planar multibody system

In order to investigate the effect of the waviness defect on the dynamic performance of the
multibody system, a dynamic multibody model of the system with rolling bearing elements
must first be established. Figure 5 describes an approach for modeling deep-groove ball
bearings in a planar multibody system. As shown in the figure, two bodies i and j are
connected by a deep-groove ball bearing in the multibody system. It is supposed that the
outer race of the bearing is fixed to the bearing housing of rigid body i and that the inner
race is fixed to the journal of rigid body j . The existence of the bearing allows the rigid
bodies i and j to rotate relative to each other. The centers of mass of bodies i and j are oi

and oj , respectively. Body-fixed coordinate systems, ξoη, are attached to the center of mass
of each body, while the XOY coordinate frame represents the global coordinate system. The
points Pi and Pj indicate the centers of the bearing outer and inner races, respectively.

During the motion of the mechanical system, the centers of the inner and outer races of
the bearing will be relatively offset due to the effect of inertial load. As shown in Fig. 5, the
eccentricity vector e connecting the centers of the housing and the journal can be calculated
using

e = rP
j − rP

i = (
rj + Aj sP

j

) − (
ri + AisP

i

)
, (17)

where ri and rj are vectors linking the global origin and the centers of mass of the bodies,
sP
i and sP

j are vectors in the local coordinate system that link the centers of mass to the

Fig. 5 Modeling of a
deep-groove ball bearing in the
planar multibody system
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housing and journal centers, respectively, and Ai and Aj are matrices that transform the
vectors sP

i and sP
j from the local coordinate system to the global system.

The velocities of the points Pi and Pj in the global coordinate system are

ṙP
k = ṙk + ȦksP

k , (k = i, j). (18)

The relative velocities between points Pi and Pj can then be computed from

υ = ṙP
j − ṙP

i . (19)

The magnitude of the eccentricity vector is evaluated as

e = √
eTe. (20)

The unit vector n in the direction of eccentricity is therefore

n = e/e. (21)

In the eccentricity direction, the contact point between the housing and the bearing outer
raceway is marked as Qi . The contact point between the journal and the bearing inner race-
way is indicated as Qj .

The locations of the contact points Qi and Qj can be expressed as

rQ
k = rk + AksP

k + Rkn, (k = i, j) (22)

where Rk (k = i, j) are the housing and journal radii.
Considering the effect of bearing clearance and waviness defect, the radial deflection at

the r th ball at any angle φr can be written as

δr = ex cosφr + ey sinφr − 1

2
Pd + Πi + Πo, (23)

where ex and ey are components of the eccentricity e in the x and y directions, respectively,
and Pd is the internal radial clearance of the bearing.

The radial relative velocity at the r th ball at any angle φr is given by

υr = υx cosφr + υy sinφr, (24)

where υx and υy are the components of the relative eccentric velocity υ in the x and y

directions, respectively.
According to local contact Hertzian theory, taking into account the bearing damping

effect, the load–deformation relationship for the point contacts between ball–raceways can
be written as

Fr = Kδ3/2
r + Cυr, (25)

where K and C are the total stiffness and damping coefficients for either the inner or outer
raceway contacts, respectively. The stiffness coefficients Ki,o for the inner and the outer
raceway–ball contacts, respectively, can be expressed as follows [54]:

Ki,o = 2
√

2

3

(∑
ρi,o

)−1/2(
δ∗

i,o

)−3/2
(

E

1 − ν2

) (
N/m3/2

)
, (26)

where E and ν are the elastic modulus and Poisson ratio of the ball bearing elements, re-
spectively, δ∗ is the dimensionless deflection factor, and

∑
ρi,o is the curvature sum at the

contact point. The value of δ∗ can be obtained from a graph of the curvature difference func-
tion, F(ρ), as shown by Harris [54]. The total stiffness for a single ball element in contact
with the inner and outer raceways is written as

K = (
K

−2/3
i + K−2/3

o

)−3/2 (
N/m3/2

)
. (27)
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Generally, estimation of the damping of a ball bearing is very difficult because of the
dominant extraneous damping, which swamps the damping of the bearing [55]. Based on
experimental and theoretical studies, Dietl et al. [56] pointed out that the major contributions
to bearing damping include lubricant film damping in the rolling contacts, material damping
due to Hertzian deformation of the rolling bodies, and damping at the interface between the
outer ring and bearing housing. Experimental measurement also shows that bearing damping
decreases as the rotation speed increases. Mitsuya et al. [57] investigated experimentally the
damping of a 6200-type deep-groove ball bearing. The experimental damping ratios ranged
between 2 and 4 %, and the damping coefficients between 150 and 350 N s/m. Based on these
experimental results, an appropriate damping value can be selected to ensure convergence
of the numerical calculation.

