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Abstract The transfer matrix method is a rather unusual strategy of modeling linear multi-
body systems, however, it is able to elegantly model systems including both discrete and
continuous elements and to solve such kind of problems with any precision required. This
is achieved by transforming differential to algebraic equations and summarizing all system
information in an overall system of linear equations independent of the degrees of freedom.
Nontrivial solutions representing vibration modes then require the coefficient matrix to be
singular. Thus, the precision of solutions is associated with the ability of finding zeros for
the determinants of these coefficient matrices, which may be nonlinear or transcendental,
real or complex functions of natural vibration frequencies or complex eigenvalues. The pa-
per reduces the zero search to a minimization problem and suggests two simple, but robust
algorithms which are much more efficient than direct enumeration. Further, the problem
of noisy determinant computation is addressed and the complex transfer matrix of a rod for
damped vibrations is derived. Three basic examples serve for demonstrating the concept and
for showing the robustness of the proposed approach. For a rod-damper system, the solution
with jumping frequencies for a critical damping value can be proven analytically.
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Fig. 1 Problems for classical
root search strategies in case of
(a) dense zeros and (b) double
roots

1 Introduction

Classical modeling strategies concentrate on mass afflicted bodies. Rigid bodies are typically
described by ordinary differential equations or differential-algebraic equations, whereas
bodies with distributed mass like beams or plates are governed by partial differential equa-
tions and appropriate boundary conditions. In order to model flexible multibody systems
composed of both types of elements, approximation strategies like finite elements and mode
shapes have to be applied [1] to bring them down to pure differential equations. However,
the solutions of these resulting equations are then only approximations of the real vibration
behavior where approximation quality is associated with the degrees of freedom being used.
Only in very simple cases as, e.g., cantilever beams carrying lumped masses or spring-mass
systems [2], the dynamic stiffness matrix can be formulated analytically and analyzed with
the well-known Wittrick–Williams algorithm [3].

The transfer matrix method (TMM) resolves this problem differently by treating all kind
of elements, rigid and flexible bodies, springs and dampers, in the same way [4]. On an el-
ement level, the governing partial and ordinary differential or algebraic equations are trans-
formed to algebraic transfer equations, where the output state results from a product of the
input state and an element specific transfer matrix, which may be considered as impedance
matrix. As long as general solutions are available, like for Euler–Bernoulli and Timoshenko
beams, the result is exact. These element transfer matrices are then assembled according to
the topology of the flexible multibody system ending up with a system of linear, algebraic
equations for the vibration modes, where the coefficient matrix needs to be singular [5].
Typically, singularity of a matrix is checked by its determinant Δ to be zero [6]. Thus, the
precision of the solution is only related to the ability of finding zeros for highly nonlin-
ear functions of vibration frequencies ω or complex numbers s = −δ ± iω summarizing
damping and frequency.

If the determinant is a real function of vibration frequency, as it is the case for conser-
vative systems, zero search is typically based on the sign change of Δ(ω). If an interval
of sign change is known, Newton–Raphson type strategies or more sophisticated strategies
like Brent’s method [7] may be applied. However, finding the sign change by scanning an
interesting frequency range [0,Ω] is the bottleneck and requires a high amount of enumer-
ation effort. Especially, if zeros are very close, as in a coupled beam problem proposed by
Kulka [8], sample density is governed by the marginal splitting Δω � Ω of neighboring
zeros, Fig. 1a. Finding the zero change requires at least N = Ω/Δω � 1 sample points,
which is often unrealistic, and typically this kind of zeros will be missed. In case of multiple
roots, there may be no sign change at all, Fig. 1b. In structural dynamics, these problems are
typically resolved with the Wittrick–Williams algorithm [3], which delivers precise informa-
tion about how many eigenfrequencies are lying below any given frequency value. However,
this algorithm exploits the symmetry properties of the dynamic stiffness matrix and cannot
be applied in the context of TMM where the overall system transfer matrix has no special
structure. Further, in case of damping the determinant |Δ(s)| is even a complex function of
a complex argument where to the knowledge of the authors no such elegant strategy exists.
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Fig. 2 Basic examples for concept demonstration: (a) coupled beams, (b) 2-DOF system with damping, and
(c) flexible multibody system

A second problem is that determinants may grow to very high numbers and they
may drop almost suddenly from positive to negative values with high derivatives ham-
pering derivative based root finding strategies. Therefore, typically derivatives are approx-
imated by finite differences, requiring a proper choice of step size, and the problem is
scaled [9].

All these problems can be overcome by switching from zero search for Δ to minimization
of the absolute value |Δ| of the determinant, which is equally well applicable to both the real
and the complex case. As will be seen in the paper, it is much easier to recognize craters in
|Δ| than sign changes in Δ. This function is also rather user friendly, as conical breaking-ins
of |Δ(ω)| or |Δ(s)| only happen in the neighborhood of singularities of the overall transfer
matrix.

