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Abstract Multibody system simulation is an important tool in the development process in
vehicle engineering. Without much effort, different vehicle variants and designs can be sim-
ulated, analyzed, and optimized. This is of particular relevance in an early stage of develop-
ment, when no physical prototypes are available yet. In order to simulate the vehicle models
under realistic conditions, suitable input data is needed for the simulation. We present an
approach to derive a virtual road profile based on a tire-surrogate model, measured spindle
forces, and a multibody system model of the measurement vehicle. In contrast to the mea-
sured spindle forces, the road profile together with the tire-surrogate model can be used to
simulate other vehicle variants, for which no measurements are available. The road profile
is derived by solving an inverse control problem. We formulate this inverse problem in the
context of system simulation and provide a short mathematical analysis. Additionally, we
discuss a solution approach, the method of control-constraints, which is also applied in a
numerical simulation study to compute a virtual road profile.

Keywords Multibody systems · Vehicle engineering · Numerical simulation · Inverse
problems · Control

1 Introduction

Today, numerical system simulation plays an important role in many technical areas, espe-
cially in vehicle engineering. The design and development process of a new vehicle can be
accelerated significantly by using numerical simulation methods. A simulation on a com-
puter is efficient and results are easy to reproduce, different variants, designs, and configu-
rations as well as different load scenarios can be simulated, analyzed, and optimized rapidly
and easily [17, 28].

In the development process, the vehicle and its components have to be examined and
assessed with respect to durability and fatigue under realistic conditions, it is necessary to
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know the loads that act on the vehicle’s components. The latter can be obtained by mea-
surement during a test-track drive or on a servo-hydraulic test-rig in the laboratory. Another
very efficient alternative and state-of-the-art method in automotive industry is to use numer-
ical system simulation [16]. The vehicle is modeled as multibody system (MBS), possibly
including flexible components, hydraulic elements, bearings, controllers etc., and it is sim-
ulated to obtain the relevant loads as outputs of the numerical integration [2]. This approach
is especially useful in an early stage of development, in which no physical prototype is
available yet, and thus it is impossible to perform test-track drives or test-rig runs while
measuring the corresponding loads.

For the system simulation, it is crucial to have suitable input data, such that a numeri-
cal simulation under realistic conditions can be achieved. There are mainly three simulation
scenarios that realize this task, cf. [3, 11, 12]. The first is a so-called full-vehicle simulation
on a digital road. Here, a detailed MBS model of the vehicle is needed, including a model
of the driver with a specified driving pattern, and a model of the tire in a suitable quality.
In addition, a measured and digitized road profile must be available. All these necessary
ingredients require a high modelling effort [3]. The second approach is to apply measured
spindle forces and to perform a force-excited simulation. Apart from the numerical diffi-
culties of such a simulation (see [27]), the spindle forces depend highly on the vehicle that
was used for the measurement. Therefore, they can only be used to simulate a model of the
specific measurement vehicle, not for other vehicle models. The third scenario consists in
deriving a suitable invariant input quantity based on a vehicle model, for which measured
quantities are available, e.g., the predecessor vehicle of a new design. An invariant input
quantity in this context is an input quantity that is independent on the vehicle under consid-
eration, i.e., it is invariant with respect to certain modifications of the vehicle, and thus it
can be used to simulate vehicle variants, for which no prototype or measured data is avail-
able. As an example for such an invariant quantity, we propose a six-dimensional virtual
road profile in connection with a tire-surrogate model [11, 12]. This virtual profile can be
interpreted as the motion of a frame attached at an idealized tire contact point. Using this
approach, neither a complex tire and driver model nor a digitized road is needed. However,
to obtain this virtual road profile, an inverse control problem has to be solved.

From a system-theoretic point of view, this inverse control problem can be formulated
as follows. Let S denote the system, for which measured quantities are available, the MBS
model of a car, for example. Furthermore, let yREF denote the measured quantities at the
corresponding real car. Then the task is to find an input quantity u for the system S that
reproduces the measured quantities:

yREF = S(u). (1)

For the testing on servo-hydraulic test-rigs, an inverse problem of the same kind has to
be solved, in order to excite the test-rig properly [14, 15]. Here, S represents the physical
test-rig and a mathematical description can only be determined by methods of experimen-
tal system identification [14]. The inverse problem is then solved iteratively by inverting a
linearized, experimentally estimated transfer function [15, 29]. This approach is useful, if
there is not more information about the considered system available, but the difficulties are
apparent: the linearization and estimation does not globally reflect the nonlinear behavior of
the test-rig, convergence, and stability properties are often very poor, a high number of iter-
ations, and expert knowledge is typically indispensable to obtain a satisfying solution [15].