Substituting Eqs. (23) and (24) into Eq. (25) yields

Fr = K

(
ex cosφr + ey sinφr − 1

2
Pd + Πi + Πo

)3/2

+
+ C(υx cosφr + υy sinφr)+,

(r = 1,2, . . . ,Nb). (28)

The subscript “+” on the first bracket indicates that when the expression inside is less
than or equal to zero, the rolling ball is not in the load zone, and the restoring force Fr is set
to zero. If the expression in the bracket is greater than zero, then the ball at angular location
φr is loaded giving rise to a restoring force Fr .

It is worth noting that the friction model is not used in the contact analysis in this research.
The reason this simplification is used is because the rolling element bearing has multiple
point contacts between the rolling elements and raceways. A detailed description of the
friction effect in each contact is quite complex, and so the simulation would be very time
consuming. In order to simplify the complexity of the computational model further, only
the normal contact forces in the bearing’s multipoint contacts are considered. On the other
hand, the rolling friction at the ball and raceway contact is usually quite small and has a
small effect on the dynamic response of the bearing system. This explains why much of the
research on rolling element bearing dynamics neglects the influence of friction.

If the effect of rolling friction force is neglected, the equivalent reaction force in the
bearing is the sum of the restoring forces from each of the rolling ball elements. Resolving
the total restoring force along the x and y directions, we obtain

[
Fx

Fy

]
=

Nb∑
r=1

Fr

[
cosφr

sinφr

]
. (29)

After calculation of the equivalent reaction forces Fx and Fy , the contributions to the
generalized force vectors and moments in the multibody system can be found. The forces
that act on the contact points of bodies i and j are transferred to the centers of mass of the
bodies, and an equivalent transport moment is applied to the rigid body.

As shown in Fig. 6, the forces fi and moment Ti that act on the center of mass of body
i due to the eccentricity of the bearing’s inner and outer race centers can be expressed as
follows:

fi =
[

Fx

Fy

]
, Ti = (

y
Q
i − yi

)
f x

i − (
x

Q
i − xi

)
f

y

i . (30)

The corresponding forces fj and moment Tj applied to body j are

fj = −
[

Fx

Fy

]
, Tj = −(

x
Q
j − xj

)
f

y

j − (
y

Q
j − yj

)
f x

j . (31)
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Fig. 6 Force vectors acting at
the points of contact

We take these forces and moments as the generalized force and substitute them into the
multibody system. Then, we can derive the equations of motion of the multibody system
containing deep-groove ball bearings with waviness defects,[

M �T
q

�q 0

][
q̈
λ

]
=

[
QA

γ

]
. (32)

Here, M is the mass matrix consisting of the masses and moments of inertia of the sys-
tem components, �q is the Jacobian matrix of the constraint equations, q̈ is the acceleration
vector, λ is the vector of Lagrange multipliers, QA is the generalized force vector including
the bearing equivalent reaction forces and transport moments applied to the rigid bodies,
and γ = �qq̈ = −(�qq̇)qq̇ − 2�qt q̇ − �t t is a vector that groups all the terms in the accel-
eration reaction equations that depend on the velocities. Figure 7 presents a flowchart of the
computational procedure used in the dynamic analysis of the multibody system containing
deep-groove ball bearings with waviness defects.

4 Numerical examples: a slider–crank mechanism containing a deep-groove ball
bearing with waviness defects on the raceways

In this section, a general slider–crank mechanism is chosen as an example to demonstrate
the application of the methodologies presented. The mechanism consists of four rigid bodies
(ground, crank, connecting rod, and slider), one nonideal revolute joint, two ideal revolute
joints, and one ideal translational joint. A typical deep-groove ball bearing (SKF 98205) with
waviness defects on the raceways constitutes the nonideal revolute joint in the mechanism.
The dimensions and mass properties of the slider–crank mechanism are shown in Table 1,
and the geometric and material properties of the deep-groove ball bearing used in the model
are shown in Table 2.

