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Abstract Space robots are in huge demand due to the rapid growth of their service targets,
i.e., spacecraft. There are generally large flexible components on spacecraft, such as antenna
reflectors and solar paddles. Due to the vibratility of their structure, it is challenging for
a space robot with flexible appendages (the base is then called flexible-base) to capture
and repair the large flexible spacecraft. After capturing, the two spacecraft with flexible
appendages are connected by a space manipulator, and a compounded system is formed. In
this paper, we developed a dynamic model and a closed-loop simulation system, to provide
a means to verify path planning and control algorithms. Initially, the dynamic characteristics
of different capturing stages (preimpact and post-impact) were analyzed. The topologies of
a flexible-base space robot and the compounded system were described based on incidence
and channel matrices. Secondly, the recursive dynamics was formulated and resolved by
an effective numerical method. The modeling was verified by Adams’ model. Thirdly, we
implemented a dynamics calculation block in Matlab/Simulink environment using the S-
function package for the C program, and developed a closed-loop simulation system, which
was composed of the Planning and Controller, the Multibody Dynamic, and the 3D Display
modules. Finally, based on the simulation system, two typical missions—target berthing and
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on-orbital manipulation of the target along a circle, were simulated and evaluated. Dynamics
analysis results presented some useful rules for the path planning and control to suppress the
vibration of the flexible structure.

Keywords Flexible-base space robot · Large flexible spacecraft · Target capturing ·
Dynamics modeling · Vibration suppression

1 Introduction

Robotic systems are expected to play an increasingly important role in future space activi-
ties, such as repairing, upgrading, refueling, and reorbiting spacecraft [1–4]. These technolo-
gies could potentially extend the life of satellites, enhance the capability of space systems,
reduce operation costs, and clean up the increasing space debris. The autonomous target
capturing, which has been successfully demonstrated by the Engineering Test Satellite VII
(ETS-VII) [5] and Orbital Express [6], is the key to on-orbit servicing. Unlike on the earth,
space operations require the ability to work in the unstructured environment [7]. Some au-
tonomous behaviors are necessary to perform complex and difficult tasks in space. Yoshida
and Umetani developed on-line control scheme with vision feedback, using Generalized Ja-
cobian Matrix (GJM) concept for motion control and Guaranteed Workspace (GWS) for
path planning [8]. Yoshida et al. also proposed an impedance matching method to capture a
noncooperative target [9], and a possible control sequence to capture a tumbling target [10].
Papadopoulous et al. studied the dynamics and control of a multiarm space robot involved in
chase and capture operations of satellites [11]. Nagamatsu et al. designed a control system
for the autonomous capture of a target satellite in space using a predictive trajectory based
on the target satellite dynamics [12]. McCourt and Silva investigated the use of model-based
predictive control for the capture of a multi-DOF object that moves in a somewhat arbitrary
manner [13]. Xu et al. also proposed autonomous path planning and control methods to
capture a noncooperative target based on the binocular stereo vision [14]. Recently, Aghili
presented a combined prediction and motion-planning scheme for robotic capturing of a
drifting and tumbling object with unknown dynamics using visual feedback [15]. For the
above works, the space robot and the target satellite are assumed to be multirigid systems,
and the dynamics coupling [16] between the base and the manipulator are the main factor
considered for path planning and control.

Actually, there exist flexible components, including flexible links, joints, etc., on space
robots since space applications require light-weight designs. Dwivedy and Eberhard con-
ducted a comprehensive review of the literature on the dynamics analysis and control of
flexible manipulators [17]; the flexible links or/and flexible joints are considered. Ma et al.
[18] developed a software package—MDSF to model and simulate general robotic systems
with flexible structures. Talebi presented an approach for dynamics modeling of flexible-link
manipulators using artificial neural networks. It is applied to the Space Station Remote Ma-
nipulator System (SSRMS) [19]. Mohan and Saha proposed a recursive, numerically stable
simulation algorithm for serial robots with flexible links [20]. Sabatini et al. designed active
damping strategies to reduce the structural vibrations of a space manipulator with flexible
links during its on orbit operations [21]. Masoudi and Mahzoon studied a free-floating space
robot with four linkages, two flexible arms, and a rigid end-effector that are mounted on a
rigid spacecraft [22]. Zarafshan and Moosavian derived the dynamic equations of a space
robot with a flexible panel and a planar dual-arm system is taken as the example [23, 24].
Recently, the construction of large space structures, such as solar power stations and space
telescopes, attracted the interest of scholars. Boning and Dubowsky presented a coordinated
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control method of space robot teams for the on-orbit assembly of large flexible space struc-
tures [25, 26]. The robots (each robot is mainly composed of rigid components), acting as
force sources, maneuver and assemble these large, flexible space structures while minimiz-
ing vibration.

However, few literatures addressed the dynamics modeling and control of a flexible-base
space robot capturing a large flexible satellite. In fact, a spacecraft, such as a GEO satellite
for broadcasting, communications, weather forecasting and so forth, is growing in size to
meet ever more demanding mission requirements. Large flexible components such as an-
tenna reflectors and solar paddles are inevitably mounted on the spacecraft. For example,
the Japanese Engineering Test Satellite VIII (ETS-VIII) has a size of 40 × 37 m and a mass
of 3000 kg [27]. Two large deployable reflectors are appended in the roll axis direction,
and a pair of solar paddles rotates around the pitch axis at a rate of 360o/day so that they
continually face the sun. The modeling of the large flexible spacecraft on orbit is complex
[28]. On the other hand, a space robot used to complete the on-orbit servicing tasks has
also generally flexible solar panels. It is very challenging for such a space robot to cap-
ture and repair these large flexible satellites for two reasons. First, the structure flexibilities
(including the flexibilities of the space robot and the target satellite) will easily cause vibra-
tion while the space robot capturing and manipulating the target. The generated vibration is
difficult to be reduced since there does not exist atmospheric damping in the orbit and the
structure damping is very little. Second, a space robot is designed to be as light as possi-
ble for saving manufacturing and launching costs, so the geometry and inertial parameters
(mass and inertia) of the target satellite are much larger than those of the space robot. Af-
ter the target is captured or released, the mass properties of the space system will change
dramatically.

In order to supply a means to analyze the design of the space robot system, and verify the
key path planning and control algorithms, we derived the dynamics equations of a flexible-
base space robot, and the compounded system after it captures a large flexible spacecraft.
Based on the derived dynamic equations, a closed-loop control simulation system is de-
veloped. The absolute motion of the base is described as a 6-DOF virtual hinge between
the base and the inertial frame. Two types of kinematic relations between adjacent bodies,
including rigid-rigid and rigid-flexible bodies, are established, respectively. Then the recur-
sive equations are formulated and an effective numerical calculus method is used to solve it.
The dynamics modeling and resolving code is programmed using C language, and verified
by comparing the calculation results with those of Adams virtual prototype model under
the same condition. Furthermore, the dynamics calculation block is implemented in Mat-
lab/Simulink environment, and the closed-loop simulation system is developed. Using this
system, dynamics analysis of two typical missions—target berthing and on-orbital manipu-
lating of the target along a circle are performed.

This paper is organized as follows: Sect. 2 introduces the on-orbit system used for large
flexible spacecraft and discusses the dynamic characteristics for different stages during the
target capturing. Section 3 derives the recursive formulation for the rigid-flexible coupling
dynamics of a flexible-base space robot capturing large flexible spacecraft. In Sect. 4, the
dynamic equations are then resolved using numerical integration method, programmed in C
language and verified by comparing with Adams software. Section 5 develops the closed-
loop control simulation system in Matlab/Simulink environment. Then the dynamics anal-
ysis of two typical missions using different path planning methods is performed in Sect. 6.
Finally, conclusions are presented in Sect. 7. The last section contains the Acknowledge-
ments.
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Fig. 1 The large flexible spacecraft and the designed space robot

2 The on-orbit servicing system and dynamics characteristics

The target to be serviced is assumed a GEO spacecraft. Here, a Chinese communication
satellite of the DFH-4 platform, the third generation of China GEO platform, is taken as
the example. The main body of the DFH-4 satellite is a box-form structure with the size of
2.36 m × 2.1 m × 3.6 m. The satellite has large deployable solar wings and large deployable
communications antennas with aperture of 3.0 m×2.2 m, which are folded when the satellite
is launched and deploy when it enters the orbit. The wing span reaches 33.0 m and the height
is 6.4 m. The satellite has 5200 kg lift off mass and a 15-year designed lifetime [29].

SINOSAT-2, launched in 2006, is the first application of DFH-4 platform. Unfortunately,
a very severe case happened after it reached the GEO orbit successfully. It encountered three
mechanical malfunctions: (1) The +Y solar wing fails to deploy; (2) The +X communica-
tion antenna fails to deploy, and (3) The −X communication antenna fails to deploy.

To resume the normal function of the communication satellite, theses malfunctions must
be resolved. We designed a space robot to perform the on-orbit servicing mission [30]. It is
mainly composed of a 7-DOF (Degree of Freedom) manipulator with two hand-eye cameras
and a replaceable end-effector, a 2-DOF docking and latching mechanism (DLM) and three
target support brackets (TSB), etc. The large flexible spacecraft and the space robot are
shown as Fig. 1.