If the considered system is a simulation model, however, a lot more information is avail-
able. In case of an MBS model, the mathematical description is known in terms of differ-
ential equations based on physical modeling techniques. In this paper, we only consider
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systems that are numerical simulation models. We present a mathematical analysis and a
solution approach, cf. also [11].

Apart from the described application case, similar inverse problems appear in the path
planning and control of robots, cranes, [8, 24], and aircrafts [6, 10]. See also [30] for further
examples.

The remaining part of this paper is organized as follows. In Sect. 2, we provide a short
mathematical analysis. The inverse control problem is formulated and a solution approach is
presented. In Sect. 3, we discuss in detail the application to vehicle simulation. We describe
a procedure that allows to concentrate on tire-surrogate models, in order to derive a virtual
road profile. In a numerical case study, we analyze the invariance properties of the computed
input data. After that, a concluding discussion follows in Sect. 4.

2 Mathematical analysis of the inverse control problem

In this section, we provide a mathematical framework, in order to formulate precisely an
inverse control problem in the context of system simulation. In addition, we present a short
analysis of that problem. Throughout this section, we assume that the appearing right-hand
side and output functions f,g, k,h are sufficiently smooth and that the corresponding initial-
value problems possess a unique solution existing on the considered time intervals.

2.1 Formulation of the inverse control problem

We consider a general dynamical system mathematically described as nonlinear first-order
ordinary differential equation (ODE) of the form

ẋ = f (t, x,u), (2)

with x ∈ R
nx called the state of the system and u the input or control. Obviously, the equa-

tions of motion of a controlled mechanical MBS [17],

M(q)q̈ = k(t, q, q̇, u), (3)

with position coordinates q ∈ R
nq , the mass matrix M ∈ R

nq×nq and k subsuming all acting
forces, can be seen as a special case of this general form. Indeed, by transforming into a
first-order system,

q̇ = v,

v̇ = M(q)−1k(t, q, v,u),
(4)

and by setting x = (qT , vT )T ∈ R
2nq and f (t, x,u) := (vT , k(t, q, v,u)T )T , we obtain the

form given in (2).
Numerical system simulation in this context means the numerical solution of the ini-

tial value problem (IVP) given by (2) on a given time interval I := [0;T ], T > 0 and the
condition

x(0) = x0 (5)

with a given vector x0 ∈ R
nx and a given input function u, cf. [2, 17].
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Next, we define the system-outputs,

y(t) := h
(
t, x(t), u(t)

)
(6)

for t ∈ [0;T ] and an output function h : I × R
nx × R

nu → R
ny . We remark that in most

application scenarios, the output function h is not explicitly depending on the control, i.e.,
hu ≡ 0. If, however, the acceleration of a controlled body is considered as output, an explicit
dependency may occur. Thus, for sake of completeness, we consider the general case in the
sequel.

In a functional view, system simulation can be described by the solution operator, [11],
which we define for the initial value problem (2), (5) as follows:

F : L∞(
I ;R

nu
) −→ W 1,∞(

I ;R
nx

)
,

u �→ corresponding solution of the IVP (2), (5).
(7)

L∞(I ;R
nu) denotes the space of essentially bounded functions and W 1,∞(I ;R

nx ) is the
space of absolutely continuous function with essentially bounded first derivative. Moreover,
the input–output-operator is defined as

Fh : L∞(
I ;R

nu
) −→ L∞(

I ;R
ny

)
,

u �→ Fh(u),
(8)

with
[

Fh(u)
]
(t) := h

(
t,

[
F (u)

]
(t), u(t)

)
, t ∈ I. (9)

That is, a given input or control function u is mapped to the output, a function of the solu-
tion of the corresponding IVP (2), (5), and possibly the input itself. Computing the output
for a given input is the task of classical system simulation, it is also called the forward
(simulation) problem.

In contrast, the scenario discussed in the introduction leads to the corresponding inverse
(or backward) problem. Indeed, the so-called reference outputs are given by measurement
data, as functions of time,

yREF : I −→ R
ny , (10)

and for a given system, we search for an input function u that reproduces these measured
reference trajectories as simulation outputs. In particular, it is the task to derive an input
u ∈ L∞(I ;R

nu), such that

Fh(u)
!= yREF. (11)

We call this problem the inverse control problem since, in fact, an inversion of the input–
output-operator is required. In literature, problems of this kind are also known as tracking
problems, cf. [26]. A generalization is the problem to find u such that

∥∥Fh(u) − yREF

∥∥ −→ min, (12)

with a suitable norm. Such problems are called optimal control problems—for an overview
and discussion, we refer to [11].
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2.2 Solving the inverse control problem

In the sequel, we describe a solution approach for the previously formulated inverse control
problem. In this paper, we restrict our considerations to the case that the number of inputs
equals the number of outputs, i.e., nu = ny =: n. Moreover, we assume for our analysis
that the reference outputs yREF are smooth functions, which can be achieved by means of
interpolation provided that the sampling frequency of the measured data is sufficient.