It is worth noting that the bearing model introduced in this paper is a simplified approach
as the balls are not treated as independent rigid bodies. The bearing joint is modeled by
introducing a system of nonlinear force constraints that takes into account the stiffness of the
contact interaction between the rolling elements and raceways. A complicated bearing model
is not used in the multibody system modeling process because describing each component of
the bearing (balls, cage, and inner and outer raceways), and contact between them would lead
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Table 1 Dimensions and mass
parameters for the slider–crank
mechanism

Bodies Length (m) Mass (kg) Moment of inertia (kg m2)

Crank 0.050 0.30 0.0001

Connecting rod 0.120 0.21 0.00025

Slider – 0.14 –

Table 2 Geometric and material properties for the deep groove ball bearing (SKF 98205)

Bore diameter, Di 25.00 mm

Outer diameter, Do 52.00 mm

Pitch diameter, dm 37.90 mm

Inner raceway diameter, di 29.20 mm

Outer raceway diameter, do 46.60 mm

Ball diameter, D 8.70 mm

Radial clearance, Pd 0.04 mm

Number of waviness on inner raceway, Ni 35.00

Number of waviness on outer raceway, No 35.00

Maximum amplitude of the waviness, Πp 4.00 µm

Initial amplitude of waviness, ΠT 0.00 mm

Young’s modulus, E 207 GPa

Poisson’s ratio, ν 0.30

The deep-groove ball bearing

to a model with a large number of degrees of freedom and nonlinear factors. On the other
hand, a simplified approach is effective for revealing the influence of the rolling element
bearing on the dynamic response of the mechanical system.

In general, the initial values (including the positions and velocities) of all the bodies in
the multibody system need to be accurately specified before solving the equations of motion.
In this example, the initial configuration of the slider–crank mechanism is defined as when
the crank and connecting rod are collinear and the centers of the bearing’s inner and outer
raceways coincide. All the initial positions and velocities necessary to start the dynamic
analysis are obtained from kinematic simulations of the mechanism in which all the joints
are considered to be ideal.

The ball number is an important geometric parameter of the deep-groove ball bearing.
The value of the ball number not only affects the bearing capacity and service life, but also
has an important effect on the dynamic performance of the mechanical system. To verify
the effect of varying the bearing ball number on the dynamic characteristics of the slider–
crank mechanism, it is supposed that there are 8, 9, 10, and 11 rolling balls in the bearing
in the analysis that follows. Figure 8 shows the initial angular positions of the balls in the
deep-groove ball bearing. When the slider–crank is in its initial position, we suppose that
Ball 1 is located in the horizontal position and the others are arranged accordingly in a coun-
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Fig. 8 The initial angular
positions of the balls in the
bearing

Fig. 9 A slider–crank mechanism with a deep-groove ball bearing between the crank and ground

terclockwise direction. The calculation step size is selected as 20 µs in the examples given.
The integrator scheme utilized in the numerical simulation is the Gear method. This method
is capable of dealing with system rigidity and realizes highly efficient changeable step in-
tegration in each time interval. Through an exactitude calculation, the equivalent contact
stiffness between the rolling ball and the inner and outer raceways is 9.57 × 109 N/m. Based
on experimental studies of bearing damping [57], a damping value of 300 N s/m is selected
to ensure the convergence of the numerical calculations in this research.

4.1 Example 1: bearing located at the revolute joint between crank and ground

Figure 9 illustrates a slider–crank mechanism with a deep-groove ball bearing wherein the
bearing is located between the crank and the ground. Generally, in order to achieve fixed-
axis rotation of the crank relative to the ground, a shaft is needed through which the rotary
motion of the motor can be transferred to the crank. In engineering application, a deep-
groove ball bearing is usually used to support the shaft and guarantee its normal rotation.
By simulating this example, the influence of bearing ball variation and waviness defect on
the dynamic response of the slider–crank mechanism can be analyzed.
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Fig. 10 A slider–crank mechanism with a deep-groove ball bearing between crank and connecting rod

4.2 Example 2: bearing located at the revolute joint between crank and connecting rod

Figure 10 also shows a slider–crank mechanism with a deep-groove ball bearing. We sup-
pose now that the bearing is located between the crank and the connecting rod and is used to
constitute a revolute joint between them. The revolving angular velocity of the rolling ball
depends on the angular velocities of the inner and outer races of the bearing. As the bear-
ing’s outer race is fixed to the crank while the inner race is fixed to the connecting rod, the
revolving angular velocity of the rolling ball depends on the angular velocities of the crank
and connecting rod. Additionally, the bearing in this position not only moves rotationally,
but also translationally with the slider–crank mechanism.