The on-orbit capturing and manipulation of the target is the key of the on-orbit servicing
mission. The capture process includes three specific phases [31]: the preimpact phase, the
contact/impact phase, and the post-impact phase. During the preimpact phase, the space ma-
nipulator’s end-effector tracks and approaches the target spacecraft to its capturing box. In
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Fig. 2 Different dynamic characteristics of pre and post-impact stages

the impact phase, the contact/impact between the manipulator hand and the object is estab-
lished, and a force impulse is generated. After the space robot captures the target success-
fully (i.e., post-impact phase), a compounded system is formed, which includes the space
robot and the grasped target. At any stage, inappropriate robotic arm movement will cause
the flexible spacecraft to vibrate for a long time. The vibration is highly coupled with the
motion of the space manipulator and the base, which will not only lead to the failure of the
servicing tasks, but also destroy the entire system.

Corresponding to different stages, there are different dynamic characteristics. Before the
target is captured (i.e., precapture stage), the target spacecraft and the space robot are sep-
arated from each other. The former is actually a system composed of a central rigid body
and two flexible solar paddles. It moves according to the principles of celestial mechanics
and the initial conditions, such as free-floating, tumbling, and so on. For the space robot, it
autonomously approaches the target under the visual serving control. It can be described as
a dynamics system composed of a flexible base (a central rigid body + two flexible solar
paddles) and a 7DOF rigid manipulator. It is a typical rigid-flexible coupling multibody dy-
namics system. After the space robot captures the target successfully (i.e., the post-impact
phase), the space robot and the target form a new compounded system. Both the end points
of the new system are flexible spacecrafts (i.e., flexible base of the space robot and the flex-
ible target); they are connected by a rigid manipulator. That is to say, the dynamics states
of the compounded system are determined by those of the flexible base, multirigid body
(7-DOF rigid manipulator), and the flexible target. In the following contents, we focus on
the modeling of the space system for preimpact and post-impact stages, shown as Fig. 2.

3 Dynamics modeling of flexible-base space robot for pre and post-impact stages

The designed space robotic system (the chaser spacecraft) used for the on-orbit servicing
mission is shown as Fig. 3. It is composed of a central rigid body (called robot base), two
flexible solar paddles, and a 7-DOF serial manipulator (called space manipulator). Each
solar paddle is connected to the robot base through a rotating hinge with one degree of
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Fig. 3 The flexible-base space robot for the precapture stage

freedom. The hinges rotate according to the sun vector so that the solar paddles continually
face the sun and they can provide as much energy as possible. Hence, the space robot can
be described using 11 bodies (including the inertial frame) and 10 hinges. The bodies are
denoted as follows:

(1) B0: the inertial body, a virtual body fixed in the inertial space;
(2) B1: the robot base, a central rigid body;
(3) B2–B3: the flexible solar wings of the space robot;
(4) B4–B10: the links of the space manipulator. B4–B10 are respectively the 1st–7th link of

the 7-DOF manipulator; all are rigid bodies.

After capturing, the target satellite is locked to the end-effector of the space manipu-
lator. Then a new system, called compounded system or compounded system, is formed.
The compounded system consists of two parts: flexible-base space robot and flexible target
spacecraft, as shown in Fig. 4. The target spacecraft is also composed of a central rigid body
(called target base and denoted as B′

10) and a pair of flexible solar wings (denoted as B11 and
B12, respectively). The target base B′

10 is fixed to the end-effector of the space manipulator,
i.e., B10. Thus, these two rigid bodies can be regarded as a rigid body and denotes as B̂10.

3.1 The definition of the coordinate systems

3.1.1 The inertial frame of reference

For the modeling of a multibody dynamic, the inertial frame of reference (also called inertial
reference frame or inertial frame) is used to determine the absolute motion of each body. The
inertial frame is denoted as O0x0y0z0, whose origin is Point O0, three axes are O0x0, O0y0,
O0z0, respectively. The inertial frame O0x0y0z0 is fixed at the virtual rigid body B0.
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Fig. 4 The compounded system after capturing

Fig. 5 The coordinate system of the space base and its solar wings

3.1.2 The coordinate system of the space robot

The space robot is a hybrid rigid-flexible system, i.e., it is composed of rigid and flexible
bodies. The centroid frame and floating coordinate system are respectively used as the body-
fixed frames of the rigid and flexible bodies. Figure 5 shows the coordinate systems for the
robot base and its solar wings. Frame O1x1y1z1 is the centroid frame of B1. The origin is
located in the center of mass (CM) of B1. Frames O2x2y2z2 and O3x3y3z3 are respectively
the floating coordinate systems of B2 and B3 (they are flexible bodies). Their origins, i.e.,
O2 and O3, are located at the hinges between the solar paddles (B2 and B3) and the central
rigid body B1. The initial orientations of O2x2y2z2 and O3x3y3z3 are assumed to the same
as frame O1x1y1z1. The body-fixed frames of the space manipulator are defined as Fig. 6
(when the joint angles are all zeros). The origins are located in the centroid of each link of
the manipulator. The z-axes of the frames are the rotation directions of corresponding joints.
The zero configuration of the space robot is shown as Fig. 7.
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Fig. 6 The body-fixed frames of the space manipulator

Fig. 7 The zero configuration of the space robot
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Fig. 8 The coordinate system of the target spacecraft

3.1.3 The coordinate system of the target spacecraft

The coordinate systems of the target spacecraft are shown in Fig. 8, where O′
10x

′
10y

′
10z

′
10

is the centroid frame of B′
10, O11x11y11z11 and O12x12y12z12 are respectively the floating

coordinate systems of bodies B11 and B12 (they are flexible bodies). Their origins, i.e., O11

and O12, are located at the hinges between the solar paddles (B11 and B12) and the central
rigid body B′

10. A frame, denoted as Onozzlexnozzleynozzleznozzle, is defined to represent the
apogee engine nozzle. Its origin is located in the circle center of the bottom surface of the
apogee engine nozzle. The x-, y-, z-axis are parallel to the corresponding axis of Frame
O′

10x
′
10y

′
10z

′
10. For the capturing or docking missions, the nozzle frame is taken as the target

frame of visual measurement and navigation algorithm for the space robot.

3.2 System topology structure

3.2.1 The topology of the space robot before capturing

The topology diagram of the space robot system before capturing is shown in Fig. 9. The
hinges are denoted as follows:

(1) H1: a 6-DOF virtual hinge between B0 and B1, representing the free motion of the robot
base with respect to the inertial frame;

(2) H2–H3: 1-DOF rotating hinges, representing the rotation motion between the solar
wings B2, B3 and the robot base B1;

(3) H4–H10: 1-DOF rotating hinges. They are sequentially the 1st–7th joint of the 7-DOF
manipulator.

The topology of a mechanical system can be described using an incidence matrix and a
channel matrix [32]. For the space robot shown in Fig. 9, the incidence matrix SRbt is (the
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Fig. 9 The topology of the space
robot

missing elements are zeros; hereinafter the same in this paper):

SRbt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
−1 1 1 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0

−1 1 0 0 0 0 0
−1 1 0 0 0 0

−1 1 0 0 0
−1 1 0 0

−1 1 0
−1 1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R11×10 (1)

The row and column numbers of SRbt are respectively the indexes of body and hinge. The
value of the ith row and j th column element is defined as follows:

Sij =

⎧⎪⎨
⎪⎩

1, i = i+(j)

−1, i = i−(j)

0, i �= i+(j), i−(j)

(i = 0,1, . . . ,10; j = 1, . . . ,10) (2)

where i+(j), i−(j) represents the numbers of the inscribed and external body of hinge Hj .
For the topology shown in Fig. 9, the values of i+(j) and i−(j) are as follows:

i+(j) =

⎧⎪⎨
⎪⎩

0, j = 1

1, j = 2,3,4

j − 1, j = 5, . . . ,10

(3)

i−(j) = j (j = 1, . . . ,10) (4)
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The channel matrix TRbt is

TRbt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0
−1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1

−1 −1 −1 −1
−1 −1 −1

−1 −1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R10×10 (5)

The row and column numbers of TRbt are respectively the indexes of hinge and body. The
value of the j th row and ith column element is defined as follows:

Tji =

⎧⎪⎨
⎪⎩

1, if Hj is on the path from B0 toBi , pointing to B0

−1, if Hj is on the path from B0 toBi , and back to B0 (i, j = 1, . . . ,10)

0, if Hj is not on the path from B0 to Bi

(6)

3.2.2 The topology of the compounded system after capturing

The topology diagram of the compounded system after capturing is shown in Fig. 10. The
target base, i.e., B′

10, is fixed to the end-effector of the space manipulator, i.e., B10, and a new
rigid body B̂10 is formed. Hinges H11 and H12 are both 1-DOF rotation joints, connecting
the solar wings to body B̂10.