To invert the input–output-operator and, thereby, to solve the inverse control problem
given in (11), we consider the following differential-algebraic equation (DAE):

ẋ = f (t, x,u) (13)

0 = h(t, x,u) − yREF(t), (14)

with the differential variable x ∈ R
nx and the algebraic variable u ∈ R

nu . The strategy here is
to add Eq. (14) as algebraic equation to the original system equation (13), in order to enforce
the requirement of the inverse control problem for all t ∈ I . Consequently, the (unknown)
input u is considered as algebraic variable in the DAE system (13)–(14) corresponding to
the algebraic equation. The latter is also called control-constraint [6, 23], servo-constraint
[7] or path-constraint [10]. A number of variants of this approach can be found in literature;
we refer to [5–9, 24, 25] and also to our work in [11]. Together with the initial condition,

(
xT ,uT

)T = (
xT

0 , uT
0

)T
, (15)

Eqs. (13)–(15) constitute a DAE initial value problem. The initial value u0 ∈ R
nu has to be

determined such that (xT
0 , uT

0 )T is a consistent initial value, where consistency is meant in
the sense of classical DAE theory, cf. [10, 21].

If there exists a solution (x,u) ∈ W 1,∞(I ;R
nx ) × L∞(I ;R

nu), the corresponding u is
obviously a solution of the inverse control problem. Whence, if we assume that for each
yREF ∈ L∞(I ;R

ny ), there is a unique solution of the IVP (13)–(15) on I , then the solution
operator

G : L∞(
I ;R

ny
) −→ L∞(

I ;R
nu

)

yREF �→ u, where (x,u) is the solution of the IVP (13)–(15)
(16)

is the inverse of the input–output-operator, G = F −1
h . To compute a solution numerically, the

DAE IVP can be solved by a suitable integration scheme for DAEs; see, e.g., [10, 20, 21].
We call this approach to solve the inverse control problem the method of control-constraints.

The index of a DAE The index of a DAE is a well-known concept to classify DAEs [13,
19, 21]. It can be seen as a measure of the regularity of the DAE: the higher the index, the
more sensitive is the solution of the DAE to perturbations, this can lead to severe problems
in the numerical treatment of higher index DAEs [20]. For DAEs of the form (13)–(14), the
(differentiation) index is defined to be the smallest number ν such that

0 = dν

dtν

[
h(t, x,u) − yREF(t)

]
(17)

can be transformed into an ODE for u only using algebraic manipulations and (13), pro-
vided that yREF is sufficiently smooth. For instance, if the Jacobian hu = ∂h/∂u(t, x,u) is
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nonsingular for all (t, x,u), then the index equals one. Indeed, formally differentiating leads
to

0 = d

dt

[
h(t, x,u) − yREF(t)

] = ht (t, x,u) + (hxf )(t, x,u) + huu̇ − ẏREF(t), (18)

and this equation can be solved for u̇ provided that hu is nonsingular. The effect of a high
index is illustrated, when we assume that we have to deal with measurement errors, i.e.,

ŷREF(t) = yREF(t) + Δy(t), (19)

with a perturbation Δ. If the DAE (13)–(14) has index ν ≥ 1, then there is a constant c > 0
independent of Δ such that

∥
∥u(t) − û(t)

∥
∥ ≤ c ·

(
max
s∈I

∥
∥Δ(s)

∥
∥ + · · · + max

s∈I

∥
∥Δ(ν−1)(s)

∥
∥
)
, (20)

whenever the right-hand side is sufficiently small, [21], and u denotes the unperturbed solu-
tion. This is especially problematic if Δ is a high-frequent perturbation.

Apart from the previously mentioned assumption that the number of inputs equals the
number of outputs, nu = ny , there are no further restrictions on the dimensions in this so-
lution approach. In particular, both underactuated systems with 2nu < nx as well as fully
actuated and also overactuated systems with 2nu = nx and 2nu > nx , respectively, are pos-
sible.