In principle, any of the well-known global optimization strategies like PSO [10] or GA
[11] may be applied to the minimization problem, however, they typically concentrate on
one global optimum only, whereas here multiple, equally important local minima have to be
found. Therefore, a recursive enumeration type scanning strategy is proposed only requir-
ing value comparisons, which is why high function values are no problem and there is no
need for scaling. Firstly, the algorithm will be introduced by a one-dimensional frequency
search problem, and later it will be extended to the two-dimensional search for complex
roots.

In order to demonstrate the concept, three basic example problems are defined in Fig. 2.
The coupled beam problem according to [8] serves as an example showing double roots and
marginal frequency splitting, where the search is restricted to a one-dimensional search for
natural vibration frequencies only. In order to investigate the two-dimensional search for
complex roots, a simple two-degree-of-freedom (2-DOF) vibration chain consisting of two
lumped masses interconnected by springs and a damper is used. Since it involves discrete
elements only, this example also allows a direct precision comparison with results from
classical modeling and QR-algorithms. As one of the most simple examples for a flexible
multibody system, a rod connected with lumped mass and damper is investigated, which
cannot be solved by classical eigenvalue computation.

2 One-dimensional search algorithm for undamped vibrations

A typical example for one-dimensional search is the single Euler–Bernoulli beam with
length l. Its transfer equation reads as [4]
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Fig. 3 State definitions for (a) a single beam and (b) coupled beams

ZO = UBZI ,

where

UB =

⎡
⎢⎢⎣

S T/λ U/EIλ2 V/EIλ3

λV S T/EIλ U/EIλ2

EIλ2U EIλV S T/λ

EIλ3T EIλ2U λV S

⎤
⎥⎥⎦

S = ch + c

2
, T = sh + s

2
, U = ch − c

2
, V = sh − s

2

ch = coshλl, sh = sinhλl, c = cosλl, s = sinλl,

(1)

where λ = 4
√

ρAω2/EI summarizes material density ρ, cross section area A, Young’s mod-
ulus E, area moment of inertia I , and natural vibration frequency ω. The transfer matrix
UB can be derived from the beam differential equation ρAÿ + EIyIV = 0 [12] by using
the product ansatz y(x, t) = Y (x)eiωt consisting of a shape function Y (x) and a complex
representation of undamped vibrations. Further included are the linearized angle relation
θ = y ′ and definitions m = EIy ′′ and q = m′ for bending moment and shear force, all
transformed to shape functions by products similar to the one shown for y(x, t). These
shape functions, denoted by associated capital letters, are summarized in a state vector
Z(x) = [Y (x) Θ(x) M(x) Q(x)]T where input and output states are given as ZI = Z(0)

and ZO = Z(l), respectively, Fig. 3a.
For a cantilever beam, the boundary states ZI = [0 0 MI QI ]T and ZO = [YO ΘO 0 0]T

are partly known and partly unknown. Summarizing the unknowns in an overall state Zall

and eliminating the zeros from Eq. (1) yields a system of linear equations:

UallZall :=

⎡
⎢⎢⎣

−1 0 U/EIλ2 V/EIλ3

0 −1 T/EIλ U/EIλ2

0 0 S T/λ

0 0 λV S

⎤
⎥⎥⎦

⎡
⎢⎢⎣

YO

ΘO

MI

QI

⎤
⎥⎥⎦ = 0. (2)

Nontrivial solutions require singularity of the coefficient matrix Uall, which can be expressed
by a vanishing determinant

Δ(ω) := det Uall =
(

ch + c

2

)2

−
(

sh + s

2

)(
sh − s

2

)
= coshλl cosλl + 1

2
!=0. (3)
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Fig. 4 Transformed characteristic functions for (a) a single beam and (b) decoupled beams

This example already reveals some of the basic difficulties with continuous elements. The
determinant (3) leads to a transcendental equation for natural vibration frequencies ω, which
can be solved iteratively only. Further, according to the hyperbolic functions the values of
the determinant will grow rapidly with the frequency as part of λ = λ(ω).

The latter problem can be resolved by a C0-continuous, logarithm alike transformation

Δ̄ :=
{

Δ for |Δ| ≤ 1
sign(Δ)[1 + log10 |Δ|] else

(4)

which is especially valuable for the graphical representation of determinants. Compared to
a pure logarithmic display, the transformation is able to show zeros and sign changes. Also
C1-continuity could be achieved by using the natural logarithm or moving the switching
point which, however, is not necessary here. Applied to a single beam of the type in Fig. 2a
with length l = L, the transformation of determinant (3) in Fig. 4a shows that zeros are well
distributed, are isolated, and have a clear sign change, which would cause no problem for
any root search algorithm based on sign change.