The incidence matrix of the compounded system is

SCRS =

⎡
⎢⎢⎣

SRbt

... S12

· · · · · · · · ·
S21

... S22

⎤
⎥⎥⎦ ∈ R13×12 (7)

where SRbt is given in (1), and (Om×n denotes a m × n zeros matrix):

S12 =
[

O10×1 O10×1

1 0

]
∈ R11×2 (8)

S21 = O2×10 (9)

S22 =
[−1 1

0 −1

]
∈ R2×2 (10)

The channel matrix of the compounded system is

TCRS =

⎡
⎢⎢⎣

TRbt

... T12

· · · · · · · · ·
T21

... T22

⎤
⎥⎥⎦ ∈ R12×12 (11)
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Fig. 10 The topology of the compounded system

where TRbt is given in (5), and

T12 =
[−1 0 0 −1 −1 −1 −1 −1 −1 −1

−1 0 0 −1 −1 −1 −1 −1 −1 −1

]T

∈ R10×2 (12)

T21 = O2×10 (13)

T22 =
[−1 −1

0 −1

]
∈ R2×2 (14)

3.3 Recursive formulation for rigid-flexible coupling dynamics

3.3.1 The state defined for rigid bodies

The state of a rigid body can be identified by the origin location and the orientation of its
body-fixed system with respect to the inertial frame, i.e.,

xi = [
rT
i ,�

T
i

]T ∈ R6 (i = 1,4, . . . ,10) (15)

where xi is the pose (position and orientation) of rigid body Bi with respect to the inertial
frame; ri ∈ R3 and � i ∈ R3 are respectively the position and orientation. In this paper, x–
y–z Euler angles are used to represent � i , written as � i = [αi, βi, γi]T.

Correspondingly, the velocity of a rigid body is

Vi = [
vT

i ,ω
T
i

]T ∈ R6 (i = 1,4, . . . ,10) (16)
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In Eq. (16), vi ∈ R3 and ωi ∈ R3 are respectively the linear and angular velocities of Bi

with respect to the inertial frame. For the former, it can be obtained by differentiating the
centroid position vector ri , i.e. vi = ṙi . On the other hand, the angular velocity is calculated
as follows:

ωi = N(Ψ i )�̇ i (17)

where N(�) is a 3 × 3 matrix mapping the time derivation of Euler angles to the angular
speed. For x–y–z Euler angles representation,

N(� i ) =
⎡
⎣

1 0 sβi

0 cαi
−sαi

cβi

0 sαi
cαi

cβi

⎤
⎦ (18)

sαi
, cαi

, sβi
, cβi

denote the sine and cosine values of αi and βi .

3.3.2 The state defined for flexible bodies

The state of each deformable body in the multibody system is identified using two sets of
coordinates: reference and elastic coordinates. Reference coordinates define the location and
orientation of the body reference frame, i.e., the floating frame. Elastic coordinates, on the
other hand, describe the body deformation with respect to the floating reference frame. Here,
the assumed mode method (i.e., Rayleigh–Ritz method) is employed to discretize a flexible
body, whose deformation is described using the modal coordinates. Then the global position
of an arbitrary point on the deformable body is determined by a coupled set of reference and
modal coordinates. Therefore, the state of a flexible body is defined as follows:

xi = [
rT
i ,�

T
i ,aT

i

]T ∈ R6+s (i = 2,3,11,12) (19)

where ai ∈ Rs is the modal coordinate; s is the number of modal coordinate. For B2/B3 and
B11/B12, s is denoted as sc and st, respectively.

Correspondingly, the velocity of a deformable body is defined as

Vi = [
vT

i ,ω
T
i , ȧT

i

]T ∈ R6+s (i = 2,3,11,12) (20)

where, ȧi ∈ Rs represents the modal velocity of Bi .

3.3.3 The generalized coordinates of the dynamic system

In order to describe the relative movement between two bodies, we should define the relative
coordinates between two bodies, i.e., the state variables of hinges.

As described above, H1 is a virtual hinge. Thus, there are six degrees of freedom between
the robot base and the inertial system. We need to define six state variables to describe
the relative movement between them. Actually, the generalized variables of the robot base
(i.e., B1) also determine the pose of the robot base relative to the inertial system. Thus, the
state variables of the virtual hinge (i.e., H1) are defined as

q1 = x1 = [
rT

1 ,�T
1

]T ∈ R6 (21)

Hinges H2 and H3 are revolute joints with one degree of freedom. Their state variables
are then denoted by two scalars: q2 and q3. Hinges H4–H10 define the 1sr–7th joints of the
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space manipulator, hence the joint angles are used as the state variables of H4–H10, i.e.,

qi = θi−3 (i = 4, . . . ,10) (22)

Similarly, Hinges H11 and H12 determine the connections between the solar arrays and
the base of the target. The state variables are denoted by q11 and q12, respectively.

According to the definitions above, the dynamic system can be described by combing
the state variables of the hinges and the modal coordinates of the flexible bodies. Then we
define the generalized coordinates of the system as follows:

yi =
{

qi , i = 1,4, . . . ,10

[qT
i ,aT

i ]T, i = 2,3,11,12
(23)

The universal kinematic relationships between two adjacent rigid bodies and flexible bod-
ies are discussed in [33] and [34], respectively. For the space robotic system studied in this
paper, there exist two cases of adjacent bodies: rigid–rigid bodies and rigid–flexible bod-
ies. The kinematic relationships corresponding to the two cases are derived in the following
sections.

3.3.4 Kinematic relationship between two adjacent rigid bodies

The following hinges connect two rigid bodies:

(1) H1 (a virtual hinge) connects B1 to the virtual rigid body B0. It has six degree of free-
dom;

(2) Hj (j = 4, . . . ,10) connects Bj to Bi , where i = i+(j). It is actually the joint of the
manipulator; each has one degree of freedom.

The kinematic relationship between two adjacent rigid bodies Bi and Bj , which are

connected by Hinge Hj (j = 1,4, . . . ,10), is shown as Fig. 11. Frames PHj
x

Hj

P y
Hj

P z
Hj

P

and QHj
x

Hj

Q y
Hj

Q z
Hj

Q are respectively fixed at point PHj
of rigid body Bi and point QHj

of
rigid body Bj . Then the motion of Hj can be represented by the relative pose between

PHj
x

Hj

P y
Hj

P z
Hj

P and QHj
x

Hj

Q y
Hj

Q z
Hj

Q . Since PHj
x

Hj

P y
Hj

P z
Hj

P and QHj
x

Hj

Q y
Hj

Q z
Hj

Q are fixed at Bi

and Bj , respectively, the transformation matrixes from Oixiyizi to PHj
x

Hj

P y
Hj

P z
Hj

P (denoted

as C
Hj

iP ), and from Oj xj yj zj to QHj
x

Hj

Q y
Hj

Q z
Hj

Q (denoted as C
Hj

jQ) are constants.
For convenience of discussion, the orientations of the hinge frames are defined likewise

as the corresponding body frame, i.e., C
Hj

iP = C
Hj

jQ = E3×3 (Em×n denotes a m × n unity ma-

trix), and the rotation transformation matrix from PHj
x

Hj

P y
Hj

P z
Hj

P to QHj
x

Hj

Q y
Hj

Q z
Hj

Q (denoted
as Dj ) are the same as that from Oixiyizi to Oj xjyj zj . Then the orientation of Bj with
respect to the inertial frame can be represented as

A0j = A0iC
Hj

iP Dj

(
C

Hj

jQ

)T = A0iDj

(
j = 1,4, . . . ,10; i = i+(j)

)
(24)

Matrix Dj can be expressed as follows:

Dj = Dj,0Rj (j = 1,4, . . . ,10) (25)

where Dj,0 is a matrix representing the initial attitude between PHj
x

Hj

P y
Hj

P z
Hj

P and

QHj
x

Hj

Q y
Hj

Q z
Hj

Q corresponding to the zeros configuration (see Fig. 6); it is constant. Rj is
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Fig. 11 Kinematic relationship
between two adjacent rigid
bodies

a transformation matrix determined by the motion of Hinge Hj with respect to the zeros
configuration. According to Fig. 6, Dj,0 and Rj are as follows:

D1,0 = D7,0 = D8,0 = E3×3 (26)

D4,0 = D6,0 =
⎡
⎣

0 1 0
0 0 1
1 0 0

⎤
⎦ (27)

D5,0 = D9,0 = D10,0 =
⎡
⎣

0 0 1
1 0 0
0 1 0

⎤
⎦ (28)

R1 = Rx(α1)Ry(β1)Rz(γ1) =
⎡
⎣

1 0 0
0 cα1 −sα1

0 sα1 cα1

⎤
⎦

⎡
⎣

cβ1 0 sβ1

0 1 0
−cβ1 0 sβ1

⎤
⎦

⎡
⎣

cγ1 −sγ1 0
sγ1 cγ1 0
0 0 1

⎤
⎦

(29)

Rj = Rz(qj ) =
⎡
⎣

cθj−3 −sθj−3 0
sθj−3 cθj−3 0

0 0 1

⎤
⎦ (j = 4,5, . . . ,10) (30)

In the equations above, Rx(•),Ry(•) and Rz(•) are the functions representing rotating a
certain angle about the x-, y-, and z-axis, respectively. Initially, Frame O1x1y1z1 coincides
with Frame O0x0y0z0. Then the inertial position, linear and angular velocities of Frame
O1x1y1z1 can be respectively written as

r1 =
⎡
⎣

r1x

r1y

r1z

⎤
⎦ = d1q1 (31)

v1 = ṙ1 =
⎡
⎣

v1x

v1y

v1z

⎤
⎦ = d1q̇1 (32)

ω1 = N(Ψ 1)�̇1 = h1q̇1 (33)
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where d1 and h1 are the matrixes mapping the generalized velocity q̇1 to the linear and
angular velocities of B1, respectively. They have the following forms:

d1 = [
E3×3 O3×3

] ∈ R3×6 (34)

h1 = [
O3×3 N(�1)

] ∈ R3×6 (35)

The inertial position of the origin of Frame Oj xjyj zj (j = 4,5, . . . ,10) can be calculated
as

rj = ri + s
Hj

iP − s
Hj

jQ

(
j = 4,5, . . . .10; i = i+(j)

)
(36)

where s
Hj

iP is the vectors from the origins of Frame Oixiyizi to point PHj
, and s

Hj

jQ is the
position vectors from the origins of Frame Oj xj yj zj to point PHj

. They are expressed in the
inertial frame.