2.2.1 Force-chains

In the remaining part of this section, we provide an analysis of the method of control-
constraints when applied to a certain class of MBS. In the previous discussion, we have
considered general dynamical system of the form given in Eq. (2), whereas we specialize
now to the MBS equations of motion for a system with N bodies, which are only linked
by force-elements, i.e., q = (qT

1 , . . . , qT
N)T ∈ R

Nnq , nq = 6 and we consider equations of the
form

q̇ = v,

⎡

⎢
⎢⎢
⎣

M1(q1)

M2(q2)

. . .

MN(qN)

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

v̇1

v̇2
...

v̇N

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

f1(q, v)

f2(q, v)
...

fN(q, v)

⎤

⎥
⎥⎥
⎦

+ B(q)u.
(21)

Moreover, we assume that the force vector f = (f1, . . . , fN) describes a force-chain be-
tween body 1 and body N , i.e., by definition,

f1 = f1(q1, v1, q2, v2),

fj = fj (qj−1, vj−1, qj , vj , qj+1, vj+1), (2 ≤ j ≤ N − 1),

fN = fN(qN−1, vN−1, qN , vN).

(22)

We set

J
q

ij := M−1
i

∂fi

∂qj

∈ R
nq×nq , J v

ij := M−1
i

∂fi

∂vj

∈ R
nq×nq , (23)
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for i, j = 1, . . . ,N and the input is assumed to only act on the first body,

B(q) = [
b1(q)T ,0, . . . ,0

]T ∈ R
Nnq×nu , (24)

with b1(q) ∈ R
nq×nu . We consider an output function of the form

h(q, v) := HN(q)MN(q)−1fN(q, v), (25)

with a given matrix function HN(q) ∈ R
ny×nq , i.e., the output is a part of the acceleration of

the N th body, we do not require that ny = nq . Applying the method of control-constraints
means adding the algebraic equation,

0 = HN(q)MN(q)−1fN(q, v) − yREF(t) (26)

to (21). We prove the following theorem, cf. [11].

Theorem 1 For the index k of the DAE system (21)–(26), we have:

(a)

k ≥ N, (27)

(b) k = N , if the matrix

Σ := HNJ v
N,N−1J

v
N−1,N−2 · · ·J v

2,1b1 (28)

is nonsingular for all q, v ∈ R
N ·nq .

(c) If Σ as defined above is singular, but replacing in its definition L Jacobian matrices J v
ij

by their position counterparts J
q

ij makes the matrix product in (28) nonsingular, then

k ≤ N + L. (29)

Proof To prove these statements, we only need to observe that for j ∈ {1, . . . ,N − 1} and a
function

ϕ = ϕ(qj , vj , qj+1, vj+1, . . . , qN , vN) (30)

not depending on ql, vl , (1 ≤ l ≤ j − 1) and u, we have

dj

dtj

[
ϕ(qj , vj , qj+1, vj+1, . . . , qN , vN)

] = (
ϕvj

J v
j,j−1 · · ·J v

2,1b1

)
(q, v)u + Π(q,v), (31)

where the function Π does not depend on u and, additionally that

dl

dt l
ϕ(qj , vj , qj+1, vj+1, . . . , qN , vN) (32)

does not depend on u for l ≤ j −1. This is shown by a simple inductive argument and proves
(a) and (b) by taking j = N − 1 and

ϕ(qN−1, vN−1, qN , vN) := HN(qN)M−1
N (qN)fN(qN−1, vN−1, qN , vN). (33)

In addition, if the assumption of (c) holds, after at most N − 1 + L differentiation steps, we
may solve for u. �
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Fig. 1 Force-chain

If the output is depending only on the position of the last body, the index would be
increased at least by two when compared to the considered acceleration case, since one
needs at least two time differentiation steps to be on acceleration level. Accordingly, if the
output only depends on the velocity of the last body, the index would be increased at least
by one.

Example The one-dimensional N -mass-spring-damper system for N = 4, is a very simple
example of a force chain: the spring-damper elements connect the bodies 1 (bottom) to 4
(top), the input acts as a force on the first body at the bottom and as output, the acceleration
of the highest body is considered, cf. Fig. 1. Let us study the system in more detail: assume
that all four bodies have unit mass and are only allowed to move in vertical direction, let
denote qj , vj ∈ R, (1 ≤ j ≤ 4) their vertical displacements and velocities. If the spring-
damper elements between the bodies are described by linear force-laws, the components of
the force vector are given by

f4 = −k4 · (q4 − q3) − d4 · (v4 − v3) + c4,

fj = −kj · (qj − qj−1) − dj · (vj − vj−1) + kj+1 · (qj+1 − qj1) − dj+1 · (vj+1 − vj )