The situation, however, changes for two identical beams coupled by a spring with stiff-
ness k, Fig. 2a. For modeling purpose with TMM, the beams have to be split into two
sections, respectively, where Fig. 3b defines boundary and intermediate states. The transfer
equations of the four beam segments are given by Eq. (1) where U1 = U4 := UB(l = ξ) and
U3 = U6 := UB(l = L − ξ). The massless connection elements 2 and 5 have identical dis-
placements, angles and moments at input and output, however, the spring force F changes
the shear forces according to Q2,O = Q2,I +F and Q5,O = Q5,I −F , respectively. This can
be shortly written as Z2,3 = Z1,2 + e4F and Z5,6 = Z4,5 − e4F where e4 = [0 0 0 1]T . Fi-
nally, the spring compression force is given as F = k(Y4,5 − Y1,2) = keT

1 (Z4,5 − Z1,2) where
eT

1 = [1 0 0 0]. Now the overall transfer equation can be assembled from these element
equations. For the upper beam, we get

Z3,0 = U3Z2,3 = U3

(
Z1,2 + e4keT

1 (Z4,5 − Z1,2)
)

= U3

(
I − ke4eT

1

)
Z1,2 + kU3e4eT

1 Z4,5

= U3

(
I − ke4eT

1

)
U1Z0,1 + kU3e4eT

1 U4Z0,4. (5)

Analogously, we find for the lower beam

Z6,0 = U6
(
I − ke4eT

1

)
U4Z0,4 + kU6e4eT

1 U1Z0,1. (6)
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Fig. 5 Coupled beam: (a) minimization of |Δ(ω)| and (b) transformed char. function

Both equations can be summarized as

[−I 0 U3(I − ke4eT
1 )U1 kU3e4eT

1 U4

0 −I kU6e4eT
1 U1 U6(I − ke4eT

1 )U4

]
⎡
⎢⎢⎣

Z3,0

Z6,0

Z0,1

Z0,4

⎤
⎥⎥⎦ = 0. (7)

By accounting for zero boundary states and eliminating those zeroes, we end up with
eight equations for an equal number of unknowns. Analogously to the single beam, the deter-

minant of this resulting coefficient matrix Uall has to vanish again, i.e., Δ(ω) = det Uall
!=0.

For k = 0 or ξ = 0 the beams are decoupled and the determinant results in a quadratic term
of Eq. (3), i.e.,

Δ(ω) = (coshλL cosλL + 1)2

4
!=0. (8)

Obviously, there will be no sign change, and a sign based root search algorithm will fail to
find the double roots which, due to rapid change of function values, are even hard to see for
higher modes in Fig. 4b.

For k �= 0 and ξ �= 0 each of these roots separates into distinct roots, where separation can
be marginally only, Fig. 5b. Thus, even though there is a sign change now, classical search
algorithms are likely to fail in finding these zeros.

All problems mentioned so far, i.e., large function values, missing sign change for double
roots and insufficient isolation, may be overcome by changing from zero search for Δ(ω) to
minimization of its absolute value |Δ(ω)|.

The proposed algorithm starts by scanning a given smooth function f (x) to be minimized
with a sample xi, i = 1, . . . ,N , of grid points in a user-defined region [x1, xN ] of interest. In
the given application case, x

∧= ω represents the frequency and f
∧= |Δ| the absolute value of

the (original) determinant. If a function value fi = f (xi) is lower than the function values of
its neighbors, i.e., fi < fi−1 ∧ fi < fi+1, then by definition there must be a local minimum
in the interval [xi−1, xi+1]. Thus, all such intervals may be considered as interesting regions
and more detailed scannings with again N samples are performed to increase precision,
respectively. In order to ease the algorithm, to minimize comparison effort and not to miss



Recursive eigenvalue search algorithm for transfer matrix method 435

Fig. 6 Logical arrays of
minimization strategy

potential candidates, the condition for a potential region is weakened to fi−1 > fi ≤ fi+1.
Then, in a single comparison sweep a logical array (1

∧= ‘true’,0
∧= ‘false’)

Li :=
{

1 if fi ≤ fi+1

0 else
(9)

may be built up and the weak minimum condition is represented by another logical array
Mi = ¬Li−1 ∧ Li without the computational burden of another comparison; see Fig. 6 for
an artificial test example.

The Matlab code fmin1D provided in the Appendix uses an exponential scanning strat-
egy, which keeps the relative resolution ε = Δxi/xi = (xi+1 − xi)/xi constant, leading to
samples xi = x1(xN/x1)

(i−1)/(N−1). The necessary number of samples for a user-defined res-
olution ε is Nε = 1 + (lnxN − lnx1)/ ln(1 + ε), which the user-provided sample size N is
adapted to if necessary. If this resolution is achieved, the vector x0 of local minima is up-
dated, else the algorithm recursively sweeps through all regions with potential minima. In
the beginning, the function is called with an empty array x0 = []. At least four sample points
are required to provide not less than two subintervals to be decided on.

