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Abstract The ability of a multibody dynamic model to accurately predict the response of a
physical system relies heavily on the use of appropriate system parameters in the mathemat-
ical model. Thus, the identification of unknown system parameters (or parameters that are
known only approximately) is of fundamental importance. If experimental measurements
are available for a mechanical system, the parameters in the corresponding mathematical
model can be identified by minimizing the error between the model response and the ex-
perimental data. Existing work on parameter estimation using linear regression requires
the elimination of the Lagrange multipliers from the dynamic equations to obtain a sys-
tem of ordinary differential equations in the independent coordinates. The elimination of
the Lagrange multipliers may be a nontrivial task, however, as it requires the assembly of
an orthogonal complement of the Jacobian. In this work, we present an approach to iden-
tify inertial system parameters and Lagrange multipliers simultaneously by exploiting the
structure of the index-3 differential-algebraic equations of motion.
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1 Introduction

Multibody dynamic models are commonly employed in the design, analysis, and control
of systems in a wide range of applications. It is often most convenient to model a multi-
body system using more generalized coordinates than there are degrees-of-freedom in the
system. The presence of dependent coordinates results in a system of index-3 differential-
algebraic equations (DAEs) of motion—that is, the second-order ordinary differential equa-
tions (ODEs) governing the dynamics of the system are coupled to a set of algebraic con-
straint equations. For these equations to accurately predict the response of a physical system,
suitable system parameters must be determined, either through direct physical measurement
or using parameter identification. If experimental measurements can be obtained from the
physical system, the parameters in the mathematical model can be determined using opti-
mization techniques. The optimal system parameters for the mathematical model are those
that minimize the error between the model response and the experimental data. Note that the
identified parameters may differ from the parameters of the physical system in the presence
of modeling errors.

Linear regression [10, 17] is one of the simplest, yet most powerful, tools available for
identifying parameters in a mathematical model. One of the key advantages of linear regres-
sion is that it always leads to a convex optimization problem and, as such, the identified
parameters are guaranteed to be globally optimal. A drawback of this method is that the
parameters being sought must appear linearly in the mathematical model. When absolute
coordinates are used to model a multibody system, the inertial parameters appear linearly in
the equations of motion [2, 3, 8, 14], and the parameter identification problem can be read-
ily solved using linear regression. In many applications, however, it is more convenient to
model the system using joint coordinates. In this case, the geometric and inertial parameters
are coupled, and a new set of barycentric parameters [1, 4, 5, 12] can be defined to facilitate
the application of linear regression. In all existing work on parameter identification using
linear regression, the Lagrange multipliers are first eliminated from the dynamic equations
to obtain a system of ODE:s in the independent coordinates [2, 3, 8, 14]. Using the conven-
tional approach, linear regression can be applied only once the Lagrange multipliers have
been eliminated. Eliminating the Lagrange multipliers may be a nontrivial task, however,
as it requires the assembly of an orthogonal complement of the Jacobian [9], which can be
onerous if a symbolic formulation is used.

In this work, we present an approach for using linear regression to identify the inertial
system parameters and time-varying Lagrange multipliers simultaneously, thereby avoiding
the need to eliminate the latter from the dynamic equations. Since linear regression can be
implemented as a recursive algorithm, the proposed approach facilitates the real-time iden-
tification of inertial parameters and Lagrange multipliers in applications requiring online
identification. For instance, the health of a multibody system can be monitored by detecting
changes in the behavior of the Lagrange multipliers, which often represent reaction forces
in kinematic joints. The mathematical details of our approach are presented in Sect. 2. In
Sect. 3, we present two numerical examples—the first, using absolute coordinates; the sec-
ond, using joint coordinates—to demonstrate the application of this approach. We use Monte
Carlo simulation [11] to investigate the identification of parameters when the experimental
data are corrupted by measurement noise, and justify the use of such an approach. Finally,
conclusions and future work are outlined in Sect. 4.
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2 Mathematical modeling

The equations governing the motion of a multibody system can be expressed as follows:

M(q. p. k) G+ J(q. K)"A(1) =f(q. q, p. k) + £ (1) (D

®(q.k)=0 2

where q = [¢1(1), ¢2(1), ..., g, (t)]T is a vector containing the n time-dependent modeling
coordinates, and p = [ p1, pa, ..., p,]T contains the unknown system parameters, which can

be masses, moments of inertia, or barycentric parameters, depending on the topology of the
system and the choice of modeling coordinates. M(q, p, k) is the n x n configuration- and
parameter-dependent mass matrix; ®(q, K) represents the m nonlinear algebraic constraint
equations, which are functions of known geometric parameters (i.e., lengths) k; J(q, k) =
d®/dq is the m x n Jacobian matrix; and A(t) = [A1 (1), A2 (), . .., A, (¢)]T are the Lagrange
multipliers. The first term on the right-hand side of (1) contains the quadratic velocity terms;
the second term, f.(¢), contains the externally applied forces and torques.