+ cj , (j = 2,3),

f1 = k2 · (q2 − q1) + d2 · (v2 − v1) + c1 + uz,

(34)

where cj , (j = 1, . . . ,4) are some real constants (such as gravity and rest lengths), and kj

denote the stiffness-coefficients and dj denote damping-coefficients with (kj , dj ) 	= (0,0)

for j = 2, . . . ,4. Then, choosing H4 = 1, the matrix Σ from (28) reads as

Σ = d4 · d3 · d2. (35)

Consequently, if di 	= 0 for all i = 2, . . . ,4, the index of the DAE system is 4. If we have
for only one i ∈ {2, . . . ,4} di = 0, i.e., actually, no damper, then the index increases by one.
Therefore, the number L of (29) may be interpreted as the number of missing dampers.
A similar case study can be found in [4].

Theorem 1 and the preceding example show that the index of the DAE system may
increase linearly with the number of bodies between the body at which the control acts and
the body at which the output is measured, provided that force-elements are between the
involved bodies. Roughly speaking, if there are only force-elements between the bodies of
a MBS, we have as a rule of thumb: the larger the distance is between input and output,
the higher the index of the corresponding DAE system might be. Without giving a precise
definition, distance means here, of course, the number of bodies in between.

Concerning the computational applicability, this results constitutes a severe drawback
of the presented approach to invert the input–output operator, since in realistic MBS the
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distance between input and output is often more than two bodies. The previously discussed
example underlines this aspect: even for a simple one-dimensional four-mass-spring-damper
system as considered therein, the index of the corresponding augmented DAE system is at
least 4, for an analog three-mass-spring-damper systems it is still at least 3.

The purpose of the preceding theorem and the discussion is to give some insights in the
method of control constraints and to underline also its drawbacks. DAE problems of an index
up to three may be solved numerically in a robust and reliable way, whence, the distance in
the previous sense must not be too large.

In case of a differentially flat system [18], the input (as well as the states) can be ex-
pressed in terms of the desired output and its time-derivatives. Obviously, this would di-
rectly solve the inverse control problem. Nevertheless, for large and complex systems the
derivation of these expressions may be very costly and time-consuming, if not practically
impossible. Thus, also for theses systems, the method of control-constraints may be helpful,
cf. also the comments in [25].

3 Application to full vehicle simulation

3.1 Preliminary discussion

In this section, we come back to the motivating application scenario presented in the Intro-
duction, Sect. 1. The aim is to back-calculate an invariant input quantity from measured data
of a reference vehicle and a corresponding (three-dimensional) MBS model of that vehicle,
which is built up in the commercial MBS software tool ADAMS [1].

In what follows, we describe an approach to solve this task, cf. [11, 12]. We introduce
a specific six-dimensional tire-surrogate model, which has a six-dimensional, virtual road
profile as input—three quantities for the translational degrees of freedom and three quanti-
ties correspond to the rotational degrees of freedom. The virtual profile can be interpreted as
the motion of a frame attached to an idealized contact point of the tire-surrogate model. The
latter is coupled to each of the four rims of the vehicle model. Then, by solving an inverse
control problem, four virtual road profiles are derived that reproduce the measurement data
for the reference vehicle.

After this step, the pairs consisting of the tire-surrogate models and the corresponding
derived profiles are considered as excitation model, which possesses a certain invariance
property, and thus it can be used to simulate models of other variants different from the
reference vehicle. Moreover, the specific structure of the interface between tire and vehicle
model (see Fig. 2) allows to solve the inverse control problem only for the tire-surrogate
models instead of the coupled system.

To achieve this, a two-step procedure is necessary, which we describe in the framework
of general dynamical systems in state-space form.

Two-step procedure Let fA : [0;T ] × R
nA × R

nv → R
nA , fB : [0;T ] × R

nA × R
nB → R

nB

and V : R
nA × R

nB → R
nv denote smooth right-hand side and output functions such that the

solution-operators for the corresponding IVPs are well-defined on L∞ := L([0;T ];R
nu).

Then we consider the three systems A, B , and the combined system AB:

1. System A, SA := (L∞, F A):

ẋA(t) = fA

(
t, xA(t), v(t)

)
,

xA(0) = xA,0.
(36)
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Fig. 2 The interface between vehicle and tire model

Whence, for v ∈ L∞, F A(v) = xA. This system will correspond to the vehicle model.
2. System B , S

η

B = (L∞, F B,η), it depends additionally on a given time dependent function
η : [0;T ] → R

nA :

ẋB(t) = fB

(
t, η(t), xB(t), u(t)

)

=: f η

B

(
t, xB(t), u(t)

)
,

xB(0) = xB,0.