Figures 4 and 5 show the characteristic functions and zeros (◦) for the uncoupled and
elastically coupled beams for the following parameter values: EI = 166.67 N m2, L = 1 m,
ρA = 0.78 kg/m, ξ = 0.4L, and k = 0 (Fig. 4b) or k = 100EI/L3 (Fig. 5). For the single
and decoupled double-beam, the zeros in Fig. 4 are found with N = 200 and ε = 10−6

within less than 5/1000 of a second on a midsize notebook, where all roots are identified
using 4310 function evaluations according to (3) for l = L and (8), respectively. Reducing
the relative precision tolerance to ε = 10−3 would take only 1170 function evaluations. The
solution in Fig. 5 is obtained with N = 150 and ε = 10−6 within about 2/10 s using 4332
function evaluations based on Eq. (7). Figure 5b shows that all zeros found are regular zeros
with sign change, however, certainly hard to find due to the small frequency differences. It
should be mentioned that it depends on the scanning resolution whether both split zeros are
found or not, where higher resolution is not always a guarantee for better results. However,
typically at least one of them is found allowing for a close-up and scanning of its surrounding
for resolving the full functional behavior of the determinant.

3 Suppression of noise problems for long chains and high frequencies

A closer look to Fig. 5a reveals that for high frequencies a bundle of artificial minima are
identified. This is due to the noisy calculation of the determinant which is an inherent prob-
lem of the transfer matrix method and can already be understood on basis of the simple can-
tilever beam. The reduced expression Δ = (chλl cosλl + 1)/2 does not show any problems
(Fig. 7a, grey), whereas the original determinant term Δ = [(ch + c)2 − (sh + s)(sh − s)]/4
in Eq. (3) starts to scatter at ω ≈ 19000 rad/s and then loses all information starting from
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Fig. 7 Transformed char. function of the cantilever beam: (a) analytically: exact (gray) and disturbed (black),
and with TMM for (b) full beam and (c) segmented beam

Fig. 8 Beam cutting with (a) common and (b) inverse directions to resolve noise problem

about 25000 rad/s (Fig. 7a, black). The reason is that in the latter case the valuable informa-
tion contained in the sine and cosine functions is firstly added to the hyperbolic functions,
which become large for high frequencies, where it gets lost, and then almost equal values
are subtracted leading to zero. The determinant computation based on a LU-decomposition
requires more operations on the ill-conditioned transfer matrix, which is why the effect is
even stronger in Fig. 7b.

Thus, the only possibility is to keep the elements of the transfer matrix low. For the beam,
the arguments of the hyperbolic functions are given as λl; see Eq. (1), where λ is fully
determined by geometry, material and interesting frequency range. Therefore, influence can
be taken only on beam length l by cutting the beam into pieces and introducing a fully
unknown cutting state ZC , Fig. 8a; for a cut in the middle both beam sections have the same
transfer matrix ŪB = UB(l = L/2) according to Eq. (1) and the transfer equations read
as ZC = ŪBZI , ZO = ŪBZC . By inverting the second equation, we obtain ZC = ŪBZI ≡
Ū−1

B ZO . With the notation ŪB = [u1 u2 u3 u4], Ū−1
B = [u−1

1 u−1
2 u−1

3 u−1
4 ] and the boundary

conditions ZI = [0 0 MI QI ]T , ZO = [YO ΘO 0 0]T , this reduces to four essential equations:

UallZall :=
[
u3 u4 − u−1

1 − u−1
2

]
⎡
⎢⎢⎣

MI

QI

YO

ΘO

⎤
⎥⎥⎦ = 0. (10)

Unfortunately, the result based on the determinant Δ(ω) = det Uall
!=0 of this matrix is not

much better than for the full beam since ŪB is already too ill-conditioned for obtaining
a reliable inverse Ū−1

B . In order to avoid the inverse matrix, the transfer direction of the
right beam segment may be inverted, Fig. 8b. In this case, the transfer equations read as



Recursive eigenvalue search algorithm for transfer matrix method 437

Z(1)
C = ŪBZI , Z(2)

C = ŪBZO , both using the original transfer matrix (1) of the half-beam only.
At the cutting section, displacements and angles on both sides have to be identical, whereas
moments and shear force have to be opposite. This matching condition can be expressed as
Z(2)