The absolute angular velocity of Bj (j = 4,5, . . . ,10) is calculated according to absolute
angular velocity of Bi and the relative angular velocity of Bj with respect to Bi , i.e.,

ωj = ωi + hj q̇j

(
j = 4,5, . . . ,10; i = i+(j)

)
(37)

where

hj = A0ihP
j

(
j = 4,5, . . . ,10; i = i+(j)

)
(38)

hP
j is the vector of the rotation axis of hinge Hj . It is expressed in Frame PHj

x
Hj

P y
Hj

P z
Hj

P . Ac-
cording to Fig. 6, the rotation axis of Hinge Hj is parallel to the z-axis of Frame Oj xj yj zj ,
then

hP
j = [0,0,1]T (j = 4,5, . . . ,10) (39)

Differentiating Eq. (36) with respect to time, the linear velocities of Bj (j = 4,5, . . . ,10)

is

vj = vi + ṡ
Hj

iP − ṡ
Hj

jQ

(
j = 4,5, . . . ,10; i = i+(j)

)
(40)

where

ṡ
Hj

iP = ω̃is
Hj

iP (41)

ṡ
Hj

jQ = ω̃j s
Hj

jQ (42)

ω̃ is the skew-symmetric matrix of ω. When ω = [ωx,ωy,ωz]T, its skew-symmetric matrix
is as follows:

ω̃ =
⎡
⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ (43)

Substituting Eqs. (37), (41), and (42) into (40), yields the following results:

vj = vi + ω̃irij + s̃
Hj

jQhj q̇j

(
j = 4,5, . . . ,10; i = i+(j)

)
(44)

where

rij = s
Hj

iP − s
Hj

jQ (j = 4,5, . . . ,10) (45)
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According to Eqs. (16) and (23), Eqs. (37) and (44) can be combined into a recursive
form:

Vj = �ij Vi + Uij ẏj

(
j = 4,5, . . . ,10; i = i+(j)

)
(46)

where

�ij =
[

E3×3 −r̃ij

O3×3 E3×3

]
∈ R6×6

(
j = 4,5, . . . ,10; i = i+(j)

)
(47)

Uij =
[

s̃
Hj

jQhj

hj

]
∈ R6×1

(
j = 4,5, . . . ,10; i = i+(j)

)
(48)

Similarly, Eqs. (32) and (33) can be combined into the following equation:

V1 = U01ẏ1 (49)

where

U01 =
[

d1

h1

]
∈ R6×6 (50)

The acceleration of each of the rigid bodies is obtained by differentiating Eqs. (49) and
(46), i.e.,

V̇1 = U01ÿ1 + β01 (51)

V̇j = �ij V̇i + Uij ÿj + β ij

(
j = 4,5, . . . ,10; i = i+(j)

)
(52)

where

β01 = U̇01ẏ1 (53)

β ij = �̇ij Vi + U̇ij ẏj

(
j = 4,5, . . . ,10; i = i+(j)

)
(54)

3.3.5 Kinematic relationship between rigid and flexible bodies

The following hinges connect a rigid and a flexible body:

(1) H2 and H3 connect the solar wings of the space robot to its base, i.e., Hinge H2 connects
B2 to B1, and Hinge H3 connects B3 to B1. They both have one degree of freedom;

(2) H11 and H12 connect the solar wings of the target to its central rigid body, i.e., Hinge
H11 connects B11 to B′

10, and Hinge H12 connects B12 to B′
10. They both have one degree

of freedom, also.

Figure 12 shows the relationship between a central rigid body (Bi ) and a flexible solar

wing (Bj ) connected by a rotating hinge Hj . Frames QHj
x

Hj

Q y
Hj

Q z
Hj

Q and
�

QHj

�
x

Hj

Q

�
y

Hj

Q

�
z

Hj

Q are
the hinge frames fixed at Bj for the undeformed and deformed states, respectively. Points

QHj
and

�

QHj
are their origins.

The orientation of frame
�

QHj

�
x

Hj

Q

�
y

Hj

Q

�
z

Hj

Q relative to frame QHj
x

Hj

Q y
Hj

Q z
Hj

Q , can be ap-
proximately described by a rotation transformation matrix, which is formed by the elastic
rotation angles εx , εy and εz, about the xQ-, yQ-, and zQ-axes, respectively. Assuming that
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Fig. 12 Kinematic relationship between rigid body and flexible body

the rotation amount is small enough, the rotation transform matrix B
�
Q
j representing the atti-

tude of the
�

QHj

�
x

Hj

Q

�
y

Hj

Q

�
z

Hj

Q with respect to QHj
x

Hj

Q y
Hj

Q z
Hj

Q is then calculated as follows:

B
�
Q
j = E3×3 + ε̃

�
Q
j (j = 2,3,11,12) (55)

where ε
�
Q
j = [εx, εy, εz]T is the rotation deformation vector. It can be represented as a linear

combination of the deformation modes of flexible body Bj as

ε
�
Q
j = φQ

r aj (56)

The columns of modal matrix φQ
r ∈ R3×s are composed of the deformation modes associ-

ated with small rotation variables of hinge definition point QHj
. The modal matrix φQ

r is a
constant matrix which can be obtained by the structure dynamics analysis using the finite
element method (see Sect. 4.2).

The orientation of Bj with respect to the inertial frame can be calculated as follows:

A0j = A0iC
Hj

iP Dj

(
B

�
Q
j

)T(
C

Hj

jQ

)T = A0iDj

(
B

�
Q
j

)T (
j = 2,3,11,12; i = i+(j)

)
(57)

In Eq. (57), the definitions of C
Hj

iP and C
Hj

jQ are the same as those of Sect. 3.3.4., i.e., C
Hj

iP =
C

Hj

jQ = E3×3. Similarly, Matrix Dj has the same form as that of Eq. (25), and the expressions
are as follows:

D2,0 = D3,0 = E3×3 (58)

D11,0 = D12,0 =
⎡
⎣

0 1 0
0 0 1
1 0 0

⎤
⎦ (59)

Rj = Rz(qj ) =
⎡
⎣

cqj
−sqj

0
sqj

cqj
0

0 0 1

⎤
⎦ (j = 2,3,11,12) (60)
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The vectors from point Oj to points QHj
and

�

QHj
are respectively denoted as s

Hj

jQ and
�
s

Hj

jQ. Vector u
Hj

jQ (expressed in frame Oj xj yj zj ) represents the displacement vector of Point
�

QHj
relative to Point QHj

, resulting from the deformation. Then the following relationship
exists:

�
s

Hj

jQ = s
Hj

jQ + A0j u
Hj

jQ (j = 2,3,11,12) (61)

where u
Hj

jQ can be calculated as follows:

u
Hj

jQ = φQ
t aj (62)

The columns of modal matrix φQ
t ∈ R3×s are composed of deformation modes associated

with translational displacement coordinates of hinge definition point QHj
. Matrix φQ

t is also
constant and can be obtained by computational modal analysis.

The absolute position of Frame Oj xj yj zj can be calculated as follows:

rj = ri + s
Hj

iP − �
s

Hj

jQ

(
j = 2,3,11,12; i = i+(j)

)
(63)

The angular velocity of Frame Oj xj yj zj , denoted by ωj , can also be computed according
to the following relationship:

ωj = ωi + hj q̇j − 	
�
Q
j

(
j = 2,3,11,12; i = i+(j)

)
(64)

where hj has the same form as that of Eq. (38), and

hP
j = [0,0,1]T (65)

Moreover, 	
�
Q
j is the angular velocity of

�

QHj

�
x

Hj

Q

�
y

Hj

Q

�
z

Hj

Q with respect to QHj
x

Hj

Q y
Hj

Q z
Hj

Q .