We are interested in determining the parameters p given experimental measurements for
q, 4, §, and f. at equally-spaced time points [t;, 2, . . ., ], where 8¢ = ;1 —t;. Provided the
parameters p appear linearly, the dynamic equations (1) can be expressed in the following
alternate form:

L@, 4, d K Pra +J(@,0A0) =h(g, 4, §, k) +fo(1) 3

where h(q, q, {q, k) contains terms involving inertial parameters that are known, should any
exist. In this work, the conversion of (1) into the form shown in (3) is facilitated by the use
of a symbolic formulation. Note that (3) cannot be used to perform linear regression directly,
as the Lagrange multipliers A(¢) are unknown.

We proceed by expanding each Lagrange multiplier A;(¢) in a piecewise linear form over

equally-spaced time points ¢ =['r,%¢,..., %]
Ai(t) = ZXI:[’WO - jt) +"“A»<t —_ jt)][H(t —It) = H(t —7*"1)]
= Al \ A
= ba 4)
where H(x) is the Heaviside step function, At = /1t —J¢, and a; = ['2;, 22, ..., ‘AT,

Introducing the notation Hjj+1 =H(t—'t)— H(@t —"'t) and B; = (t — /1)/At, we can
express b as follows:

b=[(1—-B)H, BiH + (1 —B)H;, ...,
BeaH. 3 + (1 — Be—)H,_, Be—1H/_] ©)

The objective is now to determine the value of each Lagrange multiplier A; (¢) at time points
(8¢ along with the parameters p. We can now express the Lagrange multipliers as follows:

b 0 ... 0 a
0O b ... 0 ar

AoO=|. . . . : £Ba (6)
00 ... b mxem A tmx1
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Upon substitution of (6) into (3), we obtain the following:

[F@ ik J@K'B] { b } =h(q.4,4.K) +£0) )

Finally, we assemble (7) at each point in time for which experimental data are collected:

[r(qv q’ .q.s k) J(qs k)T B]t:tl h(q7 q5 iiv k)t:tl + fe(tl)

[r(q’ qv ii’ k) J(q’ k)T B]t:t2 { P } _ h(qv q! ii? k)t:tg + fe(tZ) (8)
: aj :

[r(q’ (.1? ('i’ k) J(q! k)T B]t:tf h(q! qv iia k)t:tf + fe (tf)

Standard least-squares algorithms can be used to solve (8) and obtain the » system param-
eters p and ¢m Lagrange multiplier values a (provided r 4+ ¢m < nf and the system is not
underdetermined). Note, however, that (8) is not of the form used in standard linear regres-
sion problems (i.e., y = AX + €, where € is noise). In standard linear regression problems,
the noise appears linearly and, when assumed to be Gaussian, can be accounted for explicitly
when determining X to minimize the variance of the parameter estimates. Since the noise ap-
pears nonlinearly in (8) (due, in part, to the presence of trigonometric terms), we use Monte
Carlo simulation to investigate the effect of measurement noise on the identified parameters.
The identification procedure is repeated using different noise signals sampled from the same
distribution, thereby allowing us to investigate the anticipated effect of noise on the param-
eter estimates. Statistical data are generated for each parameter estimate; a small statistical
variance corresponds to a parameter whose identified value is most reliable.

It is important to note that the systems encountered using the proposed approach are of
size nf x (r +£m), which can be substantially larger than the systems of size nf x r obtained
using existing approaches. Once the problem has been transformed into a system of linear
equations, however, very efficient solution techniques can be employed. Furthermore, since
the Lagrange multiplier points ~‘A, ,, are localized in time, reducing the size of the time
window used for identification will reduce the size of the system. Alternatively, a recursive
least-squares algorithm could be used to solve the identification problem, in which case the
system that must be solved at each time step is only of size n x (r + £m).