C = CZ(1)
C by a diagonal compatibility matrix C = diag{−1,1,−1,1}. Substitution of the

transfer equations yields

[
CŪB −ŪB

][
ZI

ZO

]
= 0

boundary−−−−−→
conditions

[
Cu3 Cu4 −u1 −u2

]
⎡
⎢⎢⎣

MI

QI

YO

ΘO

⎤
⎥⎥⎦ = 0. (11)

As shown in Fig. 7c, the determinant of this coefficient matrix is much less noisy and en-
larges the usable frequency range considerably. Of course, this strategy can also be used for
more than one cut by treating additional cut states as unknowns, and thus shifting the noisy
region even further to higher frequencies. If noise problems arise from long chains of several
discrete elements, also the first approach (10) can be applied by computing the inverse of
a chain transfer matrix Ū = Ūn · · · Ū2Ū1 from the inverted sequence Ū−1 = Ū−1

1 Ū−1
2 · · · Ū−1

n

of inverse matrices, where the inversion of element matrices has no problem and in many
cases can even be provided analytically.

4 Two-dimensional search algorithm for damped vibrations

In case of damping, the eigenvalues and the transfer equations become complex [4]. This
can be best seen from a simple example like the 2-DOF system in Fig. 2b described by the
transfer equation

ZO = U4U3U2U1ZI =: U(s)ZI ,

where

U1 =
[

1 −1
k+ds

0 1

]
, U2 =

[
1 0

−ms2 1

]
, U3 =

[
1 −1

2k

0 1

]
, U4 =

[
1 0

−2ms2 1

]
. (12)

For example, the transfer matrix U1 of a spring-damper element results from the force
relation qO = qI = k(xI − xO) + d(ẋI − ẋO). By applying the substitutions x(t) = Xest

and q(t) = Qest , s ∈ C, the differential relation is turned into an algebraic relation QO =
QI = (k + ds)(XI − XO), which can be resorted to ZO = U1ZI by using the state vector
Z = [X Q]T . The transfer matrix U3 is derived from U1 by substitution k → 2k, d = 0. By
the same transformations the transfer matrix U2 for a lumped mass is deduced from kinemat-
ics xO = xI and Newton’s law mẍI = qI −qO resulting in XO = XI and QO = QI −ms2XI

to be summarized by the same state vector. Finally, U4 is derived from U2 through vari-
able substitution m → 2m. Since output of one element equals the input of the next ele-
ment, the output is obtained by sweeping through Fig. 2b from right to left resulting in
ZO = U4Z3,4 = U4(U3Z2,3) = U4(U3(U2Z1,2)) = U4(U3(U2(U1ZI ))) which is identical to
Eq. (12). Thus, the final transfer matrix is a function of the complex variable s and, therefore,
complex itself.

In order to find the mode shapes, the boundary conditions ZI = [0 QI ]T and ZO =
[XO 0]T , partly known and partly unknown, have to be applied. After elimination of zeros,
we end up with the overall system equation

UallZall :=
[−1 U12

0 U22

][
XO

QI

]
= 0, (13)
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Fig. 9 Determinant of the lumped mass model for (a) d = 2, (b) d = 0, and (c) d = 5 Ns/m

where Uij are elements of the global transfer matrix U(s) provided in Eq. (12). Also in this
case of a complex coefficient matrix, nontrivial solutions for the mode shapes require linear
dependence of the equations which can be expressed by a vanishing (complex) determinant

Δ(s) = det Uall = −U22(s)
!=0. A complex number is zero iff its absolute value |Δ(s)| = 0 is

zero. This may be considered as the characteristic equation defining the root search problem
as above. However, in this case of damping, the complex variable s = −δ ± iω is composed
of two real variables resulting in a two-dimensional minimization problem min |Δ(ω, δ)|
for frequency ω and damping δ; see Fig. 9 for lumped mass m = 1 kg, spring stiffness
k = 1 N/m, and different values of damping coefficient d .

The Matlab code in the appendix uses the same strategy as for the one-dimensional prob-
lem, however, scanning is done on a regular grid with equal spacing and the functional
comparison as basis of minimum search is done in both x- and y-directions producing log-
ical arrays instead of vectors. A promising region is identified if both arrays show true for
a specific sample point. The user may provide different sampling numbers Nx,Ny and ab-
solute precision tolerances dx, dy in x− and y-directions, and the algorithm only stops if
both are undercut.