It results from the structure deformation. With the assumption of small deformation, 	
�
Q
j is

calculated as

	
�
Q
j = A0jφ

Q
r ȧj (66)

Differentiating Eq. (63) with respect to time, the liner velocity of frame Oj xj yj zj is
obtained by

ṙj = ṙi + ω̃irij + �̃
s

Hj

jQhj q̇j − 
j i ȧj

(
j = 2,3,11,12; i = i+(j)

)
(67)

where

rij = s
Hj

iP − �
s

Hj

jQ ∈ R3×3 (68)


j i = A0jφ
Q
t + �̃

s
Hj

jQA0jφ
Q
r ∈ R3×s (69)

According to Eqs. (16), (20), and (23), Eqs. (64) and (67) can be combined into an equa-
tion as follows:

Vj =
⎡
⎣

vj

ωj

ȧj

⎤
⎦ =

⎡
⎣

E3×3 −r̃ij

O3×3 E3×3

Os×3 Os×3

⎤
⎦

[
vi

ωi

]
+

⎡
⎢⎣

�̃
s

Hj

jQhj −
j i

hj −A0jφ
Q
r

Os×1 Es×s

⎤
⎥⎦

[
q̇j

ȧj

]
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= �ij Vi + Uij ẏj

(
j = 2,3,11,12; i = i+(j)

)
(70)

where

�ij =
⎡
⎣

E3×3 −r̃ij

O3×3 E3×3

Os×3 Os×3

⎤
⎦ ∈ R(6+s)×6

(
j = 2,3,11,12; i = i+(j)

)
(71)

Uij =
⎡
⎢⎣

�̃
s

Hj

jQhj −
j i

hj −A0jφ
Q
r

Os×1 Es×s

⎤
⎥⎦ ∈ R(6+s)×(1+s)

(
j = 2,3,11,12; i = i+(j)

)
(72)

Correspondingly, the acceleration can be obtained by differentiating Eq. (70), i.e.,

V̇j = �ij V̇i + Uij ÿj + β ij

(
j = 2,3,11,12; i = i+(j)

)
(73)

where β ij has the same form as that of (54).

3.3.6 Recursive dynamic equations

After the derivation above, the kinematic relationships between adjacent bodies are estab-
lished, shown as (46), (49), (51), (52), (70), and (73). They can be expressed as the universal
recurrence equations as follows:

Vj =
{

Uij ẏj (j = 1; i = 0)

�ij Vi + Uij ẏj (j = 2, . . . ,12; i = i+(j))
(74)

V̇j =
{

Uij ÿj + β ij (j = 1; i = 0)

�ij V̇i + Uij ÿj + β ij (j = 2,3, . . . ,12; i = i+(j))
(75)

Set V = [VT
1 , . . . ,VT

n]T, y = (yT
1 , . . . ,yT

n)
T, and Eqs. (74) and (75) can be combined into

the following forms:

V = Gẏ (76)

V̇ = Gÿ + g1n (77)

where n is the number of the bodies of the system; G and g are n × n square matrixes. For
the space robotic system studied in this paper,

n =
{

10, for pre-impact stage

12, for post-impact stage
(78)

Matrixes G and g are completely determined by �ij , Uij , and β ij . They have the recursive
forms as follows:

Gj,k =
⎧⎨
⎩

�ij Gi,k if Bk < Bj

Uij if Bk = Bj

0 otherwise

(
j, k = 1, . . . , n; i = i+(j)

)
(79)
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gj,k =
⎧⎨
⎩

�ij gi,k if Bk < Bj

β ij if Bk = Bj

0 otherwise

(
j, k = 1, . . . , n; i = i+(j)

)
(80)

and

1n = [1]1×n (81)

According to (76), the velocity variation of system can be calculated as [35]:

	V = G	ẏ (82)

For multi-body system, the dynamic equations based on Jourdain’s principle [35] is

n∑
i=1

	VT
i (−MiV̇i + fi ) + 	P = 0 (83)

where Mi is the generalized mass matrix of Bi , fi is the force vector corresponding to the
body Bi .	P is virtual power of the system generated by the generalized force elements:

	P = 	ẏTfey (84)

In the equation above, fey is the generalized force vector and can be expressed as

fey = [
O6×1,τ

T
sa_rbt,O2sc×1,τ

T
m,τT

sa_target,O2st×1

]T
(85)

where τ sa_rbt ∈ R2,τ sa_target ∈ R2 are the drive torques of the solar wings of the space robot
and the target, respectively. And τm ∈ R7 is a vector composed of the drive torques of the
manipulator joints.

The generalized mass matrixes, force vectors of a rigid body, and flexible body have
different forms. For rigid bodies (i = 1,4–10),

Mi =
[

miE3×3 O3×3

O3×3 Ii

]
∈ R6×6, i = 1,4–10 (rigid body) (86)

fi = −wi + fo
i ∈ R6×1, i = 1,4–10 (rigid body) (87)

wi =
[

O3×3

ω̃iIiωi

]
∈ R6×1, i = 1,4–10 (rigid body) (88)

In the equations above, mi is the mass for body Bi , Ii = A0iI′
iA

T
0i is the 3 × 3 inertia matrix

of body Bi (here, I′
i denotes the inertia matrix of body Bi with respect to its body-fixed

frame). And wi is the quadratic velocity term defining the Coriolis force and centrifugal
forces; fo

i is a 6 × 1 vector composed of the external forces and torques exerted on Bi . For
the robotic base, fo

1 = [fT
b ,τ

T
b ]T, where fb ∈ R3,τ b ∈ R3 are the acting force and torque on

the robot base.
For flexible bodies (i = 2,3,11,12),

Mi =

⎡
⎢⎢⎢⎣

(
∑N

k=1 mk)E3×3 −∑N

k=1 mk s̃k A0i

∑N

k=1 mkφ
k
t

−∑N

k=1 mk s̃k s̃k A0i

∑N

k=1 mk s̃kφ
k
t

Symmetric
∑N

k=1 mk(φ
k
t )

Tφk
t

⎤
⎥⎥⎥⎦ ∈ R(6+s)×(6+s) (89)
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fi = −wi + fo
i − fu

i (90)

wi =

⎡
⎢⎢⎢⎣

2ω̃A
∑N

k=1 mkφ
k
t ȧ + ω̃ω̃

∑N

k=1 mksk

2
∑N

k=1 mk s̃kω̃Aφk
t ȧ + ω̃

∑N

k=1 mk s̃k s̃kω

2
∑N

k=1 mk(φ
k
t )

TAω̃ATφk
t ȧ + ∑N

k=1 mk(φ
k
t )

TATω̃ω̃sk

⎤
⎥⎥⎥⎦ ∈ R6+s (91)

fu
i =

⎡
⎢⎢⎣

O3×1

O3×1

Kiai + Ci ȧi

⎤
⎥⎥⎦ ∈ R6+s (92)

where N is the number of finite element nodes, mk is the lumped mass at node k, and sk

is the position vector from the origin of the floating reference frame to node k. fu
i is the

generalized deformation force of flexible body Bi , and Ki and Ci are the stiffness matrix
and damping matrix, respectively.

Set M = diag(M1, . . . ,Mn), f = [fT
1 , . . . , fT

n]T, (83) can be simplified as follows:

	VT(−MV̇ + f) + 	P = 0 (93)

Substituting (77), (82), and (84) to (93),

	ẏT
(−Zÿ + z + fey

) = 0 (94)

where

Z = GTMG ∈ R((n+5)+2(sc+st))×((n+5)+2(sc+st)) (95)

z = GT(f − Mg1n) ∈ R((n+5)+2(sc+st))×1 (96)

Since the change of generalized velocity is independent, the final form of the dynamic
equation is expressed as

Zÿ = z + fey (97)

Z can be written as n sub-matrixes; correspondingly, z can be segmented into n column
vector. And Zk,l is the kth row and lth column submatrix, zk is the kth subvector. They can
be completely determined by G, g, M, and f, i.e.,

Zk,l =
n∑

i=1

Zi
k,l (98)

zk =
n∑

i=1

zi
k (99)

where

Zi
k,l =

{
GT

i,kMiGi,l , if both Bk and Bl are the channel of Bi

0, otherwise
(100)

zi
k =

{
GT

i,kf∗i , if Bk is in the channel of Bi

0, otherwise
(101)
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f∗i = fi − Mi

∑
l:Bl≤Bi

gi,l (102)

4 Dynamic equations resolving and model verification

4.1 Programming dynamics calculating code using C language

4.1.1 The algorithm flow of solving dynamic equations

The dynamic equations of the space robot system corresponding to the pre and post-impact
stages have been derived in Sect. 3. For the applications of controller design, dynamics sim-
ulation, and analysis, these equations must be solved using analytical or numerical methods.
Due to the complexity of the system, the analytical method is not available easily. Consid-
ering the numerical robustness and computational accuracy, we use the Runge–Kutta–Gill
method (referred to as the Gill method) [36] to solve the dynamic differential equations. The
dynamics calculating code is programmed using the standard C language.

Let

ȳ = [
yT, ẏT

]T
(103)

z̄ = z + fey (104)

Equation (97) is transformed into a first-order equation, i.e.,

A ˙̄y = B (105)

where

A =
[

E29×29 0

0 Z

]
(106)

B =
[

ẏ

z̄

]
(107)

Figure 13 shows the algorithm flow, and the main steps are as follows:

(1) Initialization, including the following steps: (i) Read the system parameters from the
data file. The system parameters includes the masses of each body, the moments of
inertia with respect to the centroid when undeformed, the positions of each hinge with
respect to the inscribed body and the external body, the initial installation matrixes
and the constants of the generalized mass matrix of flexible bodies. (ii) Determine
the initial system state ȳ0, simulation time tf , integration step dt , etc. (iii) Set t = 0,
ȳ(t) = ȳ0.