3 Example systems

Two numerical examples are presented in this section: a planar pendulum modeled with ab-
solute coordinates, and a spatial slider-crank mechanism modeled with joint coordinates. All
equations are generated using the Multibody library in MapleSim'; the required expressions
are then exported to MATLAB? for simulation. We assume full state measurement in both
examples. For situations in which it is not possible to obtain either direct or indirect mea-
surements of all displacements, velocities, and accelerations in the system, we recommend
adopting one of several existing strategies (e.g., by considering only linear or linearized sys-
tems with noiseless displacement data [13], by solving a general nonlinear programming
problem using an initial-value or a multiple-shooting approach [6], or using single-shooting
homotopy optimization [16]).

1MapleSim is a trademark of Waterloo Maple, Inc.
2MATLAB is a registered trademark of The MathWorks, Inc.
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Fig. 1 Planar pendulum

3.1 Planar pendulum

We first consider the single planar pendulum shown in Fig. 1. When modeled with absolute
coordinates q = [x, y, 8]7, the following DAEs govern the motion of this system:

M 0 O X 1 0 N Mg
0 M 0|7} + 0 1 {A‘}: 0 )
0 o0 I]|1]6 Lsin(@) —Lcos(d) 2 0

x—Lcos() | _

{y — Lsin(8) } =0 (10)

where M, I, and L are the mass, centroidal inertia, and length of the pendulum, and gravity
acts in the X-direction. Experimental data are generated using the following parameters:
M =10kg, I =0.2 kgmz, L=05m,48t=10ms, ty =5 s, and At =50 ms (i.e., the
piecewise linear approximation for each Lagrange multiplier consists of £ = 101 points
spaced 50 ms apart); the pendulum is initially at rest with displacement 6(0) = 7 /2 rad.
We shall assume that the mass and length are known, as are experimental measurements for
all positions, velocities, and accelerations; the inertia and the m = 2 Lagrange multipliers
are to be identified. Note that a total of r 4+ £m =1 + 101 - 2 = 203 parameters are being
sought, which does not exceed the number of equations available (namely, nf = 1503). The
dynamic equations (9) are rearranged into the form shown in (3):

0 1 0 N Mg — M3
0{r}+ 0 1 {xl}: —M5 1)
6 Lsin(@) —Lcos(®) 2 0

which is assembled at each point in time for which experimental data are collected. The
least-squares solution is then computed using the MATLAB backslash operator, which em-
ploys the efficient QR factorization routines available in the Linear Algebra PACKage (LA-
PACK) library [15]; the slower 1sqgr routine produces nearly identical results. Excellent
estimates are obtained: the identified inertia is 0.199991 kg m? and, as shown in Fig. 2, the
identified Lagrange multipliers deviate only slightly from the experimental data, which can
be attributed to the piecewise linear approximations used to represent these curves.

We now repeat the identification procedure using experimental data corrupted by white
Gaussian measurement noise, as demonstrated in Fig. 3 for 6(¢) with signal-to-noise ratios
(SNRs) of 30 dB and 15 dB. The identified inertias and errors of the identified Lagrange
multipliers are shown in Fig. 4 for decreasing SNRs. The statistical data are generated by
repeating the identification procedure 1000 times for each SNR. As expected, the accuracy
of the estimates degrades as the SNR decreases; however, as shown in Fig. 5, reasonable
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Fig. 2 Identified Lagrange multipliers for the planar pendulum, which represent the reaction forces at the
pin (a) in the X-direction and (b) in the Y -direction
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Fig. 3 Experimental data and noise-corrupted measurements for 6 (¢) with signal-to-noise ratios of (a) 30 dB

and (b) 15 dB
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Fig. 4 Identification of (a) inertia, (b) A1 (¢), and (¢) A, (¢) for the planar pendulum using noise-corrupted

experimental data
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Fig. 5 Identified Lagrange multipliers for the planar pendulum using noise-corrupted experimental data with
SNR of 15 dB (shown here is the sample whose root-mean-square error was closest to the average)

Fig. 6 Spatial slider-crank mechanism (adapted from Haug [7])

results are obtained even when the SNR is 15 dB. In practice, it may be beneficial to smooth
or otherwise filter noise-corrupted data before proceeding with parameter identification.