Table 1 shows a comparison of the so obtained results sTMM with eigenvalues sODE pro-
vided by the Matlab function eig(A) from system matrix A. This matrix may be found by
transforming the differential equation of motion

Mÿ + Dẏ + Ky = 0,

where

y =
[

y1

y2

]
, M =

[
m 0
0 2m

]
, D =

[
d 0
0 0

]
, K =

[
3k −2k

−2k 2k

]
(14)

into state-space form

ẋ = Ax,

where

x =
[

y
ẏ

]
, A =

[
0 I

−M−1K −M−1D

]
, I =

[
1 0
0 1

]
. (15)

All results in Fig. 9 and Table 1 are obtained with Nx ×Ny = 11×11 scanning grids and the
absolute precision tolerances dx = dy = 10−3. As the table shows, in all cases the required
precision is achieved with an acceptable number of determinant calls in less than three tens
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Table 1 Eigenvalues of the lumped mass model: comparison between TMM and ODE

d TMM ODE sODE = eig(A) error sTMM − sODE

search region det. calls sTMM = −δ + iω

2 [0,3] × [0,2] 887 −2.5707e-01
+5.2920e-01i

−2.5707e-01
+5.2909e-01i

−8.0254e-07
+1.1449e-04i

−7.4293e-01
+1.5288e+00i

−7.4293e-01
+1.5291e+00i

8.0254e-07
−2.8551e-04i

0 [−.3,3]×[−.3,2] 895 −5.3333e-04
+5.1787e-01i

3.7053e-17
+5.1764e-01i

−5.3333e-04
+2.3391e-04i

−5.3333e-04
+1.9313e+00i

−2.6645e-17
+1.9319e+00i

−5.3333e-04
−5.2365e-04i

5 [−.3,3]×[−.3,5] 1372 −2.3106e-01
+4.3200e-04i

−2.3091e-01
+0.0000e+00i

−1.4725e-04
+4.3200e-04i

−2.1940e-01
+9.7565e-01i

−2.1922e-01
+9.7567e-01i

−1.7641e-04
−2.6647e-05i

−4.3311e+00
+4.3200e-04i

−4.3306e+00
+0.0000e+00i

−4.9994e-04
+4.3200e-04i

of a second. For higher precisions, like dx = dy = 10−6, no differences to the classical
eigenvalue computation would be visible and the computational time would only double. It
should be noted that if a zero is expected to lie on the imaginary or real axes, as in cases
d = 0 and d = 5, the search range has to be extended beyond these axes by at least one grid
row, such that these zeros can be found as interior local minima; see also Figs. 9b and 9c.

Also worthwhile to note is the peak in Fig. 9a. This can be explained by an observation
made during numerical experiments, i.e., that the determinants of Eq. (13) and Eq. (14)
are related by det Uall = det(Ms2 + Ds + K)/det(Ds + K). Peaks arise if the denominator
det(Ds + K) becomes zero which in the case of system (14) happens for s = −k/d ∈ R

equivalent to δ = k/d , ω = 0.

5 Application to a flexible rod used in the context of damped vibrations

Using the proposed iterative eigenvalue search instead of classical QR-algorithms in case
of pure rigid multibody systems is maybe not really convincing. However, it becomes more
convincing for the system in Fig. 2c where the classical approach fails. In order to apply
the TMM concept to this system, firstly the transfer matrix for a rod as part of a damped
system has to be derived. If we assume that the rod itself has no internal damping, but
is only connected to damped components, its partial differential equation still reads as
ü = c2u′′, where u(x, t) describes its (potentially damped) longitudinal displacement vi-
bration and c = √

E/ρ is the classical wave travel speed [12]. Substitution of the damped
vibration u(x, t) = U(x)est , s ∈ C, transforms the partial to an ordinary differential equa-
tion U ′′ − s2/c2U = 0 for the complex shape function U(z) : C → C. It can be easily
proven that potential solution functions are sin(±i s

c
x), cos(±i s

c
x), sinh(± s

c
x), cosh(± s

c
x)

with complex arguments due to s ∈ C. Because of relations like sin(−z) = − sin(z),
sinh(−z) = − sinh(z) or sin(iz) = i sinh(z) [6], only two of these functions are linearly in-
dependent and may be superposed to a general solution, e.g. U(x) = a cos(βx)+ b sin(βx),
a, b ∈ C, β = is/c. From continuum mechanics [12], it is known that the axial compres-
sion force q = −Aσ = −AEε = −AEu′ is related to deformation by stress-strain relations.
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Using the same transformation q(x, t) = Q(x)est for the axial force as for the displace-
ment then yields Q(x) = −EAU ′ = βEAa sin(βx) − βEAb cos(βx). Both equations can
be summarized in a vector equation

[
U(x)

Q(x)

]
=

[
cosβx sinβx

βEA sinβx −βEA cosβx

][
a

b

]
or Z(x) =: B(x)ξ . (16)

The vector of unknowns ξ results from the input boundary condition ZI = B(0)ξ as
ξ = B(0)−1ZI . Substitution in the output boundary condition ZO = B(l)ξ then results in
a transfer equation for the rod similar to (1):

ZO = URZI ,

where

UR =
[

cosβl
− sinβl

βEA

βEA sinβl cosβ

]
, ZI,O =

[
UI,O

QI,O

]
, β = i

s√
E/ρ

. (17)

Due to the use of sine and cosine as basis functions, the final transfer matrix for damped
vibrations looks formally identical as the one for undamped vibrations [4]. However, the
argument is complicated by a multiplication with the imaginary unit i = √−1. This may be
avoided by alternatively using the hyperbolic functions as basis functions.