(2) Update the current state by the calculation results of the previous step; Generate the
coordinate transformation matrix A0j , the axis vector of hinge h, according to Eqs.
(24), (38), and (57);

(3) Generate matrix �ij , Uij ,β ij , Mi , and fi , according to Eqs. (47), (48), (54), (86)/(89),
and (87)/(92);

(4) Generate matrix G and g by �ij , Uij , and β ij , according to Eqs. (79) and (80);
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Fig. 13 The algorithm flow of
solving dynamic equations

(5) Generate matrix Z and z by G, g, M, and f, and update the generalized force fey ,
according to (100) and (101);

(6) Determine the state variables at next time ȳ(t + dt), using the Gill integration method;
(7) Update the time and the system state variables, i.e., t = t + dt , ȳ(t) = ȳ(t + dt);
(8) If t < tf , go to step (2) and continue the next step; else, go to step (9);
(9) Output ȳ(t) and other parameters of concern;

(10) The algorithm stops, meaning that the dynamic motion within tf ends.
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For the steps above, the calculating of ȳ(t +dt) using Gill integration method is the most
important. The next section will detail this integration method.

4.1.2 The numerical integration of dynamics equation using Gill method

The Gill version of the Runge–Kutta method for solving ordinary differential equations
(ODEs) became popular due to allocating fewer arrays than the classical Runge–Kutta
method.

According to (105), the following result is obtained:

˙̄y = f (ȳ) (108)

where

f (ȳ) = A−1B (109)

The Gill method is used to integrate the differential equations (108); the integration result
is as follows:

ȳt+dt = ȳt + 1

6

[
k0 + (2 − √

2)k1 + (2 + √
2)k2 + k3

]
dt (110)

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k0 = f (ȳt )

k1 = f (ȳt + 0.5k0dt)

k2 = f (ȳt +
√

2−1
2 k0dt + 2−√

2
2 k1dt)

k3 = f (ȳt −
√

2
2 k1dt + 2+√

2
2 k2dt)

(111)

The value of f (ȳ) is needed to be repeatedly calculated at every step during the actual
calculation process. Equation (109) shows that the inversion of Matrix A is required to be
calculated for computing f (ȳ). Since A is a square matrix with a very large dimension (in
this paper, n = 12, sc = 3, st = 3, A is 58 × 58 square matrix), the direct calculation of its
inversion requires large computational load and may cause numerical problems. Then we
use the indirect method to get f (ȳ) avoiding to calculate the matrix inverse.

According to (103) and (108),

f (ȳ) = [
ẏT, ÿT

]T
(112)

Let f (ȳ) = [yT
1 ,yT

2 ]T, where y1 = ẏ, y2 meets the following linear equation:

Zy2 = z̄ (113)

Therefore, the matrix inversion can be transformed into solving linear equation (113).
Considering that the system is a rigid-flexible coupling system, we use an iterative algorithm
to solve Eq. (113). The procedure is as follows:

(1) Use the complete pivot Gaussian elimination method to resolve Eq. (113), and a set of
preliminary results, denoted as Y(1)

2 , is obtained:
(2) Calculate R = z̄ − ZY(1)

2 ;
(3) Solve ZδY2 = R by complete pivot Gaussian elimination method;
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Table 1 The mass properties of rigid bodies

Parameter Body

B1 B4 B5 B6 B7 B8 B9 B10 B′
10

Mass (kg)

1500 15 15 30 30 15 15 30 5000

ai (m) 0 0 0 0 0 0 0 0 1.8

0 0 0 1.15 1.15 0 0 0 0

0 0.15 0.15 −0.15 −0.15 −0.15 0.15 0.25 0

bi (m) 0.9 0.15 0 0 0 0.15 0.15 0 –

1.1 0 −0.15 1.15 1.15 0 0 0 –

0 0 0 −0.15 −0.15 0 0 0.44 –

I′
i

(kg m2) Ixx 150 1.0 1.0 2.0 2.0 1.0 1.0 2.0 300

Iyy 150 1.0 1.0 2.0 2.0 1.0 1.0 2.0 300

Izz 150 1.0 1.0 2.0 2.0 1.0 1.0 2.0 300

Ixy 0 0 0 0 0 0 0 0 0

Ixz 0 0 0 0 0 0 0 0 0

Iyz 0 0 0 0 0 0 0 0 0

(4) Calculate Y(2)

2 = Y(1)

2 + δY2;

(5) Calculate 	 = max
|Y (2)

2i
−Y

(1)
2i

|
1+|Y (2)

2i
| , if 	 < ε (ε is a threshold to determine the convergence

condition), y2 = Y(2)

2 , and go to (6), otherwise let Y(1)

2 = Y(2)

2 and go to (2);
(6) Output the solution and end the algorithm.

4.2 The verification of the developed dynamics model

Before the developed dynamics calculation program can be used for further applications,
such as dynamics simulation and analysis, it is must be verified first. As is well known
to all, there are some commercial dynamics software packages such as Adams, DADS, and
RecurDyn, etc. Since Adams/Flex, an add-on module to the Adams 2012® provides effective
ways to add flexible bodies to the models built in Adams, we create the virtual prototypes
of the space robot for the pre and post-impact cases, and use them to verify the dynamics
calculation program developed using C language under the same condition, i.e., the same
system parameters, initial state, drive torques, etc.

4.2.1 The model parameters

The mass properties of the rigid bodies The rigid bodies of the space robot (the post-
capture stage is taken as the example) include the central rigid body (B1) of the space robot,
the rigid links of the space manipulator (B4–B10) and the central rigid body (B′

10) of the
target spacecraft. The frames fixed on the multibody system are defined as Figs. 5, 6, and 8.
Vectors ai ,bi ∈ R3 (i = 4, . . . ,11) are defined as the position vectors from Hi to Ci (the
center of mass of Bi ) and Ci to Hi+1, respectively. Vectors a1,b1 ∈ R3 are respectively from
H1 to C1 and C1 to H4. I′

i is the inertia tensor of Bi with respect to its mass center. The mass
properties are listed in Table 1.
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Table 2 The geometric and material parameters of the solar wings

Type Parameter

Size: a × b × c (m) Density ρ

(kg/m3)
Elastic modulus
E (Pa)

Poisson’s ratio
υ

The solar wings of the
space robot (B2/B3)

8.88 × 2.33 × 0.025 30 8 × 109 0.3

The solar wings of the
target (B11/B12)

16.262 × 2.29 × 0.025 30 8 × 109 0.3

Table 3 The modal frequencies
of the solar wings Order Frequency (Hz)

Solar wings (B2/B3) Solar wings (B11/B12)

1 0.5661 0.1841

2 3.2373 1.1154

3 3.9854 2.4119

4 7.9756 3.0026

5 10.646 5.4288

The structure parameters and mode shapes of the solar wings The solar wings of the space
robot (i.e., bodies B2 and B3) are respectively installed at [0, 0, 0.75] and [0, 0, −0.75]
with respect to the centroid frame of B1 (i.e., O1x1y1z1). For the target spacecraft, its solar
wings (i.e., bodies B11 and B12) are installed at [0, 1.05, 0] and [0, −1.05, 0] with respect
to the centroid frame of B′

10 (i.e., O′
10x

′
10y

′
10z

′
10), respectively. The geometric and material

parameters of the solar wings are shown in Table 2.
The structure dynamic characteristics are analyzed using ANSYS software, a finite el-

ement analysis (FEA) code widely used in the computer-aided engineering (CAE) field,
based on the theory of modal analysis. The first five natural frequencies calculated by AN-
SYS are shown in Table 3. With structural modal analysis of the solar wing by ANSYS
software, we can get the natural frequencies, the modal matrixes, the lumped mass of each
node, the position vector from the origin of the floating reference frame to each node, etc.
These parameters are used for the C program of Sect. 4.1.

4.2.2 Model verification results

After the reference model is created in Adams, the developed dynamics calculation code
can be verified by comparing the response of the two sets of model under the same drive
torques. A variety of cases of simulation are carried out. Due to the length limitation of the
paper, only the results of a typical case are given here.

The robot base is free-floating (i.e. the forces and torques acting on the robot base are
zeros), and the target is grasped by the space manipulator. The drive torques of the space
manipulator joints (i.e. H4–H10) are shown in Table 4. The simulation period tf is 20 s, and
the integration time step is 0.01 s.

Under the same drive torques, the simulations are performed using the models created in
the C code and Adams software. The output data that represent the system dynamic response
corresponding to the two sets of model are saved as “.txt” files. Then they are read by Matlab
software simultaneously. The values of same variables are then compared and plotted on a
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Table 4 Drive torques of the space manipulator

Torque Joint 1
(H4)

Joint 2
(H5)

Joint 3
(H6)

Joint 4
(H7)

Joint 5
(H8)

Joint 6
(H9)

Joint 7
(H10)

Ti (N m) 10 sin (2πt/5) 2 −3 5 sin (πt) 10 sin (πt/2 + π/4) 3 5

figure. Here, we give the comparison results of the joint angles, the centroid position and
attitude of the robot base, and the vibration curves of the solar wings.