3.2 Spatial slider-crank mechanism
We now consider the spatial slider-crank mechanism shown in Fig. 6. We model this sys-

tem with joint coordinates q = [0, a, 8,s]T, as shown in the figure, again obtaining a
system of index-3 DAEs. Experimental data are generated using the system parameters
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Table 1 System parameters used

for spatial slider-crank Parameter Value
mechanism example
Coordinates of point A (0,0.1,0.12) m
Length of crank 0.08 m
Length of connecting rod 0.3 m
Mass of crank 0.12 kg
Mass of connecting rod 0.5 kg
Mass of piston 2kg
Inertia of crank 1x1074 kg m?
Inertia of connecting rod in x-direction (/;xR) 4x103 kg m?
Inertia of connecting rod in y-direction (/yyRr) 4x1074 kg m?
Inertia of connecting rod in z-direction (I ;R) 4x1073 kg m?
@ (b) x10™ © 10°
Stomtard deviations Stomtard deviations T 7 Sleard deviations

IS
1
o

%

w
o

&

)
S

Identified inertia I,.r [kg 1112]
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1 1 1 4r -

.

Noiseless 50 45 40 35 Noiseless 50 45 40 35 Noiseless 50 45 40 35
Signal-to-noise ratio [dB] Signal-to-noise ratio [dB] Signal-to-noise ratio [dB]

IS

Fig. 7 Identification of (a) /xR, (b) IyyR, and (¢) I ;R for the spatial slider-crank mechanism using noise-
corrupted experimental data

shown in Table I, and the following simulation parameters: 6t = 1 ms, t; =2 s, and
At =5 ms (i.e., the piecewise linear approximation for each Lagrange multiplier con-
sists of £ =401 points spaced 5 ms apart). In addition to gravity, which acts in the —Z-
direction, an external torque 7c(¢) = 0.1sin(2w¢) Nm is applied to the crank, and an ex-
ternal force Fp(r) = —0.05sin(r¢) N is applied to the piston. The system is initially at
rest with 6(0) = 0 rad. In this example, we identify the three moments of inertia of the
connecting rod, as well as the m = 3 Lagrange multipliers, which represent the reaction
forces in the spherical joint between the crank and the connecting rod. Thus, a total of
r+4€m =3+401 -3 = 1206 parameters are being sought, which does not exceed the num-
ber of equations available (in this case, nf = 8004). It is assumed that noise-corrupted
experimental data are available for only 6, 6,6, 7c, and Fp; the remaining positions, ve-
locities, and accelerations are determined using the constraint equations and their deriva-
tives.

The linear regression problem is solved as before. The identified inertias and errors of
the identified Lagrange multipliers are shown in Figs. 7 and 8 for decreasing SNRs. In
this example, the statistical data are generated by repeating the identification procedure 100
times for each SNR. The statistical trends are similar to those observed in the first example.
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Fig. 8 Identification of (a) A1(7), (b) Ao(¢), and (¢) A3(¢) for the spatial slider-crank mechanism using

noise-corrupted experimental data
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Fig. 9 Identified Lagrange multipliers for the spatial slider-crank mechanism using noise-corrupted experi-
mental data with SNR of 40 dB (shown here is the sample whose root-mean-square error was closest to the
average)
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Once again, reasonable results are obtained even when the experimental data are corrupted
by measurement noise, as shown in Fig. 9.

4 Conclusions and future work

A new approach has been proposed for identifying inertial parameters in multibody systems
governed by DAEs. Existing approaches involve first eliminating the Lagrange multipliers
from the dynamic equations using an orthogonal complement of the Jacobian. The proposed
approach avoids this pre-processing step by identifying a piecewise linear approximation for
each Lagrange multiplier along with the unknown inertial parameters. Numerical examples
have demonstrated the efficacy of this approach using both absolute and joint coordinate
formulations, and in the presence of measurement noise.

While inertial system parameters may not vary under normal operating conditions, esti-
mates of these parameters can be used to monitor the health of a system over time. Changes
in the behavior of the Lagrange multipliers, which often represent reaction forces in kine-
matic joints, can also be important indicators of system health. In applications involving
unknown masses (e.g., washing machines and amusement park rides), the estimation of
inertias may be necessary for control purposes. Future work will focus on applying the
proposed approach to the problem of fault detection and isolation in multibody systems. It
may also be possible to extend this approach to the identification of parameters in vehicle
tire models, such as lateral and longitudinal slip coefficients. Estimates of these parameters
are required by dynamic controllers, and approximations of the reaction forces in vehicular
systems could provide valuable suspension load data.
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