Since the transfer matrices for a lumped mass and a damper are already known from the
example in Eq. (12), the overall transfer matrix for the system in Fig. 2c can now be easily
assembled as a product of the element transfer matrices (12) and (17):

ZO = UZI := UdUmURZI =
[

1 −1
ds

0 1

][
1 0

−Ms2 1

][
cosβl

− sinβl

βEA

βEA sinβl cosβl

]
ZI . (18)

According to the boundary conditions ZI = [0 QI ]T , ZO = [0 QO ]T the element U12

of the overall transfer matrix U provides the characteristic equation Δ = U12(s) = 0 to be
solved for the roots s = −δ ± iω.

Due to the symmetry w.r.t. ω = 0, Fig. 10a shows only the right half of the ω, δ-plane
for a steel rod with ρ = 7800 kg/m3, E = 2.1 × 1011 N/m2, l = 1 m, A = 10−4 m2 and
the lumped mass being M/ρAl = 1, 0.2 and 0, respectively. The curves are associated with
increasing damping 0 ≤ d < ∞ marked by arrows. In all three cases, the curves end in the
frequencies ωcc

k = kπc/l, k ∈ Z, of a clamped-clamped rod [12], since d → ∞ acts like
a fixed support. Also high masses M act like this, which is why curves of higher modes
also come close to these points for M/ρAl = 1. Only in the first mode the system behaves
like a 1-DOF mass point linked to the inertial frame by spring and damper, where the curve
starts at imaginary roots s = ±iω for d = 0, and then reduces the frequency to zero for
increasing damping where the two roots join for some critical value of the damping co-
efficient. For higher damping values both roots stay real, where one goes to zero and the
other to infinity. These effects are less relevant for a reduced lumped mass, where curves
start somewhere between the frequencies of the clamped-clamped and the clamped-free
rod.

For M = 0, i.e., a system consisting of rod and damper only, we get a rather strange result
of jumping frequencies for a specific damping value. The curves start at the frequencies
ω

cf

k = (2k − 1)/2 · πc/l, k ∈ Z, of the clamped-free rod [12], go straight up to infinity for
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Fig. 10 Zeros of (a) the damped
rod system for various masses M

and (b) a corresponding lumped
mass model for M = 0 with
various number N of
discretization bodies

increasing damping up to a critical value d∗, and then return from infinity on vertical lines
toward frequencies ωcc

k−1 of lower order modes of the clamped-clamped rod.
This result can be confirmed in two ways. Firstly, in a numerical study we can substi-

tute the rod by a model with N lumped masses and springs, Fig. 10b, where Δl = l/N ,
m = ρAΔl, k = EA/Δl. For N ≥ 20, the curve loops almost start and end at the proposed
frequencies of the rod, and the height of the loops increases with growing number of lumped
masses, indicating that the result for the rod may be infinitely high loops. However, even for
high discretization numbers the lumped mass result is still far from the exact rod solution,
which demonstrates the strength of the transfer matrix method being able to handle contin-
uous elements in a precise way.

More convincing than this numerical study is a proof on basis of the transfer matrix
method. If the lumped mass M = 0 is zero, then we find from Eq. (18) with Um = I the
overall system transfer matrix U = UdUR where the element U12 reduces to
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U12 = − sinβl

βEA
− cosβl

ds

!=0,

where

β = i
s

c
, s = −δ + iω, c =

√
E

ρ
. (19)

After substitution of β and s, and some calculus based on sin(−z) = − sin(z), cos(−z) =
cos(z) the characteristic equation can be written as

i sin(ω̄ + iδ̄) + γ cos(ω̄ + iδ̄)
!=0,

where

ω̄ = lω

c
, δ̄ = lδ

c
, γ = EA

dc
. (20)

With the addition rules of sine and cosine for complex arguments, we find

cos ω̄(γ cosh δ̄ − sinh δ̄) + i sin ω̄(cosh δ̄ − γ sinh δ̄)
!=0 (21)

which requires independently vanishing real and imaginary parts. Since sine and cosine
cannot be zero simultaneously, we get two solution possibilities:

cos ω̄ = 0 ∧ cosh δ̄ − γ sinh δ̄ = 0 or sin ω̄ = 0 ∧ γ cosh δ̄ − sinh δ̄ = 0, (22)

finally resulting in a composite solution
{

ω̄ = (2k − 1)π/2, δ̄ = artanh 1/γ for γ > 1
ω̄ = kπ, δ̄ = artanhγ for γ < 1

(23)

as observed in Fig. 10a. The switch from the one to the other branch occurs for γ =
EA/dc = 1, i.e., critical damping d∗ = A

√
Eρ, where due to the artanh-function δ = (c/ l)δ̄

goes to infinity.