5 Results and discussion

In this section, two examples above are analyzed to determine the dynamic performance
of the slider–crank mechanism when the crank rotates at 300 and 600 rpm, respectively.
Keeping the analysis of the two examples in the paper is quite necessary. The dynamic
response in the two examples may be different because the bearings at the two different
positions have different movements and this affects the inertial load. The initial values used
when starting the dynamic analysis are listed in Table 3. Through analysis of the variation
in slider acceleration, crank moment, and bearing equivalent reaction force, the effects of
different ball numbers and waviness defects on the dynamic response characteristics can be
discussed.

5.1 Simulation for Example 1, crank rotation speed 300 rpm

When there is no waviness defect on the surface of the bearing raceways, the variation
in slider acceleration, crank moment, and bearing equivalent reaction force in the slider–
crank mechanism are as shown in Figs. 11, 12, and 13, respectively. By comparison, the
dynamic response of the slider–crank mechanism containing a deep-groove ball bearing
without waviness defects on the raceways is very close to that of an ideal slider–crank mech-
anism possessing only ideal joints. When there are only eight rolling balls in the bearing,
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Table 3 The initial values of the slider–crank mechanism necessary to start the dynamic analysis

Crank speed
(rpm)

The initial positions

Crank Connecting rod Slider

ξ2
(mm)

η2
(mm)

θ2
(rad)

ξ3
(mm)

η3
(mm)

θ3
(rad)

ξ4
(mm)

η4
(mm)

θ4
(rad)

300 25 0 0 110 0 0 170 0 0

600 25 0 0 110 0 0 170 0 0

Crank speed
(rpm)

The initial positions

Crank Connecting rod Slider

ξ2
(mm/s)

η2
(mm/s)

θ2
(rad/s)

ξ3
(mm/s)

η3
(mm/s)

θ3
(rad/s)

ξ4
(mm/s)

η4
(mm/s)

θ4
(rad/s)

300 0 785.4 31.42 0 785.4 −13.09 0 0 0

600 0 1570.8 62.83 0 1570.8 −26.18 0 0 0

Fig. 11 Variation in the slider acceleration without bearing waviness defects: (a) 8 balls, (b) 9 balls,
(c) 10 balls, and (d) 11 balls

there are local small-amplitude vibrations in the slider acceleration, crank moment, and
bearing equivalent reaction force. With an increase in the number of rolling balls in the
bearing, the dynamic response of the slider–crank mechanism approaches that of an ideal
slider–crank mechanism.

Including the effect of waviness defects on the surface of the bearing raceways, the varia-
tion in slider acceleration, crank moment, and bearing equivalent reaction force of the slider–
crank mechanism are as shown in Figs. 14, 15, and 16, respectively. It can be seen that the
waviness defect can result in vibration of the slider–crank mechanism in its kinematic pro-
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Fig. 12 Variation in the crank moment without bearing waviness defects: (a) 8 balls, (b) 9 balls, (c) 10 balls,
and (d) 11 balls

Fig. 13 Variation in the bearing equivalent reaction force without bearing waviness defects: (a) 8 balls,
(b) 9 balls, (c) 10 balls, and (d) 11 balls

cess. By varying the bearing ball number, the amplitude of the vibration of the system is
different.

Figure 14 shows that when there are eight rolling balls in the bearing, there is severe
and large-amplitude vibration in the acceleration of the slider. However, when there are nine
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Fig. 14 Variation in the slider acceleration with bearing waviness defects: (a) 8 balls, (b) 9 balls, (c) 10 balls,
and (d) 11 balls

Fig. 15 Variation in the crank moment with bearing waviness defects: (a) 8 balls, (b) 9 balls, (c) 10 balls,
and (d) 11 balls

rolling balls, the response curve for the slider’s acceleration is close to that of the ideal curve,
and the vibration of the slider is very small. In contrast, when there are 10 and 11 rolling
balls in the bearing, respectively, there are still large vibrations in the slider acceleration
curves, but the amplitude of the vibrations is smaller than that when there are eight balls.
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Fig. 16 Variation in the bearing equivalent reaction force with bearing waviness defects: (a) 8 balls,
(b) 9 balls, (c) 10 balls, and (d) 11 balls