(37)

Whence, for u ∈ L∞, F B,η(u) = xB . Here, we consider the output function hB(t, xB) :=
V(η(t), xB). This system will correspond to the four tire-surrogate models.

3. System SAB = (L∞, F AB):

ẋAB,A(t) = fA

(
t, xAB,A(t), V

(
xAB,A(t), xAB,B(t)

))
,

ẋAB,B(t) = fB

(
t, xAB,A(t), xAB,B(t), u(t)

)
,

(
xAB,A(0), xAB,B(0)

) = (xAB,A0, xAB,B0).

(38)

Whence, for u ∈ L∞, F AB(u) = (xAB,A, xAB,B). We define the output function hAB(t,

xAB,A, xAB,B) := V(xAB,A, xAB,B), F AB
hAB

denotes the corresponding input–output-opera-
tor. This system corresponds to the coupled system vehicle and tire-surrogate models.

The two-step procedure is given as follows:

1. First, we consider the subsystem A with input vREF and the corresponding solution xA =
F A(vREF).

2. Second, we consider the subsystem B with the choice η = xA = F A(vREF) and derive the
input u that solves the inverse control problem

F B,xA
hB

(u) = vREF ⇔ V
(
xA(t), xB(t)

) = vREF(t), t ∈ [0;T ], (39)

with xB = F B,xA(u). This is done by the method of control-constraints, described in
Sect. 2. The corresponding inverse control problem only involves the subsystem B .

Theorem 2 For the input u derived by the above two-step procedure, it holds

F AB
hAB

(u) = vREF ⇔ V
(
xA(t), xB(t)

) = vREF(t), t ∈ [0;T ], (40)

with (xA, xB) = F AB(u). In words, if the combined system AB is solved with the input u,
then the corresponding output equals the desired reference.
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Proof Following the described two-step procedure, let xA := F A(vREF), let u satisfy
F B,xA

hB
(u) = vREF and denote xB := F xA

B (u). Then we write the combined system:

ẋAB,A(t) = fA

(
t, xAB,A(t), V

(
xAB,A(t), xAB,B(t)

))
, (41)

ẋAB,B(t) = fB

(
t, xAB,A(t), xAB,B(t), u(t)

)
, (42)

(
xAB,A(0), xAB,B(0)

) = (xA,0, xB,0). (43)

The pair (xAB,A, xAB,B) := (xA, xB) satisfies Eq. (42) and V(xA, xB) = vREF by the defini-
tion of xB and u as solution of the inverse control problem. Whence, the pair also satisfies
Eq. (41) by the definition of xA. Consequently, (xAB,A, xAB,B) = (xA, xB) is the unique so-
lution of the combined system. �

Application to the vehicle model

Coming back to the vehicle simulation, the first step means a (stabilized) force-excited sim-
ulation of the MBS model of the reference vehicle with the measured spindle forces and
torques as input, we have

vREF = (
vT

REF,1, v
T
REF,2, v

T
REF,3, v

T
REF,4

)T ∈ R
4·6, (44)

with vREF,j ∈ R
6 being measured forces and torques acting on spindle j , j = 1, . . . ,4. We

point out that these spindle forces and torques highly depend on the vehicle that was used
for the measurement, whence, in general, they are not invariant. Accordingly, the interface
function V describes the force and torques that are produced by the tire-surrogate model.

As tire-surrogate model, we choose a six-dimensional, linear spring-damper system. The
six dimensions correspond to the six degrees of freedom of a rigid body. Consequently, for
one tire-surrogate model, j ∈ {1, . . . ,4}, the equations of motion have the form

q̇B,j = vB,j ,

Mj v̇B,j = KB(qR,j − qBj
) + DB(vR,j − vB,j ) − KU(qB,j − uj ),

(45)

with xB,j := (qB,j , vq,j ) ∈ R
12 denoting the state variable of the tire-surrogate model and

Mj,KB,K,DB ∈ R
6×6 are diagonal and constant mass-, stiffness- and damping-matrices.

qR,j , vR,j ∈ R
6 are part of the vector xA and shall denote position and velocity of the vehi-

cle’s spindles. Thus, they are given as functions of time by the first step of our procedure.
The input uj ∈ R

6 is a six-dimensional virtual road profile. The interface functions Vj also
describes a linear spring-damper element defined by KB,DB :

h(t, x,u) := Vj (t, qB,j , vB,j )

:= −KB

(
qR,j (t) − qBj

) − DB

(
vR,j (t) − vB,j

) + M̃j q̈R,j (t). (46)

We consider each tire-surrogate model independently. That is, for each j = 1, . . . ,4 we solve
an inverse control problem consisting of the system equations (45) and the control-constraint

0 = Vj (t, qB,j , vB,j ) − vREF,j (t). (47)

Consequently, we have for each tire-surrogate model nx = 12 and nu = ny = 6. The index of
the corresponding DAE is 2, it can be seen as one-body force-chain with output on velocity
level, cf. Sect. 2.2.
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The numerical values for the parameters of this rather simple surrogate model can be
obtained by experience, heuristics as well as from experiments with a real tire or a more
detailed tire model.