6 Conclusions

The paper demonstrates that eigenvalue search in the context of the transfer matrix method
can be rather challenging if continuous elements like rods or beams are involved. The char-
acteristic equations are highly nonlinear and roots can be rather narrow. The two algorithms
provided in this paper master these challenges by recursive scanning, where the focus is on
simplicity and robustness. Both linear scanning for damped systems and exponential scan-
ning for conservative vibrations are demonstrated, where the latter may be better suited in
case of wide spread frequencies and can also be implemented in the search algorithm for
damped systems. Efficiency of the algorithms may be easily improved by avoiding double-
evaluations of determinants or using adapted sampling strategies, where in the first iteration
steps the proposed scanning strategy should be applied due to the multimodal character of
determinants, whereas in later steps golden search like strategies may be more efficient on
unimodal subregions. In order to avoid noise problems in case of high frequencies, a cut-
ting strategy is proposed and successfully applied to a beam. Further it is shown that the
transfer matrix of a rod in the context of damped and undamped cases can be formally iden-
tical, however, with a complex argument. The same can be shown for the beam where the
definition of the normalized frequency in Eq. (1) has to be substituted by λ = 4

√−ρAs2/EI .
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Appendix: Matlab-codes

A.1 One-dimensional minimum search

The following code finds local minima of a function f (x) (being the absolute value of the
determinant |Δ(ω)| in the context of TMM) provided by a user-defined function f=fun(x)
being able to evaluate a sample array x = [x1 · · ·xn] and return values f = [f1 · · ·fn]:
function x0=fMin1D(x1,xN,N,eps,x0,fun)
% samples to be scanned

Neps=1+ceil((log(xN)-log(x1))/log(1+eps));
n=max(4,min(N,Neps));
x=x1*(xN/x1).ˆ([0:n-1]/(n-1)); f=feval(fun,x);

% minimum search via direct comparison
L=f(1:n-1)<=f(2:n); I=find(L(2:n-1) & ~L(1:n-2))+1;

% recursive search or update of already found solution x0
if n<Neps, for j=1:length(I),

x0=fMin1D(x(I(j)-1),x(I(j)+1),N,eps,x0,fun); end
else x0=[x0,x(I)]; end

For example, to find minima of the sine-function in an interval [0,40] with precision
ε = 10−6, the call may be x0=fMin1D(1,40,100,1e-6,[],’sin’). In this case,
of course, a linear scanning would be much more appropriate.

A.2 Two-dimensional minimum search

In case of functions f (x, y) depending on two variables (being the absolute value of
the determinant |Δ(ω, δ)| in the context of TMM), the user has to provide a func-
tion F = fun(X,Y), which returns a matrix of function values on a grid obtained by
[X,Y]=meshgrid(x,y). The following code then linearly scans the region [x1, xN ] ×
[y1, yN ] of interest with a maximum of Nx × Ny grid points until absolute precision toler-
ances dx and dy are reached:

function p0=fMin2D(x1,xN,y1,yN, Nx,Ny,dx,dy,p0,fun)
% samples to be scanned

Ndx=ceil((xN-x1)/dx); n=max(4,min(Nx,Ndx));
Ndy=ceil((yN-y1)/dy); m=max(4,min(Ny,Ndy));
x=x1+[0:n-1]/(n-1)*(xN-x1); y=y1+[0:m-1]/(m-1)*(yN-y1);
[X,Y]=meshgrid(x,y); F=feval(fun,X,Y,n,m);

% minimum search via comparison in two directions
L=F(2:m-1,1:n-1)<=F(2:m-1,2:n); MX=L(:,2:n-1)&~L(:,1:n-2);
L=F(1:m-1,2:n-1)<=F(2:m,2:n-1); MY=L(2:m-1,:)&~L(1:m-2,:);
L=false(m,n); L(2:m-1,2:n-1)=MX&MY; I=find(L)’;

% recursive search or update of already found solution MP
if (n<Ndx | m<Ndy),

for j=1:length(I)
Ij=floor(I(j)/m); l=Ij+1;k=I(j)-Ij*m;
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p0=fMin2D(X(k,l-1),X(k,l+1),Y(k-1,l),Y(k+1,l),...
Nx,Ny,dx,dy,p0,fun);

end;
else p0=[p0,[X(I);Y(I)]]; end

The function has to be called with an empty matrix p0= [] and returns a matrix with two
rows, where the first row denotes x-coordinates of the local minima and the second row
denotes the corresponding y-coordinates.
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