Figure 15 shows the variation in the crank moment when the ball numbers in the bearing
are different. The figure shows that when there are eight rolling balls, the crank moment
vibrates severely. When there are nine rolling balls, the vibration amplitude of the crank
moment is at a minimum. When there are 10 and 11 rolling balls, there is still vibration in
the crank moment but to different degrees. However, its amplitude is smaller than that when
there are eight rolling balls. As can be seen from the variation in the equivalent reaction
force of the bearing (Fig. 16), when there are eight rolling balls in the bearing, there are
large-amplitude vibrations. If there are nine rolling balls, the vibration amplitude is at a
minimum, and the situation is close to the variation in the constraint force of an ideal joint.
When there are 10 and 11 rolling balls, there is also large-amplitude vibration in the bearing
equivalent reaction force. The results indicate that under the premise of a certain waviness
number, if the number of rolling balls in the bearing is different, the vibrational amplitudes
of the slider–crank mechanism are different.

5.2 Simulation for Example 1, crank rotation speed 600 rpm

Figures 17, 18, and 19 show the variation in slider acceleration, crank moment, and bearing
equivalent reaction force when the crank rotates at 600 rpm, respectively. It can be seen
that when there is no waviness defect, the dynamic response of the slider–crank mechanism
approaches the ideal result. Varying the ball number has little effect on the dynamic response
of the system.

Including the waviness defect, the variation of the same three quantities at 600 rpm are as
shown in Figs. 20, 21, and 22. The waviness defect can induce vibration of the slider–crank
mechanism in its kinematic processes. However, with different ball numbers, the amplitudes
of the vibration of the system are different. When there are nine rolling elements, the dy-
namic response of the slider–crank mechanism is more ideal, with minimum vibrational
amplitude. When there are eight rolling balls, the vibration amplitude of the slider–crank
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Fig. 17 Variation in the slider acceleration without bearing waviness defects: (a) 8 balls, (b) 9 balls,
(c) 10 balls, and (d) 11 balls

Fig. 18 Variation in the crank moment without bearing waviness defects: (a) 8 balls, (b) 9 balls, (c) 10 balls,
and (d) 11 balls

mechanism is the largest. Also, when there are 10 and 11 rolling balls, respectively, there
are still vibrations in the kinematic process for the slider–crank mechanism but with different
degrees.
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Fig. 19 Variation in the bearing equivalent reaction force without bearing waviness defects: (a) 8 balls,
(b) 9 balls, (c) 10 balls, and (d) 11 balls

Fig. 20 Variation in the slider acceleration with bearing waviness defects: (a) 8 balls, (b) 9 balls, (c) 10 balls,
and (d) 11 balls

5.3 Simulation for Example 2, crank rotation speed 300 rpm

As shown in Fig. 10, we suppose that the deep-groove ball bearing is located between the
crank and connecting rod in Example 2. The bearing in this position not only rotates but
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Fig. 21 Variation in the crank moment with bearing waviness defects: (a) 8 balls, (b) 9 balls, (c) 10 balls,
and (d) 11 balls

Fig. 22 Variation in the bearing equivalent reaction force with bearing waviness defects: (a) 8 balls,
(b) 9 balls, (c) 10 balls, and (d) 11 balls

also translates along with the slider–crank mechanism. When the waviness defect on the
surface of the bearing raceways is neglected, the variations in slider acceleration, crank
moment, and bearing equivalent reaction force are as shown in Figs. 23, 24, and 25. It
is still found that the dynamic response of the slider–crank mechanism with the bearing
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Fig. 23 Variation in the slider acceleration without bearing waviness defects: (a) 8 balls, (b) 9 balls,
(c) 10 balls, and (d) 11 balls

Fig. 24 Variation in the crank moment without bearing waviness defects: (a) 8 balls, (b) 9 balls, (c) 10 balls,
and (d) 11 balls

approaches that of an ideal slider–crank mechanism. When there are only eight rolling balls,
there are local small-amplitude vibrations in the slider acceleration, crank moment, and
bearing equivalent reaction force. With an increase in number of rolling balls, the dynamic



Modeling of a deep-groove ball bearing with waviness defects in planar 251

Fig. 25 Variation in the bearing equivalent reaction force without bearing waviness defects: (a) 8 balls,
(b) 9 balls, (c) 10 balls, and (d) 11 balls

Fig. 26 Variation in the slider acceleration with bearing waviness defects: (a) 8 balls, (b) 9 balls, (c) 10 balls,
and (d) 11 balls

response of the slider–crank mechanism with the bearing approaches that of an ideal slider–
crank mechanism.