3.2 Numerical results

In this subsection, we illustrate the previous considerations and statements with numerical
results. The first step is the verification of the general approach, i.e., we will show that state-
ment of Theorem 2 holds in the explained scenario. In a second step, we address the question
of invariance and show that the pair (u,B) indeed provides an invariant input system with a
certain quality. We refer also to our work in [11, 12].

For our simulations, the MBS vehicle model, i.e., system A, up to the spindles, but with-
out tires is built in the commercial MBS software tool ADAMS [1] and is called VehicleRef .
The tire-surrogate models are implemented in Matlab/Simulink [22]. The inverse control
problem, i.e., the DAE IVP resulting from the method of control-constraints is solved numer-
ically with the DAE integrator RADAU5; see [20, 21]. The Matlab/Simulink models of the
tire-surrogates are incorporated into ADAMS with the ADAMS/Controls interface realizing
the described interface between the system B and A and resulting in the combined system
AB within ADAMS. The coupling scenario of this example system is depicted in Fig. 3b:
A spring-damper system as simplified tire model is coupled to the vehicle model. The com-
bined system is simulated with the computed inputs u = (uT

1 , uT
2 , uT

3 , uT
4 )T , uj ∈ R

6. For all
simulations, we take T = 10 [s] as the length of the considered time interval.

For the numerical simulation results, we do not use real measured wheel forces and
torques, but we perform a so-called virtual measurement instead: The vehicle MBS model
is attached with a detailed and complex tire-model and is driven over a digital road. The
vertical profile of this digital road is displayed in Fig. 3a (red curve, mean-value subtracted).
Concerning computation times, a virtual measurement simulation on a standard desktop PC
leads to a real time factor of approximately 140.

The vehicle is accelerated to a desired velocity by a controller that applies a torque on
the rear wheels; after the desired velocity is reached, it is kept constant. As an outcome of
this first simulation, we obtain the wheel forces and torques vREF,j , j = 1, . . . ,4 from the
complex tire model and consider them as measured. Simultaneously, we obtain in the same
step the results for

xA = F A(vREF,1, vREF,2, vREF,3, vREF,4), (48)

where the solution-operator F A is realized in this case by the ADAMS-solver algorithms.
Of course, in industrial practice, both a realistic and reasonable digital road and a detailed
tire model of high quality are typically not available as discussed in the Introduction, but for
our verification purposes, this way provides a possibility to exclude undesired measurement
influences and to avoid the drift-effect in a force-excited simulation.

In Fig. 4, the computed input u1 : [0;10] → R
6 is shown, exemplarily as outcome of

the solution of the corresponding inverse control problem for the system wheel front left.
It is important to point out that we have here a six-dimensional profile; it is a virtual and
effective profile, but it does not correspond directly to the real physical profile. However,
parts of the profile, namely the vertical component can be interpreted as vertical profile and
can be compared to the real profile from the (virtual) measurement. This is done in Fig. 3a:
The blue curve is given by {(ux(t), uz(t)) | t ∈ [0;T ]}, the mean-value has been subtracted.
Both profiles coincide very well in their characteristics and frequencies, nevertheless, they
are not identical; this is due to the fact that we have used a simplified tire-surrogate model
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Fig. 3 Road Profiles and Example System (Color figure online)

Fig. 4 Input front left, computed
with the method of
control-constraints

for the derivation. In addition, the tire-surrogate model also needs all six components of the
effective profile as input, otherwise it is not working as desired.

After this, the complex tire models are removed and the vehicle is coupled at each wheel
to our tire-surrogate model, cf. Fig. 3b, and it is simulated with the corresponding computed
virtual road profiles. The computation time leads here to a real time factor of about 45. The
outputs of this simulation are the six wheel forces and torques that are generated by each
of the tire-surrogate models. For the front left wheel, the latter are plotted in Fig. 5 together
with the corresponding reference signals vREF,1. We can observe that both curves coincide
very well.