The absolute and relative errors of each state variable are respectively defined as follows:

	xi,max = max
0≤t≤tf

∣∣xi,C(t) − xi,Adams(t)
∣∣ (114)

	xi,max % = 	xi,max

max0≤t≤tf |xi,Adams(t)| × 100 % (115)

where xi is the ith element of the state vector x, which can be joint angle vector �, position
vector r1 and attitude vector �1. The values of the sate variables calculated by C code and
the Adams software are respectively denoted as xC(t) and xAdams(t). Then the absolute and
relative errors of the state variables are represented as (p is the dimension of the vector):

	xmax = [	x1,max,	x2,max, . . . ,	xp,max]T (116)

	xmax % = [	x1,max %,	x2,max %, . . . ,	xp,max %]T (117)

The joint angle curves are plotted in Fig. 14, showing that the two sets of curves coincide
with each other very well.

According to the simulation results, we can calculate the absolute and relative errors of
the joint angles are

	�max = [
0.074o,0.045o,0.065o,0.012o,0.026o,0.020o,0.061o

]T
(118)

	�max % = [
0.012 % 0.014 % 0.051 % 0.011 % 0.041 % 0.040 % 0.007 %

]T

(119)

The curves of the attitude and centroid position (with respect to the inertial frame) of
the robot base are shown in Fig. 15. The maximum differences of the centroid position and
attitude calculated by the C code and Adams software are respectively:

	r1 max = [
9.63 × 10−5, 1.1 × 10−5, 2.4 × 10−5

]T
(m) (120)

	�1 max = [
6.22 × 10−3, 1.77 × 10−3, 8.79 × 10−3

]T (◦)
(121)

The relative errors are as follows:

	r1 max(i) % = [
0.010 %, 0.017 %, 0.018 %

]T
(122)

	�1 max (i) % = [
0.029 %, 0.011 %, 0.017 %

]T
(123)

The vibrations of the solar wings are also analyzed. The y-axis components (i.e., yG and
yH) of the end-point positions (i.e., Point G shown in Fig. 5, and Point H shown in Fig. 8) of
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Fig. 14 The curves of the joint angles

Fig. 15 The vibration curves of the centroid position and attitude of the robot base

the solar paddles with respect to the floating coordinate system is used to describe the struc-
ture vibration. Figure 16 shows the vibrations of the solar wings B2 and B11. The maximum
differences about the values calculated by C code and Adams software are 1.346 mm and
0.024 mm for B2 and B11, respectively. The relative errors are less than 0.27 % and 0.07 %.

According to the results above, the dynamics model developed using the C language is
accurate and reliable. Its calculation results are almost the same as those of Adams. Further-
more, the dynamics model has a high computing speed, and can be completely integrated
into Matlab/Simulink through the S-function to conduct closed-loop control simulation.
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Fig. 16 The displacement of the end point along the y-axis of solar wings B2 and B11

5 The development of dynamics calculation block and its application in
Matlab/Simulink

5.1 The implementation of the Matlab/Simulink block

We developed a dynamics calculation block for Matlab/Simulink using S-Function block,
written in C language and conforming to S-Function standards. The main steps are shown
in Fig. 17. The developed dynamics calculation block has very high computation effi-
ciency because it is programmed in C code and can be integrated into Matlab/Simulink
as a normal block. Section 4.1 has introduced the programming of the dynamics calculat-
ing code using C language; the file name of the C code is “Dynamic.c.” Then the C MEX
S-function is used to integrate it into Matlab/Simulink environment. The implementing re-
sult (sfun_Dynamic.mdl) of the dynamics calculation code is shown in Fig. 18. The input
and output ports are on the left and right, respectively. The inputs include the force/torque
(Base_Fb/Base_Tb) acting on the robot base and the drive torque (JntCtrlTor) of the joints.
And the outputs are mainly the system state variables and other variables of interest, includ-
ing the centroid position (Base_R) and the attitude (Base_Phi) of the robot base, the joint
angles (JntAngle) and angular velocities (JntRate).

5.2 The closed-loop simulation system

After the dynamics calculation block is implemented in Simulink environment, we can fur-
ther develop the closed-loop simulation system. The system is composed of three modules
(see Fig. 19): the Planning and Controller, the Multibody Dynamic, and the Display mod-
ules. “The Planning and Controller” runs the main functions to control the space robot,
including the GNC (Guidance, Navigation, and Control) algorithms of the robot base, the
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Fig. 17 The steps of developing
the dynamics calculation block
for Matlab/Simulink

Fig. 18 The dynamics
calculation block for
Matlab/Simulink

planning of the space manipulator, the AOCS (attitude and orbital control subsystem) ac-
tuator, and the joint controller. For the planning function, it plans the motions of the space
robotic system to track the desired motions. The “Multibody Dynamic” models the rigid-
flexible coupling dynamics characteristics of the space robot capturing a large flexible space-
craft. The inputs of the “Multibody Dynamic” module are the driving forces or torques of
each degree of freedom, and the outputs are the position and velocity of each DOF. “The
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Fig. 19 The structure of the closed-loop simulation system

Fig. 20 The closed-loop simulation system in Simulink environment

Display” module realizes the 3D animation and curve plotting during the simulation. The 3D
animation submodule displays the 3D motion of the chaser and target in real-time, according
to the states output from the “Multibody Dynamic” module.

As introduced above, the “Multibody Dynamic” module has been implemented as a nor-
mal block of Simulink, and is directly used here. Similarly, due to the complexity, “the GNC
of the Base” and “the Planner of the Space Manipulator” are both implemented using the
C MEX S functions. The 3D animation submodule, whose 3D models including the mod-
els of the chaser and the target, are created using “Virtual Reality Toolbox” of Matlab. The
completed simulation system in Simulink environment is as shown in Fig. 20. A 3D display
example corresponding to the given state is shown in Fig. 21.

6 Dynamics analysis using the simulation system

As discussed above, it is a difficult task with high risk for a flexible-base space robot to
capture and manipulate the large flexible spacecraft. The motion of the manipulator will
lead to the vibration of the large flexible structure and cause serious consequences. Based
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Fig. 21 The capturing
configuration

on the developed closed-loop simulation system, many cases (normal or extreme operat-
ing conditions) can be analyzed through the dynamics simulation. Then the key trajectory
planning and control algorithm for suppressing the flexible vibration can be verified, val-
uated, and improved. Here, we performed the dynamics analysis of the flexible-base space
robot manipulating the large flexible spacecraft for two typical applications: one is the target
berthing mission—to move the captured target from the capturing configuration to the nor-
mal berthing configuration [37]; the other is the on-orbital manipulating of the target along
a circle.

6.1 Dynamics analysis of the target berthing mission

6.1.1 The initial conditions

When the target is just captured (i.e., the preimpact and contact/impact stages are finished),
the space manipulator is in a nonideal configuration. The target must be moved to the normal
configuration for the next on-orbital servicing tasks. This process is called target berthing,
and the normal configuration is named berthing configuration.

It is assumed that the capturing configuration and the berthing configuration are respec-
tively as follows:

�0 = [
60o 90o 0o −60o 0o −30o 110o

]
(124)

�f = [
90o 90o −80o −100o 90o 0o 90o

]
(125)

The 3D states corresponding to (124) and (125) are shown in Figs. 21 and 22, respec-
tively. They are supplied by the Display module of the simulation according to Fig. 20
(hereinafter is the same).

The 3rd polynomial function is used to plan the joint trajectory, i.e.,

θi(t) = ai0 + ai1t + ai2t
2 + ai3t

3 (126)

Parameters a0–a3 are the coefficients of the 3rd polynomial. They are determined according
to initial and final conditions as follows:

θi(0) = θi0, θi(tf ) = θif , θ̇i (0) = 0, θ̇i (tf ) = 0 (127)
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Fig. 22 The berthing
configuration

where θi0 and θif are respectively the initial and final angles of ith joint. When the motion
time tf is given, the parameters are calculated as

ai0 = θi0, ai1 = 0, ai2 = 3

t2
f

(θif − θi0), ai3 = − 2

t3
f

(θif − θi0) (128)

6.1.2 The simulation and analysis

In order to analyze the relationship between the structure vibration of the solar wings and the
motion of the space manipulator, the simulations of faster and slower motion are performed.
For the faster motion, the total simulation time length is 60 s, but the manipulator moves
only between 0–30 s from the capturing configuration to the berthing configuration. After
30 s, all joints are locked. For the slower motion, the simulation time length is 150 s, during
which it takes the manipulator 90 s to berth the target, and all joints are locked after 90 s. The
residual vibration of the solar wings and the variation of the pose of the robot base centroid
are observed.

(1) Case 1: Simulation of faster motion
According to the simulation results, the joint angles are shown as Fig. 23. And the pose

of the robot base and the target are shown as Figs. 24 and 25, respectively. It is obvious
that the movement displacement of the robot base is much greater than that of the target.
This is because that the mass property parameters of the space robot are much smaller than
those of the target spacecraft. If observed in the inertial space, the free-floating space robot
is actually “moved” by the target satellite from a pose to another pose.