Adding in the influence of the waviness defect on the surface of bearing raceways, the
variation in the slider acceleration, crank moment, and bearing equivalent reaction force are
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Fig. 27 Variation in the crank moment with bearing waviness defects: (a) 8 balls, (b) 9 balls, (c) 10 balls,
and (d) 11 balls

Fig. 28 Variation in the bearing equivalent reaction force with bearing waviness defects: (a) 8 balls,
(b) 9 balls, (c) 10 balls, and (d) 11 balls

as described in Figs. 26, 27, and 28. It can be seen that the waviness defect can still cause
vibration of the slider–crank mechanism. When there are nine rolling balls in the bearing,
the vibrational amplitudes of the slider acceleration, crank moment, and bearing equivalent
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Fig. 29 Variation in the slider acceleration without bearing waviness defects: (a) 8 balls, (b) 9 balls,
(c) 10 balls, and (d) 11 balls

Fig. 30 Variation in the crank moment without bearing waviness defects: (a) 8 balls, (b) 9 balls, (c) 10 balls,
and (d) 11 balls

reaction force are the smallest. However, when there are 8, 10, and 11 rolling balls in the
bearing, the vibrational response of the slider–crank mechanism is larger.

By comparing the results from Examples 1 and 2, we can see that if we suppose that
the bearing is located between the crank and the ground, the vibrational response of the
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Fig. 31 Variation in the bearing equivalent reaction force without bearing waviness defects: (a) 8 balls,
(b) 9 balls, (c) 10 balls, and (d) 11 balls

Fig. 32 Variation in the slider acceleration with bearing waviness defects: (a) 8 balls, (b) 9 balls, (c) 10 balls,
and (d) 11 balls

slider–crank mechanism is large. On the other hand, if the bearing is between the crank and
the connecting rod, the vibrational response of the slider–crank mechanism under the same
conditions is slightly smaller. The results indicate that the ball numbers and waviness defect
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Fig. 33 Variation in the crank moment with bearing waviness defects: (a) 8 balls, (b) 9 balls, (c) 10 balls,
and (d) 11 balls

Fig. 34 Variation in the bearing equivalent reaction force with bearing waviness defects: (a) 8 balls,
(b) 9 balls, (c) 10 balls, and (d) 11 balls

have different effects on the dynamic performance of the slider–crank mechanism when the
bearing is in different positions.
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5.4 Simulation for Example 2, crank rotation speed 600 rpm

Figures 29, 30, 31, 32, 33, 34, illustrate the effect of bearing ball number and waviness
defect on the slider acceleration, crank moment, and bearing equivalent reaction force when
the crank rotation speed is 600 rpm. The dynamic response of the slider–crank mechanism
in its kinematic processes is consistent with the results from the former analyses.

6 Conclusions

In this paper, a new approach to the dynamic modeling of a deep-groove ball bearing with
waviness defects in a planar multibody system has been presented. The deep-groove ball
bearing is modeled by introducing a nonlinear force system. This takes into account the
elastic deformation of the contacts between the ball elements and the raceways. Hertzian
contact theory is applied to calculate the elastic deflection and the nonlinear contact force.
The waviness of the bearing inner and outer raceways is modeled using a sinusoidal func-
tion. A planar slider–crank mechanism containing a deep-groove ball bearing with wavi-
ness defect on the raceways is chosen as an example to demonstrate the application of the
methodologies.

The results indicate that the waviness defect on the surface of the bearing raceways has a
great effect on the dynamic response of a slider–crank mechanism. The waviness defect can
promote vibration of the slider–crank mechanism in its kinematic process. Such vibration
can lead to noise and also influence the stability of the mechanical system’s motion. When
the waviness number is constant, bearings with different numbers of rolling balls can lead to
different amplitudes of vibration of the slider–crank mechanism. For example, when there
are eight rolling balls in the bearing, the vibration amplitude of system is the largest. How-
ever, when there are nine balls, the vibration amplitude of the slider–crank mechanism is
the smallest, and the dynamic response of the system approaches ideality. This result shows
that the effect of the bearing waviness defect on the dynamic response of a mechanical
multibody system can be restrained by adjusting the number of rolling balls in the bearing.
Furthermore, the influence of varying the rolling ball number and waviness defect on the dy-
namic performance of the slider–crank mechanism are different if the bearing is in different
positions.

In future research, the influence of waviness amplitude and number on the dynamic re-
sponse of a multibody system will be investigated. At the same time, the relationship be-
tween bearing rolling element number and waviness number will be discussed in depth in
order to effectively restrain the system vibration caused by bearing waviness defects.
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