3.3 Invariance

In order to check the invariance property of the proposed input system (u,B), we have to
couple it to several variants of the system A, that is, to several variants of the vehicle MBS
model. To this end, we define a class of three more vehicle variants attached with refer-
ence signals, which we obtained as before by a virtual measurement with the corresponding
vehicle variant, cf. [11]:

C := {
(VehicleVar1, v1REF), (VehicleVar2, v2REF), (VehicleVar3, v3REF)

}
. (49)

The vehicle variants are defined as follows:
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Fig. 5 Wheel forces and torques: simulation and reference

– VehicleVar1: Increasing of chassis mass by 100 [kg],
– VehicleVar2: Increasing of suspension stiffness coefficients by 50 %,
– VehicleVar3: Decreasing of suspension stiffness coefficients by 30 %.

All relative statements refer to system A (= VehicleRef). The computation times for the
variants are in the same range as for the reference vehicle. The obtained simulation results
are displayed in Figs. 6, 7 and 8. As expected, owing to the simple tire-surrogate model, the
curves do not coincide as well as before. Nevertheless, the correlation is still of a remarkable
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Fig. 6 Forces front left, VehicleVar1

Fig. 7 Forces front left, VehicleVar2

and well acceptable quality, especially for VehicleVar1, which is also the vehicle variant
closest to the original system A. This verifies that we have an input system that is invariant
w.r.t. class C with a good quality. In the results for VehicleVar1, one can observe a small
delay between the reference curve and the simulated one: this is due to the higher chassis
mass, the controller in the virtual measurement simulation takes a bit longer to accelerate
the heavier vehicle to the desired velocity. Nevertheless, apart from this delay, the curves
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Fig. 8 Forces front left, VehicleVar3

characteristics coincide very well, which is important in vehicle engineering for durability
purposes.

The goal of this simulation scenario was to check certain invariance properties of the
proposed approach for a straight off-road drive. The obtained invariance results are very
promising, and it can be expected that the approach produces results of similar quality for
more complex variants.

If real measured reference signals are used, we can perform essentially the same steps.
However, care should be taken in the ADAMS simulation of the reference system A, since
we have to apply measured forces and torques as inputs for this simulation. To avoid the
well-known drift-effect in such a scenario, cf. [27], one has to use a stabilization technique;
for instance, one can use a measured motion of the vehicle’s chassis to guide the vehicle
during the simulation, [27]. For a full-vehicle simulation using our derived input systems,
we do not need any stabilization technique. In addition, to ensure that the force-excited
simulation is possible and produces reasonable results, the simulation model of the vehicle
should be of a good quality, i.e., it should describe the vehicle, at which the spindle forces
have been measured, sufficiently.

4 Conclusion

We have formulated an inverse control problem in terms of operator-theoretic concepts, the
solution operator, and the input–output-operator. To solve the problem, we have presented
and discussed the method of control constraints, which consists basically in solving an aug-
mented DAE initial value problem. We have seen that this approach may suffer from a high
index of the underlying DAE system, especially in case of an MBS, in which we have sev-
eral bodies between the output and the body, at which the input acts. In practice, when large
and complex simulation models are considered, this can lead to severe numerical problems,
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i.e., order reduction and high sensitivity w.r.t. perturbations can occur during the numeri-
cal solution of the high-index DAE problem. Then index reduction may become inevitable.
Nevertheless, for systems with low index, the method works well.

In Sect. 3, we have presented an approach to derive a virtual road profile as input for a
tire-surrogate model based on measured spindle forces and an MBS model of the measure-
ment vehicle which, however, should have a reasonable quality. To this end, we have solved
an inverse control problem only for the tire-surrogate models with the method of control-
constraints. This was possible with the help of a two-step procedure, and due to the specific
interface between tire and vehicle model.

The virtual road profile together with the tire-surrogate model is considered as input data
that possesses certain invariance properties and that can be used to simulate other vehi-
cle variants. Indeed, a numerical simulation study underlines this property. We remark that
the used tire-surrogate model is rather simple and of moderate complexity, which seems
sufficient for the considered vehicle variants. We expect, however, an improvement of the
invariance, i.e, the possibility to simulate variants with larger changes w.r.t. to the reference
vehicle, when a more detailed, physical tire model is used.

Finally, we point out the flexibility and modularity of the approach proposed in Sect. 3.
A change of the tire model only affects the solution of the inverse control problem. In ad-
dition, the vehicle MBS model, which might be complex and detailed, is always simulated
within a state-of-the-art MBS software environment; the simulation is separated from the
inverse problem, which can be solved by appropriate algorithms. This makes the approach
applicable in industrial practice.
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