The vibration curves of the solar wings are shown as Fig. 26. Similar with Sect. 4.2.2,
the vibration of the solar wings described using the movement displacement of the end
point of the solar wing relative to the y-axis direction of the floating coordinate system.
Figures 26(a) and 26(b) respectively illustrate the vibrations (i.e., the y-axis position of
Point GyG and Point GyH) of solar wing B11 and B2. It can be seen that the vibration level
of B11 is significantly greater than that of B2. The maximum amplitude of the B11 reaches
50 mm, but it is only 5.59 mm for B2. These results show that although the acceleration of
the target is relatively small, its solar arrays vibrate severely, due to its large flexibility.
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Fig. 23 The curves of the joint angles for faster mission

Fig. 24 The pose of the space robot base for faster mission

(2) Case 2: Simulation of slower motion
The total simulation time is 150 s, wherein the manipulator movement time is 90 s.

Figure 27 shows the joint angles. Figures 28 and 29 show the pose of the space robot base
and the target, respectively. And Fig. 30 shows the vibration curves of the solar wings.
Compared with the simulation of faster motion, the vibration of the solar wings decreases
significantly. It shows that the decreasing of the motion speed greatly reduces the vibration
amplitude (only 0.68 mm for B2, and 6.24 mm for B11).



392 W. Xu et al.

Fig. 25 The pose of the target spacecraft for faster mission

Fig. 26 The vibration displacement of the solar wings for faster mission

6.2 Dynamics analysis of on-orbital manipulating the target

6.2.1 The initial conditions

Another typical mission is to manipulate the target along a certain Cartesian trajectory rela-
tive to the robot base. Since a circle trajectory contains sufficient position and speed infor-
mation, it is often used to test the performance of a space manipulator. Here, the on-orbital
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Fig. 27 The curves of the joint angles for slower mission

Fig. 28 The pose of the space robot base for slower mission

manipulating mission of a target along a circle is designed to analyze the dynamic properties
of the space robot when grasping the large flexible spacecraft.

The circle center Oc is located at the position whose coordinates (with respect to the
centroid frame of B1, i.e., O1x1y1z1) are

Oc = [
ocx, ocy, ocz

]T = [
4.7, 3.95, 1.0

]T
m (129)

The radius of the circle is

rc = 1.0 m (130)
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Fig. 29 The pose of the target spacecraft for slower mission

Fig. 30 The vibration displacement of the solar wings for slower mission

The initial joint angles of the space manipulator are as follows:

�0 = [
7.675o, 90.372o, −86.418o, 98.283o, 75.378o, −97.684o, 87.218

o]T

(131)
The centroid of the target grasped by the space manipulator is initially located on the

circle and the coordinates are (with respect to Frame O1x1y1z1):

Pt0 = [4.7, 3.95, 2.0]T m (132)
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Fig. 31 The initial state of the
system

The 3D state corresponding to initial condition is shown as Fig. 31. The manipulator will
move the target, making its centroid moves along the circle determined by (129) and (130)
relative to frame O1x1y1z1.

6.2.2 The simulation and analysis

The trajectory of the centroid of the target manipulated by the space manipulator is planned
using two different interpolation methods, in order to compare the effect on the structure vi-
bration for different Cartesian trajectory planning methods. Firstly, the parametric equation
of the circle should be established as follows:

⎧⎪⎨
⎪⎩

ptx = ocx

pty = ocy − rc sinϕ

ptz = ocz + rc cosϕ

(133)

where ϕ is a parameter to define a position on the circle; it can be determined by differ-
ent polynomial interpolation. Here, we adopt the 3rd polynomial interpolation and the 5th
polynomial interpolation to get ϕ, respectively.

For the 3rd polynomial interpolation, the initial and final conditions of ϕ are given as
follows:

{
ϕ(0) = 360o, ϕ(tf ) = 0o

ϕ̇(0) = 0, ϕ̇(tf ) = 0
(134)

When the motion time tf is given, Parameters a0–a3 are calculated using Eq. (128). And
then the 3rd polynomial function about ϕ is obtained by Eq. (126) as follows:

ϕ(t) = a0 + a1t + a2t
2 + a3t

3 (135)
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For the 5th polynomial interpolation, the initial and final conditions of ϕ are given as
follows:

⎧⎪⎨
⎪⎩

ϕ(0) = 360o, ϕ(tf ) = 0o

ϕ̇(0) = 0, ϕ̇(tf ) = 0

ϕ̈(0) = 0, ϕ̈(tf ) = 0

(136)

The 5th polynomial function is used to plan the parameter ϕ as follows:

ϕ(t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5 (137)

Parameters a0–a5 are the coefficients of the 5th polynomial. They are determined according
to initial and final conditions:

a0 = ϕ0, a1 = 0, a2 = 0, a3 = 10(ϕf − ϕ0)

t3
f

,

a4 = −15(ϕf − ϕ0)

t4
f

, a5 = −6(ϕf − ϕ0)

t5
f

(138)

After the Cartesian trajectory is determined, the joint trajectory is calculated using the
inverse kinematic resolution equations. The total simulation time length is 100 s, during
which it takes the manipulator 75 s to manipulate the large flexible target spacecraft. After
75 s, all joints are locked, and the residual vibration of the solar wings is observed. The
planning curves for ϕ using 3rd and 5th polynomial functions are shown as Fig. 32.

According to the simulation results, the vibration of the solar wings corresponding to the
3rd and 5th polynomial planning is shown as Fig. 33. The residual vibration and the resulting
attitude motion of the robotic base are shown as Figs. 34 and 35. From these results, we can
get some conclusions as follows:

(1) The 3rd polynomial interpolation algorithm cannot guarantee that the initial and final
accelerations are zeros. Therefore, it will lead to larger vibration of the solar wings
within a short period of time after the beginning and before the end of the motion.
In this regard, the 5th polynomial interpolation algorithm is much better than the 3rd
polynomial, since the planned accelerations at the beginning and end are both zeros
(see Fig. 32);

(2) During the motion, the fluctuation of the vibration amplitude caused by the 3th poly-
nomial trajectory is much more sharp and frequent and has much higher vibration
amplitudes than that of the 5th polynomial trajectory. This means that the reaction
forces/torques on the base corresponding to the 5th polynomial trajectory are relative
more smooth (see Fig. 33).

(3) The residual vibration caused by the 5th polynomial planning is much smaller than that
of the 3rd polynomial planning. The comparison results of the residual vibration by the
5th and 3rd polynomial trajectories are shown as Fig. 34. The variation curves of the
attitude angle and angular velocity of the robotic base due to the residual vibration are
shown as Fig. 35, illustrating that the 3rd polynomial planning caused larger instability
of the robot base than 5th polynomial planning.
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Fig. 32 The planning curves for ϕ using 3rd and 5th polynomials

7 Conclusion

The spacecraft to be launched to space will increase significantly in scale to satisfy more
application requirements. Large flexible components such as antenna reflectors and solar
paddles should be inevitably mounted onto the spacecraft. To serve such a target, it is re-
quired the space robot, which generally has flexible solar wings, to approach, capture, and
manipulate it. In this paper, we derived the dynamical equations, developed a closed-loop
simulation system, and analyzed the structure vibration of typical applications. Some useful
results are obtained as follows:

(1) For a given path, shorter movement time (larger speed and acceleration) results in
greater structure vibration. The vibration amplitude will decrease largely when increas-
ing the movement time. However, too long of time will reduce the efficiency of perform-
ing the on-orbital tasks. Therefore, the movement time can be optimized to minimize
the vibration under other constraints.

(2) Good planning algorithm can play a significant role in reducing vibration. For example,
the 3rd polynomial algorithm generates non-zeros initial and final accelerations. There-
after, the acceleration mutation causes larger vibration at the beginning and the end
time (i.e., residual vibration). In contrast, the 5th polynomial settles this problem well.
However, a single polynomial planning cannot guarantee minimum vibration during the
whole movement, especially for complex path planning requirement.
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Fig. 33 Vibration displacement with 3rd and 5th polynomial planning

Fig. 34 The comparison of the residual vibration
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Fig. 35 The attitude motion of the robot base resulting from the residual vibration

(3) Although the planned trajectory is optimized by suppressing the vibrations, it is not
still assured that the practical movement is reduced, since the planned motion is only
an input of the controller. The drive torques generated by the controller will affect the
vibration largely. Therefore, it is very important to design advanced control laws to
suppress the structure vibration. The dynamics analysis results is very helpful to de-
termine the parameters for the control laws, such as input/command shaping, adaptive
feedback/feedforward, artificial neural networks, etc. The planning and control func-
tions should not be considered separately. They should be designed as a whole means to
handle the vibration reducing problems.

(4) The modeling, simulation, and verification method addressed in this paper is very use-
ful for the study of other complex dynamic systems. The derived dynamics equations
are written in a recursive form and are resolved by an efficient numerical integration
method—Gill method. It is very convenient to program the dynamics calculation code
using C language, and then encapsulate it as a Simulink block, which is directly used in
Matlab/Simulink environment. Combining the powerful control, display, and other tool-
boxes, different algorithms for trajectory planning and control can be verified. Similar
study on other dynamic system can follow this concept.

Further theory analysis and dynamics simulation show that the relationship between the
direction of rigid movement and that of flexible vibration also determines the vibration level.
In fact, this angle reflects the coupling effect between the rigid movement and the flexible
vibration. The smaller the angle (≤90o) between the rigid acceleration vector and the vibra-
tion direction, the greater vibration of the flexible structure is. When it attains 90o, almost
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no vibration corresponding to a certain modal shape occurs. In the future, we will give the
details of some application examples.
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